
Dynamic Partial Reconfigurable FPGA Framework

For Agent Systems

Edward Chen

1
 ,Victor Gusev

1
, Dorian Sabaz2, Lesley Shannon

1
,

and William A. Gruver
1,2

1
 School of Engineering Science, Simon Fraser University

Burnaby, BC, Canada

{ekchen, vga9, lshannon, gruver}@sfu.ca

2
 Intelligent Robotics Corporation

North Vancouver, BC, Canada

{dorian, gruver}@iroboticscorp.com

Abstract. Dynamic Partial Reconfigurable (DPR) FPGAs enable software such

as threads and agents to be executed directly in hardware. However, they were

utilized as hardware extensions of software to execute individual threads or

threads encapsulated in an agent. Thus, it was necessary for these systems to be

administered by a CPU and did not take full advantage of the concurrency

features that FPGAs provided. This paper presents a hardware framework in

which the agent concept and the benefits that arise from an agent system are

designed into the FPGA. This enables not only the hardware modules to be

viewed as agents, but also provides a means to selectively design and

componentize the communications network for the hardware agents. The

proposed framework enables hardware agents to be implemented to run

concurrently and allows them to communicate with each other without requiring

a CPU.

Keywords: DPR, FPGA, Hardware Abstraction, Agent Systems

1 Introduction

A Field Programmable Gate Array (FPGA) provides designers with a

programmable fabric that can be configured at runtime to execute the designed circuit,

and allows designers to reconfigure the entire FPGA for a new application when the

current application has been completed. FPGAs have been widely used in the fields

of wired and wireless communication, [1] image and signal processing [2-3], medical

equipment [4], robotics [5], automotive [6] and embedded control systems [7].

Dynamic Partial Reconfigurable (DPR) FPGAs allow multiple Hardware Modules

(HMs) to spatially share a pre-defined portion of the programmable fabric while the

remainder of the fabric stays active. Despite its benefits [9-10], the hardware

implementation process for DPR continues to be complex and time consuming, and

often requires hardware developers to have a thorough understanding of the

underlying device and design methodology [8,12]. Also, since hardware design is

inherently more complex than software, challenges such as concurrency and

synchronicity between competing requests and the standardization of communication

infrastructures must be addressed before hardware agents can be realized in an agent

system.

This paper presents a DPR FPGA framework that utilizes a hardware

representation of the agent system paradigm. The framework leverages software

implementation benefits such as loose couplings between code modules, a flexible

system framework, and the ability to facilitate the development of future system

architectures. In addition, by implementing hardware agents in the partially

reconfigurable regions of the FPGA, benefits such as higher throughput [11],

robustness [7], and concurrent processing [10] can be achieved. With DPR, hardware

agents may be moved within or between devices without the need to completely

reconfigure the underlying application. Mission critical applications are able to stay

active while pre-defined portions of the programmable fabric are partially

reconfigured to accommodate the entries and exits of hardware agents.

2 Background

2.1 Field Programmable Gate Arrays

FPGAs are programmable semiconductor devices were first developed in the

1980s. They are based on a matrix of Configurable Logic Blocks (CLBs) connected

via programmable interconnects [11]. Unlike Application Specific Integrated Circuits

(ASICs) where the device is custom built for the specific design, FPGAs with static

random access memory can be completely configured between applications to

implement different circuits. Figure 1 shows the major components of a modern

FPGA.

CLB

Switch Block

Routing Track

(Horizontal)

Routing Track

(Vertical)

I/O Banks

Embedded Hard Blocks

Fig. 1. Major Components of a Modern FPGA

The CLB is the basic logic unit in an FPGA. The exact numbers and features can

vary between devices, but every CLB consists of a Look-Up Table (LUT) with

multiple inputs, some selection circuitry and flip flops. The CLBs can be configured

to implement combinatorial logic, shift registers, or RAM. While the CLBs provide

logical implementation, flexible interconnect routing is used to route the signals

between CLBs, and to/from I/Os. Different length routing wires are available to

efficiently route signals to adjacent CLBs or across the FPGA. Routing decisions are

typically based on Computer Aided Design (CAD) tools unless specified by the

designer. Embedded blocks such as Block RAM, Multipliers, and DSPs are available

to the designers to provide specialized functionalities. Such hard IPs are efficient

alternatives to implementing resource-intensive modules using generic CLBs.

