
A Configurable Framework for Investigating
Workload Execution

Eric Matthews1, Lesley Shannon1, Alexandra Fedorova2

School of Engineering Science1, School of Computing Science2, Simon Fraser University
8888 University Drive, Burnaby, BC Canada V5A 1S6

{ematthew,lshannon,fedorova}@sfu.ca

Abstract—Processor systems contain a limited number of
hardware counters that provide some visibility for certain types
of interactions, but do not support sophisticated analysis due
to limited resources. By contrast, system software simulators
provide multidimensional runtime data, but slowdown applica-
tion execution, often resulting in an inaccurate picture of hard-
ware/software interactions. The ideal solution to this problem is
to create a dedicated hardware unit to “watch” the processor for
these types of behaviours. In this paper, we present a hardware
framework that leverages an FPGA’s reconfigurable fabric to
investigate of workload execution behaviours on processors using
a hArdware-Based Analyzer for the Characterization of User
Software (ABACUS). ABACUS is currently able to interface with
the LEON3 processor using 1367 FFs, 1504 LUTs and 1 Block
RAM on a Virtex 2Pro running at 144MHz.

I. INTRODUCTION

As processor systems grow more complex, understanding

workload performance characteristics becomes increasingly

difficult. To obtain information on the run-time behaviour of

threads, visibility into the processor’s architecture is needed to

monitor workload interactions. However, the greatest benefac-

tors of this type of information are software designers of high

performance applications (e.g. games). Due to performance

and complexity issues, most simulators choose to focus on

a particular level in the system hierarchy. Any simulator

implemented in software that does provide this combined level

of visibility will likely run much slower, a drawback when

trying to understand thread interactions to improve software

execution. Thus, a better way to gain the desired visibility into

these types of behaviours is to create additional hardware to

“watch” the processor for these types of behaviours.

In this paper, we present a hardware framework for the
investigation of workload execution behaviour on a proces-
sor using a FPGA called the hArdware-Based Analyzer for

the Characterization of User Software (ABACUS). ABACUS

is a generic, configurable analyzer that allows designers to

create and instantiate new profiling units to monitor specific

behaviours to better understand thread interactions during

execution and how this impacts performance. ABACUS is

connected to the processor by only the minimal set of signals

needed to collect the desired metrics; all profiling units are

memory mapped so that users can change their configuration at

run time to analyze the workload. This information can be used

to improve the performance of software workload execution.

The specific contributions of this paper include:

• An overview of the architecture of ABACUS;

• Examples of possible profiling units; and

• A set of experimental data demonstrating that ABACUS

can be used to obtain the same types of results as

Simics [1], a popular software simulator for researchers.

The remainder of this paper is organized as follows. Sec-

tion II discusses the related work and Section III describes

ABACUS’s architecture as well as the existing profiling units.

Section IV outlines the current platform into which we have

integrated and ABACUS. the results obtained using ABACUS

in contrast to Simics. Finally, Section V concludes the paper

and summarizes future work.

II. BACKGROUND

The previous work related to ABACUS falls into two main

categories: traditional methods of obtaining useful data on

thread behaviour (i.e. software simulators and hardware coun-

ters); and using FPGAs for processor architecture research and

on-chip profiling.

A. Traditional Approaches to Understanding Workload Be-
haviour

To understand the behaviour of threads on processor sys-

tems, researchers traditionally use three methods: software

profiling, hardware counters and software simulation. Software

profiling relies on code instrumentation to associate certain

hardware performance events with specific code segments

(e.g. oprofile, gprof, Intel VTune, Sun Studio collect/analyze)

or data structures [2]. Software profiling is conventionally

regarded as an off-line method, because it slows down ap-

plication execution. An alternative to software profiling is to

use hardware performance counters directly [3], [4]. They can

be programmed and queried without a noticeable slowdown

of the application. Although hardware counters can collect

some very useful information, their microarchitecture depen-

dent nature and limited numbers prevents their adoption as

a tool across platforms. In addition, hardware counters are

designed to focus on predefined single events, limiting the

scope of information they provide the exploration of new

ideas. Software simulation (e.g. Simics [1], SimpleScalar [5])

as well as binary instrumentation tools (e.g. Pin [6]) offer

greater visibility into microarchitectural interactions between

the software and the hardware, such as modelling latencies and

contention for shared resources. Unfortunately, they impose

978-1-4244-8983-1/10/$26.00 ©2010 IEEE

orders of magnitude of slowdown on the application especially

when attempting to simulate all the fine-grained details of the

microarchitecture.

The objective for the ABACUS framework is to provide

the best of both worlds: the richness and accuracy of the

information that can be obtained from simulators, but at the

real-time speed that can be delivered by hardware counters.

