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Abstract 

Dynamic Partial Reconfiguration (DPR) allows the targeted Field- Programmable Array (FPGA) 

to selectively update portions of the programmable logic while the remainder of the fabric stays active.  

Previously, designers were required to manually create DPR systems with minimal support from 

Computer Aided Design (CAD) tools.  Xilinx
®

’s PlanAhead
TM

 software now automates much of the 

DPR system generation process for ISE-based DPR systems.  

This paper presents EuTOPIA (EDK TO PlanAhead Implementation Automation), a CAD tool that 

extends the automation in Xilinx’s current DPR design flow to include microprocessor based designs.  

Given an architecture described in Xilinx’s Embedded Design Kit (EDK), EuTOPIA automates the 

process of converting it into a PlanAhead project for a DPR design.  EuTOPIA abstracts the low level 

details of DPR implementation so that designers need only have nominal knowledge of the underlying 

process to create their initial DPR system.  EuTOPIA is shown to reduce implementation time by a 

factor of 18 times over manual implementations by experienced designers, and can be further 

increased for novice designers.  Over the design-cycle of a product where designers may generate tens 

or even hundreds of different implementations of their DPR design, these time savings could be 

extremely significant. 

 

Keywords: Field Programmable Gate Arrays, Dynamic Partial Reconfiguration, Computer Aided 
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1. Introduction 

 
Field Programmable Gate Arrays (FPGAs) using SRAM technology provides designers with a 

programmable fabric that can be configured to implement a specific hardware circuit.  This technology 

also allows designers to reconfigure the FPGA for a new application’s circuit when the current 

application has been completed.  In addition to reconfiguration between applications, Xilinx
®

’s FPGAs 

allow Dynamic Partial Reconfiguration (DPR) of the FPGA fabric.  DPR allows selected areas of the 

target device to be reprogrammed while the remainder of the fabric stays active.  DPR enables multiple 

modules to time-share the same physical area on the target device, virtually increasing its physical 

resources. 

Another benefit of DPR systems is that they provide applications with an adaptive hardware system.  

The design is able to adapt to runtime system conditions and update only the necessary portions of the 

hardware.  This has important applications in areas such as cryptography [13] and reconfigurable 

communication systems [8].  For modern electronics, the concept of sharing the physical hardware 

among different applications is appealing as it could reduce area, cost, device count and power 

dissipation [3,4,7,8].  Configuration time is also reduced since it is directly proportional to the physical 

area being reconfigured [8].  If an application does not fit on the available FPGA fabric, DPR may be 

used to virtually provide the necessary resources without requiring the application to stall as the entire 

FPGA is being reconfigured at runtime. 

DPR systems mainly exist only in research and have yet to become a popular design solution for 

commercial products.  Typically, they are extremely complex to implement and often it is possible to 

purchase larger devices with sufficient logic resources instead of having to use DPR to virtually 

increase them.  However, as power becomes an important factor for many designs especially in 

portable electronics [4], virtually increasing the available logic resources using DPR may become a 



practical solution.  Xilinx has created documentation outlining the exact procedure to be followed 

when implementing an ISE-based DPR design [1].  Furthermore, PlanAhead
TM

, their hierarchical 

floorplanning tool, can be used to automate some of the steps of the DPR design flow to reduce the 

design complexity.  However, if the DPR design is a microprocessor-based system developed in 

Xilinx’s EDK, additional steps are required before it can be exported to ISE.  No tool support for DPR 

systems that include processors is currently available.  As an increasing number of FPGA designs 

include processors, there exists a need to facilitate the generation of potential DPR-systems developed 

in EDK.   
This paper presents EDK TO PlanAhead Implementation Automation (EuTOPIA), a CAD tool that 

extends the automated tool flow for DPR systems to include processor-based systems created in EDK.  

Our previous work provided only a brief overview of EuTOPIA [13]. Here, we extend the original 

work to include specific details on EuTOPIA, such as its usage and operation as well as its software 

architecture.  From our analysis, EuTOPIA has been demonstrated to reduce design time for the initial 

DPR system by a factor of 18 times over manual implementations by experienced designers, and can 

be further increased for novice designers.   By abstracting the low-level details, EuTOPIA allows 

designers to quickly implement a preliminary DPR system.  These time savings can be extremely 

significant during the design life cycle where different versions of the DPR system may be created 

during product development.   Furthermore, once EuTOPIA has generated the initial DPR system, 

experienced designers can utilize PlanAhead to tweak the initial implementation and improve 

performance.  