2.2 Dynamic Partial Reconfiguration

Whereas FPGAs are traditionally reconfigured between applications, Xilinx®

FPGAs [8], and more recently those from Altera® [12], enable DPR of the

programmable fabric. DPR allows multiple HMs to time-share a pre-defined portion

of the programmable fabric while the remainder of the fabric stays active. Mission-

critical applications are able to stay active while parts of the fabric are being updated

PR_Region_A

Static Region

FPGA

PR Module A1

PR Module A2

PR Module A3

FPGA

PR Region A

Static Region

Partial Bitstream A1, A2

Partial Bitstream B1, B2

Partial Bitstream C1, C2

Static Bitstream

PR Region B

PR Region C

Fig. 2. DPR Concept and Terminologies

Figure 2 highlights the key DPR terminologies in this paper. A Partially

Reconfigurable Region (PR Region) refers to a physical area of an FPGA that can be

dynamically reconfigured to implement different tasks, and a Partially Reconfigurable

Module (PR Module) is one of the possible tasks that can be implemented in a PR

Region. Therefore, there exists an n-to-1 mapping in time between PR Modules to

PR Regions. Also shown in Figure 2, each PR Module has its own bitstream file, or

partial bitstream, as does the static portion of the design (the static bitstream). A full

bitstream for the FPGA comprises the static bitstream plus default partial bitstreams

for each of the PR Regions.

2.3 Agent System

Agents in an agent system have the following properties [13]:

 Behavioral Autonomy – The ability for agents to determine autonomously

how and whether to respond to requests.

 Localized Goal – No agent should have the entire view of the system, or the

system is too complex for an agent to make practical use of such knowledge

 Loose Coupling – Agents, unlike programmed objects, are not tightly

bounded and are allowed to determine how to best interconnect among

themselves.

 Distributed Services – System services are distributed among the agents,

where the agents work together without a central controlling authority.

An agent system is often used to solve complex problems that are difficult or

impossible for an individual agent or a monolithic system to solve. Individual agents

may be limited by their resources, but collectively they can be grouped to achieve a

common objective that precedes individual goals. Agent systems have been widely

used in practical applications such as automotive [14], manufacturing [15],

automation [16], and pattern recognition [17]. They have also been widely advocated

for use in networking and mobile technologies to achieve dynamic load balancing,

high scalability, and self-healing networks [13].

Typically, agents are implemented in software to leverage code-reuse, portability,

scalability and high levels of abstraction normally associated with software

implementations. With DPR of FPGAs, it is now possible implement frameworks

that accommodate hardware agents and leverage the benefits of a modern FPGA such

as embedded processors, concurrency, and partially hardware updatability.

2.4 Hardware Implementation Challenges

FPGA-based systems use dedicated hardware for processing logic. Unlike

software-based solutions that use context-switching to service multiple threads,

FPGAs offer true concurrent and spatial processing so that different processing

operations do not compete for the same resources. Other advantages include

consistent and reliable performance at reduced clock rates, power consumption, and

device count [8-10].

Despite its benefits, hardware designs remain complex, extremely time

consuming, and require in-depth knowledge of the underlying device technology.

Hardware design methodology has not been able to keep pace with the increased

design complexity predicted by Moore’s Law. These challenges include:

 System Control Complexity (SCC) - Hardware design offers true concurrency

and therefore lacks a dedicated central controller that arbitrates competing

requests.

 Degree of Modifiability (DoM) - An incremental change in hardware logic

may require new spatial planning of the previously placed HMs and

rerouting of their connections. This could lead to new spatial and latency

issues that are not present before the change, thus further complicating the

design.

 Universal Communication Abstraction (UCA) - In addition to being

physically connected, HMs must share complementing infrastructures to

enable their communication. Unlike software in which there are commonly

used universal communication abstractions, hardware developers are often

required to implement unique interfaces to facilitate communication between

modules.