Furthermore, by utilizing an FPGA’s reconfigurability and the

ABACUS framework, we can also easily investigate new types

of profiling units and thread workload interactions.

B. Using FPGAs for Processor Architecture Research

Modern FPGAs are able to implement complex systems,

including Systems-on-Chip. This has led to architectural re-

search of both soft processors [7] for FPGAs as well as

accelerating the simulation of more traditional architectures

using FPGAs [8]; however, both these projects focus on the

ISA of single core processors, whereas ABACUS is ISA

independent. Comparable to the hardware counters available in

commercial processors, researchers designing soft processors

for FPGAs have also integrated dedicated profiling function-

ality into their architectures to investigate specific behaviours

and interactions for multicore systems [9]. Although all the

above works leverage FPGAs to include software profiling

hardware circuitry, unlike ABACUS, they do not provide a

generic framework for designing new profiling units or a user-

level interface for run time reconfiguration.

III. ABACUS

ABACUS is designed to facilitate investigations into thread

behaviour, specifically, to collect multi-dimensional metrics

using a configurable collection of profiling units. ABACUS is

external to the processor core, snooping processor and system

infrastructure signals to collect data on different threads for

various metrics. In designing ABACUS, we imposed a set

of constraints to facilitate its integration with a variety of

processor architectures. Specifically, ABACUS should:

• Be external to the processor core, and not integrated.

• Port easily to different processor architectures.

• Provide microarchitecture independent metrics, and

• Facilitate the inclusion of new profiling units.

Our main objective is that ABACUS remains a separate entity,

not limited to integration with a specific microarchitecture. As

such, we ensure that, outside of the system communication

network interface, it connects to the minimal set of signals

required to collect its metrics. This also reduces the effort

needed to integrate ABACUS into new systems. To achieve

portability, a standard interface is used, which also implies

that the data it collects must focus on microarchitecture

independent metrics. In addition, users should easily be able

to add new profiling units to the ABACUS framework and

instantiate any subset of the existing profile units to customize

ABACUS for their purpose. The remainder of this section

describes both the framework of the ABACUS architecture

in greater detail and some example profiling units that have

been created thus far.

�������	

��������

��������
�����	�

���
�	���

���
������

����	���
�����

������
�����
�������

��������
�������

����
����	���
�������

����
����

����	�
������	������		��

����������

������	
 ����

Fig. 1. High-Level ABACUS Block Diagram

A. Architectural Overview

As shown in Figure 1, ABACUS has a hierarchical design

with three layers. The top layer is the External Interface, which

consists of the logic required to interface it with the system.

The middle layer implements the Control Logic provides a

layer of support for controlling ABACUS through system

software and provides a standard interface to the system.

Finally, the lower layer is comprised of the Profiling Units
that collect the various metrics. ABACUS’s design has been

structured to facilitate integration such that design changes are

localized to the External Interface. Integration of ABACUS

into a new system only requires that ABACUS have its address

space mapped into the system and that the External Interface

be adapted to interface with the system’s communication

network.

B. Profiling Units

The bottom layer is comprised of the Profiling Units. Each

metric is implemented as a separate profiling unit, allowing

the user to incorporate new profiling units into the existing

framework and to instantiate only the desired profiling units

into their design.

For each unit, various parameters can be configured at

hardware instantiation time to match the characteristics of

the system. In addition, some profile units may also have

parameters that are runtime configurable. The visibility re-

quired into the processor or system-level architecture by each

unit is dictated by the specific metric being profiled (e.g.

Instruction Register, Program Counter, bus signals, etc.). Some

examples of profiling units currently implemented in ABACUS

are described in the following section.

1) Example Profiling Units: The initial set of profiling units

created for ABACUS has primarily focused on replicating the

types of data that can be obtained using system software sim-

ulators (e.g. Trace Profiling, Reuse Distance, and Instruction

Mixes). This has facilitated both the initial verification of our

design as well as developing an understanding of the tradeoffs

of profiling on a software simulation platform versus an

FPGA emulation platform.As previously stated, these are only

examples of possible profiling units that have been created thus

far within the ABACUS framework. The following paragraphs

provide further details on a subset of the existing profiling

units.
Instruction Mix: The Instruction Mix unit enables anal-

ysis of the type of instruction workload a thread is executing.