The remainder of this paper begins with Section 2 describing previous research using DPR and the 

DPR design flow that Xilinx’s CAD tools currently support to implement a DPR system.  Section 3 

provides an overview of how EuTOPIA is used to extend the automation of Xilinx’s current DPR 

design to support systems that include processors.  As EuTOPIA has two distinct phases, Section 4 

describes the tasks performed in Phase 1 and Section 5 provides an overview of Phase 2.  Section 6 

provides the implementation details of EuTOPIA and the generated DPR systems structure.  Section 7 

describes a case study of a DPR system that was implemented manually and using EuTOPIA by both 

experienced and novice designers.  Finally, Section 8 summarizes the conclusions and future work of 

this project. 

 

2. Dynamic partial reconfiguration design 
 

 

Figure 1. Relationship between (a) PR Region and its PR Modules, and (b) Partial bitstream for each 

PR Module and the Static Region 

 

To clarify the discussion of DPR in this paper, it is important to first define the underlying 

terminology used.  For this discussion, a Partially Reconfigurable Region (PR Region) refers to 

a physical area of the FPGA that can be dynamically reconfigured to implement different tasks.  

A Partially Reconfigurable Module (PR Module) is one of the possible tasks that can be 

implemented in a PR Region.  These concepts are illustrated in Figure 1(a).  Each PR Module 

has its own bitstream file, or partial bitstream, as does the static portion of the design (the static 

bitstream).  A full bitstream for the FPGA comprises the static bitstream plus default partial 

bitstreams for each of the PR Regions shown in Figure 1(b).  The remainder of this section 



describes previous research applications using DPR, the steps involved in designing DPR systems, and 

current Computer Aid Design (CAD) tools available to implement them.   

 

2.1. Previous work 

 
The previous work summarized here considers both the usage of DPR in different applications and 

attempts to automate the DPR process. 

 

2.1.1. Partial reconfiguration automation 

 

To date, the only commercially available FPGAs capable of implementing a DPR design are 

available from Xilinx. They provide documentation to describe the concepts and complex steps 

required to implement such a system [1].  Xilinx has also recently introduced the PlanAhead software 

tool initially designed for complex systems requiring multiple designers.  The target device is 

partitioned into different physical regions and each designer is dedicated to a particular region.  The 

partial designs are then merged together into a final complete system. 

PlanAhead can also now be used to facilitate the development of an ISE-based DPR system.  It 

reduces the complexity of ISE-based DPR system development and offers more flexibility, automation 

and system performance.   However, currently there is no direct support for processor-based DPR 

systems in PlanAhead.  As processor-based systems become more common, there exists a need for 

designers to be able to quickly generate their designs.   

 

2.1.2. Partial reconfiguration applications 

 
DPR has been used in applications such as cryptography [12], network security [143], 

reconfigurable communication [8], and aerospace [8].  In Zeineddini [11], partial reconfiguration is 

used to devise a secure reconfiguration scheme that minimizes reverse engineering and bitstream 

cloning.  Encrypted partial bitstreams are loaded via an embedded microcontroller so potential hackers 

are unable to obtain full configuration data of the target device.  In Kshirsagar et al. [12], a general 

processor is combined with a reconfigurable co-processor for enhanced performance and fault 

tolerance.    In Kao [8], partial reconfiguration is the basis for the defense industry’s Joint Tactical 

Radio Systems (JTRS).  DPR satisfies the need for a reprogrammable runtime environment and the 

ability to support multiple channels and network protocols simultaneously.  Without partial 

reconfiguration, independent processing resources and hardware logic would be required for each 

additional supported channel.  This would adversely affect space, weight and power consumption.    

Kao [8] also discusses how applications designed for the aerospace industry may be subject to 

Single Event Upset (SEUs) that may occur from in-orbit, space-based, and extra-terrestrial 

applications.  By comparing the stored and the actual configuration bits, the system can detect and 

repair SEUs using partial reconfiguration without disrupting normal operation.  The system is also able 

to avoid completely reconfiguring itself if only minimal changes are required.   

