
Odin II - An Open-source Verilog HDL Synthesis
Tool for CAD Research

Peter Jamieson∗, Kenneth B. Kent†, Farnaz Gharibian‡, and Lesley Shannon‡
∗Dept. of Electrical and Computer Engineering

Miami University

Email: jamiespa@muohio.edu
†Dept. of Computer Science

University of New Brunswick

Email: ken@unb.ca
‡School of Engineering Science

Simon Fraser University

Email: fga7 or lshannon@ensc.sfu.ca

Abstract—In this work, we present Odin II, a framework for
Verilog Hardware Description Language (HDL) synthesis that
allows researchers to investigate approaches/improvements to
different phases of HDL elaboration that have not been previously
possible. Odin II’s output can be fed into traditional back-end
flows for both FPGAs and ASICs so that these improvements can
be better quantified. Whereas the original Odin [1] provided an
open source synthesis tool, Odin II’s synthesis framework offers
significant improvements such as a unified environment for both
front-end parsing and netlist flattening. Odin II also interfaces
directly with VPR [2], a common academic FPGA CAD flow,
allowing an architectural description of a target FPGA as an
input to enable identification and mapping of design features to
custom features. Furthermore, Odin II can also read the netlists
from downstream CAD stages into its netlist data-structure to
facilitate analysis. Odin II can be used for a wide range of
experiments; in this paper, we show three specific instances of
how Odin II can be used by ASIC and FPGA researchers for
more than basic synthesis. Odin II is open source and released
under the MIT License.

I. INTRODUCTION

Hardware description language (HDL) synthesis is an inte-

gral part of the computer aided design (CAD) flow used to map

circuits to digital technologies such as Field-Programmable

Gate Arrays (FPGAs) and Application-Specific Integrated Cir-

cuits (ASICs). HDL synthesis tools convert designs created in

languages such as Verilog HDL [3] and VHDL [4] to a netlist

that downstream stages of the CAD flow continue to map to

the target technology.

We provide an HDL elaboration framework for synthesis

research that is analogous to SUIF [5] for compiler research,

VPR [6] for CAD research, and Simplescalar [7] for micro-

processor architecture research; these types of environments

are commonly used in the field of computing as they allow

researchers to explore various design space options without

having to build a complete tool every time. ODIN II allows

researchers to investigate approaches/improvements to differ-

ent phases of HDL elaboration that have not been possible

previously.

In this work, we present the framework for Odin II, an open

source front-end synthesis framework for mapping Verilog

HDL designs that complements existing open source academic

CAD flows. Odin II is built to integrate seamlessly with the

VPR 5.0 [2] CAD flow, which allows researchers to explore

FPGA architectures and CAD algorithms. However, Odin II

is inherently a general synthesis framework that can be used

to target any CAD flow. Odin II affords significant advantages

over the original Odin [1] synthesis tool as Odin II provides

a unified customizable front-end HDL synthesis environment.

In particular, the original Odin used Icarus [8] as a front-end

parser; for this reason, Odin was challenging to maintain and

upgrade due to conflicting changes in the parser and back-end.

To demonstrate how this framework can be used for dif-

ferent research objectives, we include examples of possible

experiments. Although it is possible to use Odin II for ASIC

CAD flows, the remainder of this paper focuses on how Odin

II can be used in FPGA CAD research using the following

three experiments:

1) The front-end parser of Odin II is built using Bison [9]

and Flex [10] tools. This parser provides additional

hierarchical information, in the form of an abstract

syntax tree (AST), beyond a flattened netlist. This AST

can be used to help identify functional structures within

in a design. This information can be used to map

these structures to custom units and to gain a better

understanding of the composition of larger and more

complex designs. We illustrate this structural identifica-

tion feature by showing how Odin II can identify finite

state machines (FSMs) using the AST.

2) Odin II can read down flow CAD tool output files

and store these netlists in the flexible netlist data-

structure within Odin II. This feature can simplify CAD

researchers work by providing a common netlist data-

structure and a library of functions to manipulate this

netlist. We demonstrate this feature by showing how a

multiplier circuit can be described in a Verilog design,

logically optimized by an external tool, read back in,



and manipulated by Odin downstream to estimate the

number of transistors needed to implement each multi-

plier.

3) Odin II can read in a VPR 5.0 target technology li-

brary that describes the functional units available on the

FPGA. These functional units need to be identified in

the user’s design and correctly mapped to the FPGA. In

our example, we show how Odin II reads architecture

files describing the availability and structure of hard

multipliers on a target FPGA.

These experiments could not easily have been achieved with-

out this type of framework (even with the original ODIN).

In addition to these features, Odin II is easily installed on

NIX flavored systems and the tool allows us to leverage the

availability of Verilog HDL benchmarks. All of these features

and the design of Odin II allow researchers to use it in a

number of innovative ways.

The remainder of the paper is organized as follows: In

Section II we describe a typical CAD flow for FPGAs and

some of the aspects of the FPGA architecture that are relevant

to the CAD flow. In Section III, we describe how Odin II is

designed. In section IV, we illustrate how the features of Odin

II can be used in three specific cases, and finally, in Section V

we conclude the paper.

II. BACKGROUND

In this section, we describe the fundamental aspects of an

academic FPGA CAD flow that Odin II is designed to target,

and discuss existing front-end Verilog tools, open source

projects, and how the Odin II framework is similar to other

exploratory research frameworks.