It takes the Instruction Register (IR) as an input and maps

the opcode to a runtime configurable look-up table stored in

a BRAM to determine which counter in a set to update. In

this way, instructions can be grouped together into any pos-

sible classification scheme. Although this unit is conceptually

microarchitecture independent, simple alterations are required

to adapt its implementation to new Instruction Set Architec-

tures (ISAs), such as the width of the IR. While existing

hardware counters can be configured to count instructions of

a particular type, they must rely on sampling to estimate the

entire mix; conversely, software simulators can keep track of

the entire mix, but run very slowly. ABACUS can keep track of

all the instructions and compute the entire mix at the operating

frequency of the clock.
Reuse Distance: The Memory Reuse Distance Unit is

designed to work with a set-associative cache that implements

a Least Recently Used (LRU) replacement policy as the

LRU stack contains a measure of the locality of memory

accesses. Specifically, reuse distance profiles indicate how well

a program reuses its cached memory; this can be used to

analyze the locality of references as well as the nature of

contention for the cache when multiple programs run on cores

sharing a cache [10]. Currently, this unit relies on the existence

of a LRU stack, however, there are also means of estimating

the reuse distance in hardware with low overhead [11].

IV. IMPLEMENTATION AND RESULTS

In this section, we discuss how ABACUS is integrated

into the LEON3 platform and describe the selected SPARC

ISA model implemented using Simics. We then present the

resource usage of ABACUS and an example reuse distance

experiment run on the LEON3 system. These results are con-

trasted with the results from a Simics system simulation for the

same single threaded workloads, highlighting the differences

when an exact match for the ISA and kernel distribution cannot

be used.

A. LEON3 and ABACUS vs Simics
The LEON3 soft processor [12] implements the SPARC

v8 ISA [13] and offers a set of configuration parameters.

The processor operates at 50MHZ on the XUP Virtex 2Pro

board [14], has 256MB of DDR RAM, uses a networked

disk for the filesystem, and runs the Debian Etch Linux

Distribution with Linux kernel 2.6.21. A high level overview

of the system is given in Figure 2. We use the reuse distance, in

conjunction with the LEON3 system, to generate experimental

data that can also be obtained using our Simics model in

Section IV-C. The closest system supported on our Simics

platform is an UltraSPARC II processor that supports the

SPARC v9 ISA [15], which is backwards compatible with

the v8 ISA while including additional support for a 64-bit

datapath. The kernel is the 2.6.18 release and is built for the

v9 ISA, however, all benchmarks are built for the v8 ISA.

������

����

�	
�

���

����

����������

�	��������
������

���
����������

��������
���

Fig. 2. ABACUS integrated into the LEON3 Platform

TABLE I
ABACUS RESOURCE USAGE AND OPERATING FREQUENCY

Component Freq (MHz) FFs LUTs BRAMs
Memory Reuse Unit 223 120 150 -
Instruction Mix Unit 170 248 230 1
Code Profiling Unit 257 646 554 -
Controller 238 86 174 -
AHB Master 299 81 76 -
AHB Slave 205 60 57 -

B. Resource Usage and Operation

In this section, we summarize the resource usage for ABA-

CUS on an FPGA. Since ABACUS is modular in design

with configurable parameters, we present a breakdown of the

operating frequencies and resource usages for each major

component for a default counter width of 40 bits.

Table I reports the breakdown for the configuration used in

the LEON3 system on a Virtex 2Pro XC2VP30. The largest

resource requirements are for the Code Profiling Unit due

to the registers required to store the start and end addresses

as well as the large number of comparators. The ABACUS

configuration used in the LEON3 test platform consists of two

Memory Reuse Units, an Instruction Mix Unit, and a Code

Profiling Unit with an operating frequency of 144MHz on a

Virtex 2 Pro utilizing 1367 FFs, 1504 LUTs and 1 Block RAM.

C. LEON3 Reuse Distance Experiment

To demonstrate the use of ABACUS, we measure the

reuse distance for six benchmarks from the SPECCPU2006

benchmark suite with memory usage requirements that are

within the 256MB memory limit of the LEON3 system. We

also highlight the reduced runtime for obtaining these results

and the importance of evaluating workload behaviour on the

desired architecture and OS kernel, as opposed to the best

approximation. For this, we use results obtained with Simics

3.0.26 configured to have the same L1 cache structure as the

LEON3 system (a 2-way, 16KB instruction cache and a 2-

way 8KB write-through, non-allocating data cache); neither

Simics nor the LEON3 system is configured with an L2

cache. All benchmarks are run for 2 billion instructions, due

to the runtime of the Simics simulations. Figure 3 shows

the results for the instruction cache reuse profiles, using dark

bars for Simics and light bars for ABACUS results. Since

both platforms are executing the same binary, we expect

the minimal variation (<4%) seen in Figure 3. Although

both platforms execute a 32-bit binary, minor differences in

(a) namd (b) gobmk (c) hmmer (d) sjeng (e) libquantum (f) h264ref

Fig. 3. Instruction Cache Reuse Distance Comparison

(a) namd (b) gobmk (c) hmmer (d) sjeng (e) libquantum (f) h264ref

Fig. 4. Data Cache Reuse Distance Comparison

the platform (e.g. the kernels) may cause these variations.