 

2.2. Partial reconfiguration design flow 

For the purpose of this paper, the ISE-based standard design flow is the set of procedures used to 

implement a non-DPR design using ISE.  The EDK-based standard design flow is the set of procedures 

used to implement a non-DPR, microprocessor-based design from EDK.  Figure 2(a) shows the high 

level overview of the standard EDK-based design flow [9]. Modifications are required to this design 

flow if the processor-based design implemented in EDK is to leverage DPR. Figure 2(b) illustrates the 

required modifications to the standard design flow required to implement a microprocessor-based DPR 

system from EDK [10].  The bolded boxes highlight the modifications to the standard EDK-based 

design flow for DPR system implementation. 

 



 

Figure 2. High level EDK-based design flow for (a) standard non-DPR systems and (b) the modified 

design flow for EDK-based DPR systems 

 

The designers start by implementing a standard EDK project used for a static embedded 

system. Manual modifications of the HDL files are then required before the EDK project is 

exported to ISE for synthesis. The static module is first placed and routed. It is prohibited from 

using logic resources in the PR Region.  However the static module can share the routing 

resources contained in the PR Region to achieve better system routability and performance.  

Each of the PR Modules is then placed and routed, and its partial bitstream is generated 

according to its individual User Constraints File (UCF).  The UCF for a PR Module specifies, 

among other attributes, its physical location and timing constraints.  A partial bitstream is created 

for each PR Module.  A full bitstream containing the configuration of the entire design including a 

default PR Module for each PR Region is also created.  This full bitstream is typically used as the 

default configuration when the system initializes. 

 

2.3. Partial reconfiguration structural description 

 

 

Figure 3. Top level design example 

 

Figure 3 shows the top level design of a typical DPR system.  The DPR design flow requires a strict 

hierarchical approach that must be closely followed during the HDL coding process.   Global logic 

such as I/Os, clocks, and Digital Clock Managers (DCM) must be in the top-level module contrary to 

EDK’s default assignment.  The Bus Macros (BMs) that are required to provide communication 

between the PR Regions and the static module are also placed at the top level.   There can be multiple 

components within the static-design module.  The PR Regions are instantiated as black-boxes in the top 

level. 



2.4. PlanAhead 

 
Xilinx introduced the PlanAhead software to facilitate complex designs that require multiple 

designers [8].  PlanAhead
 
partitions the target device into multiple physical regions that can be 

implemented independently and merged in later steps to form a complex, multi-person design.  

PlanAhead can also be used to streamline the process of implementing a DPR system.  It exists as an 

independent tool to complement the ISE CAD tools. 

PlanAhead abstracts the intricate details of the implementation process and provides a Graphical 

User Interface (GUI) throughout the design flow.  PlanAhead uses the concept of Physical Blocks 

(PBlocks) to constrain logic within the pre-defined boundaries on the target FPGA.  Each PBlock is 

flexible in size.  The static module and each PR Regions are constrained into separate PBlocks.  After 

verifying the design using PlanAhead’s Design Rule Checks (DRCs), the partial reconfiguration flow 

wizard performs the actual implementation of the design.  The resulting PlanAhead project will contain 

the full bitstream of the design and partial bitstreams for each PR Module generated.  To implement a 

processor-based DPR design using PlanAhead, the Block RAM (BRAM) Memory Map (BMM) file 

must be included during the synthesis of the static region of the design.  Otherwise, the contents of the 

BRAMs will not be properly initialized after the FPGA is initialized with the full bitstream. 
 

3. Overview of EuTOPIA 

 
Xilinx has simplified the complex process of implementing an ISE-based DPR system through the 

use of PlanAhead.  However, detailed knowledge of their CAD flow is still needed to generate a DPR 

system from a processor-based design.   EuTOPIA abstracts these low level details, allowing designers 

to quickly generate their EDK-based DPR designs.  The high-level overview of EuTOPIA is shown in 

Figure 4. 

 

 

Figure 4. High-level overview of EuTOPIA 

EuTOPIA automates the process of converting an EDK-based DPR design to a PlanAhead project.  