There exists a need for a generic framework and accompanying communication

infrastructure that is completely customizable to address these challenges and satisfy

the dynamic nature of the HMs in a DPR application. The infrastructure must allow

changes to how the HM is used at runtime, while keeping the communication

infrastructure lightweight to efficiently utilize system resources within a PR Region.

3 Implemented Framework

3.1 Framework

An architectural example of the generic framework is shown in Figure 3. This

framework is implemented using the Xilinx dynamic partial reconfigurable FPGA

(Virtex5-LC50). Table 1 outlines the functionalities of the components in the

framework.

The FPGA is divided into two partitions: Static and Partially Reconfigurable (PR).

The Static Partition contains the embedded soft-core processor, MicroBlaze (µB),

Hardware Administrator (HA), and a number of hardware peripherals. The Static

Partition provides high-level administrative control and interfaces between the

modules in the PR partition and the embedded processor. The PR Partition contains a

predetermined number of PR Regions to host multiple HMs that time-share each PR

Region. All HMs are implemented with an identical hardware interface, and are

directly connected to the HA.

An extensive list of pre-verified HMs implemented as PR Modules can be made

available to the embedded system developers. This architecture can easily be scaled

to accommodate more complex applications. Multiple HMs and HAs can be added

when there are sufficient resources available on the target device. Alternatively,

multiple HMs can be connected directly in a simple mesh design without the use of an

HA. Other Network-on-Chip (NoC) configurations such as star or bus structures can

also be realized.

User

Logic

Module A

Control Interface

P
a

c
k
e

t_
In

 I
n

te
rf

a
c
e

P
a

c
k
e

t_
O

u
t
In

te
rf

a
c
e

User

Logic

Module B

Control Interface

P
a

c
k
e

t_
In

 I
n

te
rf

a
c
e

P
a

c
k
e

t_
O

u
t
In

te
rf

a
c
e

User

Logic

Module C

Control Interface

P
a

c
k
e

t_
In

 I
n

te
rf

a
c
e

P
a

c
k
e

t_
O

u
t
In

te
rf

a
c
e

User

Logic

Module D

Control Interface

P
a

c
k
e

t_
In

 I
n

te
rf

a
c
e

P
a

c
k
e

t_
O

u
t
In

te
rf

a
c
e

Hardware

Administrator
μBlaze

MDM

SysACE

UART

ICAP

FSL

PLB

Static Partition Partial Reconfigurable Partition

Remote

Terminal

Program

Compact

Flash

(User Logic

Modules Storage)

Bus

Macros

Fig. 3. Proposed FPGA-based Framework

Table 1. Functionalities of the Components in the Framework

Peripheral Local Bus (PLB)

Xilinx 129-bit bus infrastructure for connecting an optional number of PLB masters and slaves into an

overall PLB System

Block RAM (BRAM)

Memory used by the embedded processor

Hardware Internal Configuration Access Port (HWICAP)

Enables an embedded microprocessor such as the MicroBlaze to modify the current circuit structure and
functionality during its operation

System ACE Controller

Interface between the PLB and the MicroBlaze to read and write to the System ACE™ Compact Flash.

Bus Macro (BM)

Xilinx-provided hard cores that are placed at fixed locations to facilitate unidirectional point-to-point

communication between the Static and PR partitions.

Hardware Administrator

Functions as the administrator of the PR Partition.

Routes data and control packets between the MicroBlaze and a specific PR Region.

Provides real-time updates to the MicroBlaze with the availability and status of each PR Region. The

MicroBlaze uses this information and makes intelligent scheduling and placement decisions of the PR

Modules to the PR Regions.

Provides flow and congestion control between the MicroBlaze and the PR Regions.

3.2 Hardware Modules (Hardware Agents)

As shown in Figure 3, each HM is encapsulated with a standardized

communication infrastructure that is both light-weight and fully customizable. It

abstracts low-level communication details between the HMs and allows developers to

focus their efforts on high-level functionalities of the HMs, rather than low-level

design intricacies.