Figure 4 illustrates the results for the data cache reuse profiles;

again, the dark bars are for Simics and the light bars are for

ABACUS. In this case, we find a significant variation in the

results obtained on the two platforms. The larger discrepancy

between the two sets of data reuse profiles is largely due

to the fact that the SPARC v9 configuration on Simics has

a 64-bit datapath whereas the LEON3’s datapath is only 32

bits, although the difference in kernels may also cause some

variation.
While recognizing that the variations in the results may

provide useful information to researchers, another benefit

of using ABACUS is the speed at which these results are

obtained. Running the first 2 billion instructions on the FPGA

boards takes 1.5 minutes, compared to the 45 minutes it takes

to obtain the results using Simics, approximately a 20x speed

up. In this experiment only one metric is examined, and yet,

a significant speedup is obtained over the software simulator.

However, as an increasing number of metrics are collected, the

runtime of the ABACUS system will remain constant; whereas

each additional metric will increase the run time of Simics due

to the increased complexity of the software simulator model.

V. CONCLUSIONS AND FUTURE WORK

With the growing complexity of processor systems, better

insight into the thread execution behaviour on these systems

is needed to properly utilize their capabilities. Our proposed

solution is a new, cycle-accurate, hardware framework that

leverages an FPGA’s reconfigurable fabric for the investigation

of thread execution behaviours on processors.
We have demonstrated the performance advantage over a

system-level software simulator by obtaining more than a 20x

speedup and highlighted the better performance scalability of

a hardware based approach. Furthermore, by performing new

metric investigations in hardware, their impact on the system

in terms of resource usage and operating frequency can be

better understood.
Future work will include expanding the platform to support

systems with shared caches. With a more complex system

model, investigations into new profiling units that provide

greater visibility of resource contention for current and future

multicore systems can be performed.

ACKNOWLEDGEMENTS

The authors would like to thank the Natural Sciences and

Engineering Research Council of Canada (NSERC), Xilinx

Inc and the Canadian Microelectronics Corporation (CMC)

Microsystems for funding and support of this project.

REFERENCES

[1] P. S. Magnusson et al., “Simics: A full system simulation platform,”
Computer, vol. 35, no. 2, pp. 50–58, 2002.

[2] A. Pesterev et al., “Locating cache performance bottlenecks using data
profiling,” in European Conf. on Computer Systems, 2010.

[3] Intel 64 and IA-32 Architectures Software Developers Manual: Volume
3B: System Programming Guide, Part 2. . [Online]. Available:
www.intel.com/Assets/PDF/manual/253669.pdf

[4] BIOS and Kernel Developers Guide (BKDG) For
AMD Family 10h Processors. [Online]. Available: sup-
port.amd.com/us/Processor TechDocs/31116.pdf

[5] T. Austin, E. Larson, and D. Ernst, “Simplescalar: An infrastructure for
computer system modeling,” Computer, vol. 35, no. 2, pp. 59–67, 2002.

[6] C.-K. Luk et al., “Pin: building customized program analysis tools with
dynamic instrumentation,” in PLDI, 2005, pp. 190–200.

[7] P. Yiannacouras, J. Rose, and J. G. Steffan, “The microarchitecture
of fpga-based soft processors,” in 2005 Int’l Conf. on Compilers,
architectures and synthesis for embedded systems, 2005, pp. 202–212.

[8] D. Chiou et al., “Fpga-accelerated simulation technologies (fast): Fast,
full-system, cycle-accurate simulators,” in Proc. of the 40th Annual
IEEE/ACM Int’l Symp. on Microarchitecture, 2007, pp. 249–261.

[9] G. G. F. Lemieux, “Hardware performance monitoring in multiproces-
sors,” Master’s thesis, ECE Dept. University of Toronto, 1996.

[10] C. Caşcaval et al., “Estimating cache misses and locality using stack
distances,” in in Int’l Conf. on Supercomputing, 2003, pp. 150–159.

[11] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches,” in MICRO 39: in 39th Annual IEEE/ACM Int’l Symp. on
Microarchitecture, 2006, pp. 423–432.

[12] GRLIB IP Core User’s Manual. [Online]. Available:
www.gaisler.com/products/grlib/grip.pdf

[13] The SPARC Architecture Manual Version 8. [Online]. Available:
www.sparc.org/standards/V8.pdf

[14] Xilinx, Inc., Xilinx UG069 XUP Virtex-II Pro Development
System, Hardware Reference Manual. [Online]. Available:
www.xilinx.com/univ/XUPV2P/Documentation/ug069.pdf

[15] The SPARC Architecture Manual Version 9. [Online]. Available:
developers.sun.com/solaris/articles/sparcv9.pdf