It uses a two-phase approach to generate the PlanAhead project and full and partial bitstreams.  In 

Phase#1, EuTOPIA modifies HDL files in the EDK project to conform to the DPR design flow.   The 

modified HDL files are then synthesized using ISE.  A TCL script that contains detailed 

implementation instructions for PlanAhead is also generated.   In Phase#2, PlanAhead invokes the TCL 

script to create the PlanAhead project.  Currently EuTOPIA supports only the Peripheral Local Bus 

(PLB) and the On-chip Peripheral Bus (OPB).  Future versions will incorporate additional 

communication infrastructures such as the Fast-Simplex Links (FSLs).  EuTOPIA has been designed to 

require no updates for newer releases of EDK, provided that there are no major structural changes to 

the HDL files it generates.  EuTOPIA is not designed as a replacement for either EDK or PlanAhead, 

but is meant to complement the functionality provided by both tools.   It is designed to provide novice 



users with only the core functionality and flexibility necessary to generate a DPR design.  After the 

initial DPR system is established, the users can pursue more optimized designs by modifying the 

existing PlanAhead project. 

 

4. EuTOPIA – phase #1  

 

 

Figure 5. High-level overview of EuTOPIA phase#1 

For a DPR design developed in EDK, Phase#1 modifies and synthesizes the HDL files in EDK to 

conform to the DPR design flow.  The design constraints are specified in the UCFs and a TCL script is 

generated for Phase#2.  The following subsections detail the actions taken in Figure 6. 

 

4.1. User inputs 

 
EuTOPIA currently accepts the following design parameters through a simple text based user 

interface:  

• Development Board Type  

o Virtex-2 Pro  

o ML505 

• Number of Partial Reconfigurable Regions (Up to 3) 

• Desired location of the PR Regions (Top right, top left, bottom right or bottom left) 

In the current version of EuTOPIA, all PR Regions are fixed in size and have to reside in the same 

vicinity of the FPGA (e.g. top right, bottom left).  Future versions will allow users to implement an 

increased number of PR Regions, additional development boards, and specify the desired location and 

size of each PR Region individually.   

 

4.2. Create file structure 
 

The file structure of EuTOPIA is shown in Figure 6.  Folders generated by EuTOPIA are shaded in 

grey.   

 

Figure 6. EuTOPIA file structure 

To automate the DPR flow, it is required that the user place the EDK project and the Java folder 

inside the TOP_DESIGN folder, where the TOP_DESIGN is the name of the DPR design.  The Java 

folder contains EuTOPIA and BMs for all supported development boards. All subsequent files and 

directories will be created automatically.  The modified HDL files and resultant NGC files from Phase 

1 synthesis are placed in the ISE folder.  The PlanAhead folder will contain the DPR project 

implemented in PlanAhead.  Designers are able to make further modifications to the PlanAhead project 



as desired after EuTOPIA has completed execution.  Currently, the Java folder is required for each 

DPR design.  EuTOPIA is now being updated to require only one instance of the EuTOPIA executable 

and BMs for all DPR designs that reside on the local host. 

 

4.3. Update HDL files 
 

Hardware Description Language (HDL) files generated by EDK need to be modified to conform to 

the DPR design flow.  The HDL file system.vhd is generated automatically by EDK when the EDK-

based design is synthesized as a sub-module of a top-level design, system_stub.vhd, as shown in Figure 

7.  Systemstub.vhd contains high-level port mapping of the underlying modules.   Without 

modifications, the only component included in this top level is system.vhd, which includes both the 

static and dynamic components of the complete DPR system.  Changes are required for 

system_stub.vhd to comply with the DPR design flow.  In particular, this top-level design must 

explicitly contain all:  

 

• I/O instantiations 

• DCMs and BUFGs 

• Static module 

• PR module instantiations 

• Global signal declarations 

• Bus macro instantiations 

 

 

Figure 7. Design hierarchy of systemstub.vhd before modification 

 

 

Figure 8. Design hierarchy of systemstub.vhd after modification 

Figure 8 shows the logical hierarchy after modifications are made to systemstub.vhd, which is then 

renamed as top.vhd and placed in the ISE folder for later synthesis.  First, system.vhd has been updated 

to just include the static component.  The PR Regions and I/O ports are removed from system.vhd and 

elevated to the top level (top.vhd).  Next, the BMs are placed with the correct nets between the PR 

Regions and the static module.  Two unidirectional BMs are required for each PR Region to provide 

duplex communication. The DCM is also instantiated at the top level and internal signals are adjusted 

to ensure that connectivity between components has not been disrupted. 