Each HM has three interfaces: Control, Packet_Out (PO), and Packet_In (PI). The

User Logic (UL) contains the actual functionality of the HM. The interfaces are

shown in Figure 4.

The Packet-In (PI) interface receives customizable data and control information

from other HMs or a central controller. The PI interface also provides input flow-

control functionality to the User Logic. The Packet-Out (PO) interface functions

identically to the PI interface, except that data, control, and flow-control information

is sent out to other HMs or a central controller. The Control Interface provides

supervisory control over the User Logic, and can inform other HMs or central

controllers the current status or state of the User Logic. The functionality of the User

Logic is application-specific and is implemented by the developers. The developers

must conform to the standardized interfaces when designing the User Logic. All three

interfaces (PI, PO, and Control) can be easily updated to provide customized solutions

for different applications.

User

Logic

Module

Control

Packet_Out

Packet_In

Hardware core:

Component abstraction

Partially reconfigurable region

Loaded bitstream

User

Logic

Module

Control Interface

P
ac

ke
t_

In
 In

te
rf

ac
e

P
ac

ke
t_

O
ut

 In
te

rf
ac

e

Hardware core:

User logic module with

component wrapper

ó

Fig. 4. HM Communication Infrastructure Abstraction

There are two important outcomes resulting from the framework: implementation

of a hardware API wrapper that encapsulates the User Logic, and separation of a

communication infrastructure from the User Logic. As previously stated in section

2.3, agents require the ability to be separated from the communication infrastructure

which in turn allows for functional transparency. This loose coupling between

communication and function is accomplished via the hardware wrapper. User Logic

implemented as part of a PR Module can be dynamically loaded and unloaded without

impacting the remainder of the programmable fabric. Also, the entire communication

framework can be made into a dynamic module that allows different communication

topologies to be swapped.

With the aid of the Hardware Administrator, hardware agents can easily discover

and provide services for each other. This alleviates potential strain of the embedded

processor that is already burdened with system administrative duties such as loading

and unloading of the PR Modules.

4 Operating System Support

Figure 5 provides an illustration of how the framework could be implemented with

embedded operating system (OS) design. The system contains two busses (PLB0 and

PLB1) to minimize bandwidth bottlenecks during the hardware configuration process

and other bus transactions resulting from HA and HM activities. MicroBlaze_0 hosts

the OS (e.g., Petalinux) and Microblaze_1 is responsible for the management of the

PR Regions including loading and unloading of the partial bitstreams through the

internal configuration port (ICAP). The communication between the processors is

done via a message passing mechanism. Hardware threads are able to be executed

independently without the corresponding threads. It is also important to recognize

that the burden of thread management can be off-loaded to the MicroBlaze_1 and the

HA. Consequently, OS support can be focused on running intelligent system software

for agent systems with DPR.

uB_0

(Linux)

uB_1 FSL

HA

ICAP

CF

HM1

HM2

HM3

HM4

ENET

DDR2

IntC_0

UART Mailbox

Timer_0

IntC_1

Debugger

Timer_1

PLB0

PLB1

PR Regions

Fig. 5. DPR System with Linux

5 Conclusions and Comments

FPGAs using SRAM technology provide designers with a programmable fabric

that can be configured at runtime to implement a specific hardware circuit. This

technology allows designers to reconfigure the entire FPGA for a new application

when the current application has been completed. DPR of FPGAs extends this

technology by allowing multiple hardware modules to time-share a pre-defined

portion of the programmable fabric while the remainder of the fabric stays active. Its

advantages include partial updateability of the programmable fabric, reduced

footprint, lower cost, reduced device count, and low-power dissipation [8-10].

This paper presented a FPGA-based framework with DPR that can be used to

implement agents in an agent system. By using an agent paradigm, it is possible to

separate the device logic structure from the communication infrastructure to leverage

the benefits of software implementation such as component based designs. With

DPR, communication infrastructure topologies can be dynamically replaced, thus

raising the abstraction level of hardware design. Designers can focus on the

functionality of system, rather than low-level communication and device architecture

complexity.