 



4.4. Create NGC files 
 

This step utilizes the modified HDL files and ISE to produce the necessary NGC files for 

PlanAhead in Phase 2.   If there are p PR Modules in the system, there will be a total of p+2 NGC files 

created.  The two additional NGC are files for the top-level HDL (top.vhd) and the static components 

(system.vhd).  EuTOPIA invokes command-line calls to the Xilinx Synthesis Tool (XST) to synthesize 

and create the NGC files.  The script file (.scr) contains executables and options available within XST.  

Options include optimization mode, target device, IOBUF enable, speed setting...etc.  Currently, 

EuTOPIA provides defaults for all the options.  Future versions of EuTOPIA will allow users to specify 

parameters for each option.    Note that only the top level (top.vhd) synthesis should have IOBUFs 

enabled. 

 

4.5. Copy bus macro 
 

Device specific BMs are used to provide unidirectional point-to-point communication between a PR 

Region and the static module.  All connections between the PR Regions and static module must pass 

through a BM, with the exception of clock signals and power.  There are three parameters for the BMs 

available for each of the supported FPGAs: 

• Signal Direction -- Left to Right (L2R), Right to Left (R2L).  Used as inputs or outputs to the 

PR Regions with respect to the position of the PR Regions and the static design. 

• Physical width of the BM  

Wide – 4 Configurable Logic Blocks (CLBs) wide 

Narrow – 2 CLBs wide 

• Synchronous versus asynchronous 

In total, there are 2
3
=8 variations of the BMs available for each supported FPGA.   Currently, 

EuTOPIA automatically assigns narrow, synchronous BMs (both L2R and R2L for signal inputs and 

outputs) for each PR Region.  The default BM parameters are chosen to minimize design footprint and 

to reduce system complexity that can arises from an asynchronous design.  All supported FPGAs’ BMs 

are contained in the Java directory.   Future versions of EuTOPIA will allow designers to specify the 

types of BMs that designers consider best suited for their designs.  The appropriate BMs are then 

copied into the ISE folder for synthesis.  

 

4.6. Create user constraints files 
 

PlanAhead requires the DPR design to be budgeted and partitioned before implementation.  The 

UCF specifies the physical location on the FPGA and the constraints for the place and route tool.   

EuTOPIA automatically assigns the location of all PR Regions to one user-specified region of the 

FPGA (e.g. top left).  Clock BUFG and BM locations and parameters are also automatically assigned 

with respect to the target FPGA and PR Regions’ locations.  Designers can choose new locations after 

the PlanAhead project has been created to further optimize their designs.   

 

4.7. Create script file for PlanAhead 
 

A script file (.tcl) detailing the steps to be performed by PlanAhead is created and placed in the 

PlanAhead folder.  This file will be invoked by the PlanAhead software in the next phase.   

 

5. EuTOPIA – phase #2 

 
PlanAhead performs a fixed set of operations outlined in the TCL file. A bottom-up approach is 

used to implement the DPR design.  After Phase#1 is completed, the user invokes the TCL file using 

PlanAhead to create the PlanAhead project.  Users are able to validate their designs and make further 

modifications as necessary.  Figure 10 shows the high-level overview of the major steps required in 

PlanAhead to generate the PlanAhead project that contains the full and partial bitstreams. 

 



 

Figure 9. High-level overview of PlanAhead steps 

An initial project is first created according to the development board type, number and location of 

the PR Regions and PR Modules.  Netlists are imported and floorplanned from the constraints 

contained in the UCF.  DRCs are used to ensure the entire design conforms to the DPR design flow.  

The static module and individual PR Modules are then implemented separately.  Bitstreams are 

generated using PlanAhead-specific commands provided in the EuTOPIA generated TCL script. 

 

5.1. High level implementation 
 

The initial PlanAhead project combines the static module with one of the possible PR Modules for 

each corresponding PR Region to generate an initial full bitstream.  Alternate PR Modules are 

imported from the ISE folder.  All netlists are imported as either EDIF or NGC files.  The design is 

then properly floorplanned and partitioned according to the UCF.   PlanAhead provides internal DRCs 

to verify the correctness of the design.  Rule checks include Bus Macro DRCs, Floorplanning DRCs, 

Glitching logic DRCs and Timing Advisor DRCs.    

 

5.2. Individual Module Implementation 

 
The static logic module is placed and routed first followed by each of the PR Modules. PlanAhead’s 

ExploreAhead tool implements and displays the status of the progress in real-time.  BMM files for the 

static module must be included into the static module’s implementation to ensure the processor’s on-

chip executable is present when the FPGA s initially configured.  After the static module and the PR 

Modules have been implemented, the full and partial bitstreams are generated by using PlanAhead’s 

PR_verify and PR_assemble command.  PR_verifydesign is run to generate partial bitstream for each of 

the PR Module.  PR_assemble is run to generate the full bitstream containing the static module and the 

selected PR Module as the initial configuration of the target device. 

 

 

5.2. PlanAhead file structure 
 

PlanAhead automatically creates an array of files and folders to store the DPR system.  Figure 10 

shows the important folders within the PlanAhead project. 

 

Figure 10. PlanAhead file structure 



The data directory contains the implementation details of design (e.g. Netlists, ExploreAhead runs, 

floorplans).  The static directory contains the static implementation and each PR Module is 

implemented in the pr_modules directory.  All bitstreams are generated to the merge directory.  

 

6. Implementation 

 
This section discsses both EuTOPIA’s implementation and the expected structure of the EDK-based 

architecture. 

 

6.1. Development language 
 

EuTOPIA is written in Java to take advantage of its portability to multiple platforms.  Users are able 

to download EUTOPIA and run it locally regardless of the operating platforms (e.g. Windows, Linux, 

Mac).   The additional options outlined in Sections 4 & 5 are being incorporated at present.  The 

current size of EuTOPIA is less than 100KB, and these additions will not substantially increase the 

code space requirements. 

 

6.1. Input architecture requirement 
 

To detect the PR Regions and automatically modify the HDL files match the DPR design flow 

requirements, there is one architectural requirement for EuTOPIA to be able to modify an EDK-based 

DPR design.  In particular, the PR Regions need to be connected to the Peripheral Local Bus (PLB) via 

PLB_Bridges and the naming of the PR Regions must follow a set of convention. 

Currently, up to three PR Regions can be accommodated by EuTOPIA.  The naming convention 

requires each region to be named reconfig_region_X where X is the PR Region number, starting with 0 

(zero).  The PLB Bridge is an 8-bit unidirectional communication channel between the PLB and a 

custom IP.  Two PLB Bridges are required for duplex communication with a PR Region.  A simple 

system highlighting the inclusion of these bridges for an EDK-based DPR system is shown in Figure 

11. 

 

 

Figure 11. PLB reconfigurable module bridge in EDK 

 

PLB_Bridge_A is responsible for communication directed from the PLB to the PR Region.  

PLB_Bridge_B is responsible for directed communication from the PR Region to the PLB.  Currently 

all PR Regions must be connected to the PLB.  Future versions of EuTOPIA will permit direct 

communication between the PR Regions and the soft-processor via Xilinx’s Fast Simplex Link (FSL), 

a unidirectional First-In-First-Out (FIFO) communication bus.  It should also be noted that EuTOPIA 

can generate a DPR system for designs that include embedded PowerPCs as opposed to MicroBlazes.  

However, the PR Regions still must be connected to the PLB.  Investigations as to the possibility of 

connecting the PR Regions directly to the PowerPCs Local Bus (PLB) are currently underway. 



 

7. Experimental procedures and results 

 
To demonstrate the time savings that can be achieved by using EuTOPIA, a case study of an EDK-

based DPR project is described in this section.  The experimental procedures and results that are used 

to quantify the time-savings are presented.   

 

7.1. Experimental system description 
 

The same DPR system is implemented twice, once using EuTOPIA and the second time manually.   