The implementation of agents with partially reconfigurable modules bridges the

software and hardware domains. This approach enables software and hardware

systems to be more closely integrated during the design and development phases. The

functionalities of the modules, whether described in software code or hardware logic,

can be abstracted and CAD tools can be used to satisfy the design constraints of low-

level implementations.

Future work includes the application of the proposed framework and

communication infrastructure to practical agent systems, development of architectures

for targeted applications, and the inclusion of an embedded OS to leverage software

code-reuse, portability, interfaces, and existing services.

References

1. Lee, D., Choi, A., Koo, J., Lee, J., Kim, B.: A Wideband DS-CDMA Modem for a Mobile

Station. IEEE Transactions on Consumer Electronics, vol. 45, no. 4, pp. 1259–1269 (1999).

2. Pirsch, P., Demassieux, N., Gehrke, W.: VLSI Architectures for Video Compression - A

Survey. Proceedings of IEEE, vol. 83, no. 2, pp. 220–246 (1995).

3. Ovaska, S., and Vainio, O.: Evolutionary-programming-based Optimization of Reduced-

rank Adaptive Filters for Reference Generation in Active Power Filters. IEEE Transactions

on Industrial Electronics, vol. 51, no. 4, pp. 910–916 (2004).

4. Chen, R., Chen, G., and Chen, L.: System Design Consideration for Digital Wheelchair

Controller. IEEE Transactions on Industrial Electronics, vol. 47, no. 4, pp. 898–907 (2000).

5. Sridharan, K., and Priya, T.: The Design of a Hardware Accelerator for Real-time Complete

Visibility Graph Construction and Efficient FPGA Implementation. IEEE Transactions on

Industrial Electronics, vol. 52, no. 4, pp. 1185–1187 (2005).

6. Gabrick, M., Nicholson, R., Winters. F., Young, B., Patton, J.: FPGA Considerations for

Automotive Applications. Proceedings of SAE World Congress and Exhibition (2006).

7. Wang, J., Katz, R., Sun, J., Cronquist, B., McCollum, J., Speers, T., Plants, W.: SRAM based

Reprogrammable FPGA for Space Applications. IEEE Transactions on Nuclear Science,

vol. 46, no. 6, pp. 1728–1735 (1999).

8. Lysaght, P., Blodget, B., Mason, J., Young, J., Bridgeford, B.: Enhanced Architecture,

Design Methodologies and CAD tools for Dynamic Reconfiguration for Xilinx FPGAs.

Proceedings of International Conference on Field Programmable Logic and Applications,

Madrid, Spain, pp. 1-6 (2006).

9. Kao, C.: Benefits of Partial Reconfiguration. Xcell Journal, Fourth Quarter, Xilinx, Inc. pp.

65-68 (2005).

10 Monmasson, E., Cristea, M.: FPGA Design Methodology for Industrial Control Systems – A

Review. IEEE Transactions on Industrial Electronics, vol. 54, no 4 pp 1824-1842 (2007).

11. Field Programmable Gate Arrays [Online]. Available: http://en.wikipedia.org/wiki/fpga

12.Altera Corporation: FPGA Run-Time Reconfiguration: Two Approaches. White Paper

01055, version 1.0 (2008).

13.Wooldridge, M., Jenning, N.: Intelligent Agents – Theories, architectures, and Languages.

Lectures Notes in Artificial Intelligence (1995).

14.Parunak, H. V. D. Brueckner, S. A., Sauter, J.: Digital Pheromones for Coordination of

Unmanned Vehicles. Lecture Notes in Computer Science, vol. 3374, pp. 232–263. Springer

Verlag (2004).

15.Valckenaers, P., T. Holvoet: An essential abstraction formanaging complexity in MAS-

based manufacturing. Lecture Notes in Computer Science, vol. 3830. Springer Verlag

(2006)

16.Weyns., K., Holvoet, T.: Exploiting a Virtual Environment in a Real-world Application.

Lecture Notes in Computer Science, vol. 3830. Springer Verlag (2006).

17.Bruecknerand, S., Parunak, H.: Swarming Distributed Pattern Detection and Classification.

Lecture Notes in Computer Science vol. 3374, pp 232-245. Springer Verlag (2005).