The starting point for this experiment is to assume the existence of a non-DPR system implemented 

using EDK.  As the purpose of EuTOPIA is to reduce the design time of DPR systems specifically, the 

time required to create the initial non-DPR system in EDK is not considered.  Table 1 outlines the 

specifications for the implemented DPR system. 

Table 1. Implemented DPR system specifications 

Number of PR Regions 2 

Processor MicroBlaze 

Number of PR Modules per PR Region 3 (Including a blank PR Module) 

Number of PLB Bridges (2 Bridges per PR Region) x  (2 PR Regions) = 4 

Number of Bits per Bridge 8 (One BM Width) 

Location of both PR Regions Bottom Left 

Target Development Board V2P Development Board 

Processor Speed 100MHz 

 

The data width of a single BM is 8 bits.  Currently, one BM is used for the unidirectional 

communication between the PR Region and the PLB.  Future versions of EuTOPIA will incorporate 

multiple BMs per directional connection to increase the data width between the PR Region and the 

PLB to at least 32 bits.  The experimental system was created using EDK 9.2 SP2 and ISE 9.2 SP1 

with the Implementation Tool Add-on for Partial Reconfiguration [12].  The output of EuTOPIA is 

generated for PlanAhead 9.2.2.  The system is implemented using Windows XP Pro, running on a 

Pentium IV 2.4 GHz with 2GB of memory.  The high level block diagram of the implemented system 

is shown in Figure 12. 

 

 
 

Figure 12. High level block diagram of the implemented system 



Data and instructions are relayed to and from the PR Regions through the PLB_Bridges.  The 

information is then relayed to the soft processor (MicroBlaze) through the PLB.  Information received 

from the PR Regions is displayed serially through the UART onto the HyperTerminal.  There are two 

active PR Modules for PR Region 1:  PR Module 1 continuously outputs "1234" and PR Module 2 

continuously outputs "ABCD".  Similarly, PR Region 2 has two PR Modules, however, their output 

strings are "5678" and "EFGH" respectively.  Therefore, including the "blanking" PR modules for both 

PR Regions, there are a total of 2
3
=8 possible combinations of PR Modules at runtime. Both the 

automated and manual implementation methods generated final bitstreams that produced the expected 

behaviour, dynamically switching the PR Modules running in the PR Regions in real time. 

 

7.1. Experimental result 
 

To implement the DPR system manually without the aid of EuTOPIA is a considerable challenge.  

Not only does the designer have to understand the intricate details of the DPR flow, but also the 

detailed usage of ISE and PlanAhead.  In contrast, by using EuTOPIA, only nominal knowledge of 

PlanAhead and the DPR design flow are required to generate the initial DPR system.  No prior 

knowledge of ISE is required.  The EuTOPIA-generated PlanAhead project can also be further 

modified using all of PlanAhead’s and capabilities as required.  Table 3 summarizes the estimated 

initial learning time required to understand the DPR design flow and the usage of the ISE and 

PlanAhead tools.   

 

Table 3. Approximate initial learning time to implement a DPR system 

Task Approximate Learning Time (hrs) 

DPR Design Flow and Methodology 40 

Understanding of the modifications using  ISE  15 

Understanding of PlanAhead
 
for DPR systems 15 

 

Table 4. Approximate implementation time for the experimental DPR system 

Task Manual Implementation 

(Experienced User) 

Approx Time (hrs) 

EuTOPIA 

Create Initial File Structure 0.25 <5 sec EuTOPIA Phase1 

Modification of HDL files in EDK  2 <20 sec EuTOPIA Phase1 

Create NGC Files using ISE according 

to DPR design flow 

1 ~5 minutes  

EuTOPIA  Phase1 

PlanAhead Project Implementation  

� Netlists Import 

� Floorplanning 

� Design Rule Checks 

� Implementation flow 

� Bitstream generation 

3 ~15 minutes 

EuTOPIA Phase2 

 

 

For designers utilizing EuTOPIA, only its input constraints and design structure need to be followed 

and understood to generate the initial DPR system.  The test subjects were Master's students who had a 

basic knowledge of FPGAs and embedded systems design using EDK, but no previous experience with 

DPR.  The test subjects needed 3 hours to understand the constraints and architectural changes required 

by EuTOPIA before generating their DPR systems. Compared to the 70 (40+15+15) hours needed to 

fully understand Xilinx's DPR design flow, this time saving is quite significant, even before the 

implementation of the DPR system.  We then had an experienced user manually implement the 

necessary changes to generate this DPR system to minimize the design time.  Table 4 summarizes both 

the experienced user's and EuTOPIA's implementation times, demonstrating the reduced turnaround 

time using EuTOPIA even for experienced DPR designers. 

By using EuTOPIA, the actual implementation time of this experimental DPR system has been 

reduced from 6 hours to 20 minutes for a factor of 18 times speed up.   This reduction in design time 

can increase significantly for novices who lack DPR design experience.  Most (>90%) of the 



implementation time needed by EuTOPIA to generate this experimental system is for synthesis using 

Xilinx's CAD tools.  This time is dictated by the design complexity and is identical for both 

implementation methods.  If the synthesis time is excluded, the actual setup time needed by EuTOPIA 

(e.g. HDL modification, file structure creation) is less than 1 minute compared to the manual approach 

time of 2+ hours.  For more complex DPR design, EuTOPIA will only experience a negligible increase 

in time as a result of having to parse larger HDL files. However, the setup time for manual 

implementations may increase dramatically due to this greater complexity in the HDL files, which 

impacts both design floorplanning and partitioning. 

 

                    

Figure 13. (a)PR regions implemented on the Virtex-2- pro board and (b) PR Regionscommunications 

using BMs 

Figure 13(a) shows the two PR Regions (PRR_1 on the left, PRR_2 on the right) implemented in 

the bottom left position of the XC2VP30 FPGA on the Virtex-2 Pro development board. Duplex 

communication is achieved through the BMs (encircled in white) located at the top and bottom portion 

of each PR Region.  The top BM for each PR Region is shown in Figure 13(b).  As noted, two BMs are 

required to provide duplex communication between the PR Regions and static regions of the design.  In 

this example, the top BM is the 8-bit input from the static region to the PR Region.  The bottom BM 

(not shown) is the output from the PR Region to the static region.   Future versions of EuTOPIA will 

allow for wider communication buses to and from the PR Regions.   

 

9. Conclusion and future work 
 

A Dynamically Partially Reconfigurable (DPR) system implementation allows designers to 

implement complete systems on devices with a smaller foot-print, that potentially improves power 

consumption, while enhancing FPGA fault tolerance.  While it’s many advantages, the implementation 

of a DPR system is very complex and time-consuming.  Xilinx has introduced the PlanAhead tool that 

can be used to streamline the design flow for ISE-based DPR systems.  However this is not sufficient 

for designers who have only nominal knowledge of the underlying DPR flow to quickly generate their 

processor-based DPR design in EDK. 

This paper presented EuTOPIA, a software tool that facilitates the current design flow for DPR 

systems.  Given a structured input architecture in EDK, this tool generates a PlanAhead project with 

full and partial bitstreams.  Designers are then able to make further modifications and optimize their 

systems as desired.  EuTOPIA provides designers a quick method to generate their systems with the 

core functionalities and flexibilities of a PlanAhead Project. 

An identical experimental DPR system was implemented twice, once using EuTOPIA and the other 

manually. It was found that the implementation time for EuTOPIA was 18X faster than manual 

implementation for experienced users.  There is also an initial time saving of 70 hours by using 

EuTOPIA from the initial learning stage of the DPR flow compared to three hours for EuTOPIA.  It 

abstracts the low-level details of the DPR flow so that designers are not required to understand fully the 

intricate details to generate an initial system.  They are only required to have nominal knowledge of the 

underlying process and the input constraints to EuTOPIA.  Over the design-cycle of a product where 



designers may generate tens or even hundreds of different implementations of their DPR design, these 

time savings would be significant. 

Future versions of EuTOPIA will allow designers more flexibility in the options they can choose for 

their PDR system’s design.  Current upgrades being developed include: increasing the number of 

allowable PR Regions, user-specification of the desired location and size of each PR Region, 

increasing the data-width between the PLB and the PR Regions, supporting FSL and PLB connections 

to PR Regions via Bus Macros, user specification of the parameters of the Bus Macros, and the 

inclusion of additional development boards and FPGA device types. 
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