A. FPGA CAD flow

Figure 1 shows an open source CAD flow used for VPR

5.0. A digital design is created in Verilog and used as the

input to the flow. Odin II, the focus of this paper, parses

the design and reads in the architecture file that describes

the target technology to create a flattened netlist that consists

of structures available for this architecture. Therefore, for

the FPGA example, the netlist output from Odin II will

consist of I/Os, logic gates, flip-flops, and hard circuits such

as multipliers and memories. To map to structures such as

multipliers, Odin II performs inferencing and partial mapping
during which the tool identifies hard circuits in the Verilog

design and then determines how to map them to the hard

circuits on the FPGA architecture.

This netlist is then passed to the ABC tool [11] that first

executes a logic optimization phase and then maps the logic

into look-up tables (LUTs). The basic programmable cell of

an FPGA is a Basic Logic Elements (BLEs), which itself is

commonly a combination of a LUT and flip-flop [12].

The next stage of the CAD flow is called clustering and

this stage packs LUTs and registers into clusters. Clusters

are a collection of BLEs where the BLEs are connected to

one another via intra-cluster routing. This intra-cluster routing

is also connected to the inter-cluster routing that forms the

Routing (VPR 5.0)

Packing
- Register packing

- Clustering (T-VPACK)

Technology-dependent
mapping (ABC)

Technology-Independent
Logic Optimization (ABC)

Front End Synthesis (Odin II)

INPUT - HDL Design

Placement (VPR 5.0)

OUTPUT - Bit-stream

INPUT – FPGA Architecture

Fig. 1. A VPR 5.0 CAD flow

remainder of the FPGA programmable routing architecture.

T-Vpack [13] is the clustering tool that is used within the

VPR 5.0 CAD flow.

At this point the netlist consists of I/Os, clusters, and hard

circuits, and these elements are placed onto the FPGA and

routed using the VPR 5.0 tool, originally, created by Vaughn

Betz [6]. The placer chooses the physical location of both

the clusters and hard circuits on the Field-Programmable Gate

Array (FPGA). Finally, the router chooses wire segments

and activates the programmable switches as connection paths

between placed elements. With the successful completion of

placement and routing, the final output of the Computer Aided

Design (CAD) flow is a configuration bit-stream that specifies

the programming of the FPGA.

B. Verilog Synthesis and Academic Frameworks

Odin II is among a number of front-end HDL tools available

for Verilog circuits. FPGA vendors including Altera [14] and

Xilinx [15] and FPGA and ASIC CAD flow vendors including

Magma [16], Synopsis [17], [18], and Mentor Graphics[19]

all have front-end tools for both VHDL and Verilog in their

commercial tool sets.

There are a number of available open source Verilog tools. A

partial list includes Icarus [8], SAVANT [20], Veriwell [21],

Verilator [22], and FreeHDL [23]. These tools are all open

source, but they are not tools for synthesizing designs to

a target technology, and instead, they mainly focus on the

simulation and analysis of digital designs.

As described above, Odin II is a framework for Verilog

HDL elaboration that can be quantified by passing its output



to a CAD flow that maps to a target technology. These types

of exploratory frameworks such as SUIF [5] for compiler

research, VPR [6] for FPGA architecture exploration, and

Simplescalar [7] for computer architecture experimentation

allow researchers to experimentally test out various ideas they

have in a given area. Odin II has been created with this same

objective: to provide an infrastructure that allows researchers

to implement a range of experiments without having to create

a new “tool”. We describe some of these endeavors below, but

first, we will describe the design of Odin II in more detail.

III. ODIN II

A. Basic Tool Design

��������	
��

����	� ����	�������

����	� ���	������

�����

���������

�������	�������

������ ! "���

����	� #�$%���$�&��	
���$�������

Fig. 2. The processing stages in Odin II

Figure 2 shows the major steps performed in Odin II to

convert a Verilog HDL design into a flattened netlist. One

of the main differences between Odin and Odin II is the

inclusion of a dedicated parser in Odin II as opposed to using

Icarus, a separately supported tool, as the parser in the original

Odin. This change has significant impact on the ease-of-use,

maintainability, and upgradeability of Odin II. For example,

a simple feature such as keeping the design filename and

line number associated with a logic gate can be maintained

within Odin II; this was not possible in Odin and made simple

features such as outputting syntax errors more difficult. It

should be noted that Odin II was completely created from

scratch and there is no usage of the original code in Odin in

Odin II.

The parser in Odin II uses the Bison [9] and Flex [10] tools

to convert the Verilog grammar description to a parser. Odin

II uses the parser functions to build an abstract syntax tree

(AST) [24] representing the entire inputted Verilog design. In

Figure 2, this process of parsing and creating the AST is the

parsing stage.

Figure 3 (b) shows the AST for the example Verilog code in

Figure 3 (a). The figure shows how the Verilog is hierarchically

stored in this data structure. What is not shown are the

additional details that are stored for the line number and file

that associates each AST node with the Verilog code.

With this parser, additional extensions to the Verilog HDL

language can be more easily added and, more importantly,

the later processing stages within Odin II have access to

the hierarchical representation (the AST) of the design. We

maintain this information throughout the elaboration process,

meaning each node within a flattened netlist version of the

design is directly associated with the AST node that it was

derived from. Not only does this allow easier identification of

structures such as FSMs (as we will describe later), but this

information can be passed to later stages in the CAD flow so

that designers can identify which lines of Verilog HDL designs

impacted their designs.

Once the AST is created, an elaborator then traverses the

AST to create a flattened netlist of the design (for more details

on this process please see the original paper on Odin [1]). The

netlist data-structure within Odin II that stores this netlist has

been carefully designed to allow it to be easily manipulated.

This is another key innovation in Odin II as opposed to

Odin. In the process of HDL synthesis, optimizations cause

the netlist to significantly change by a mixture of removal,

additions, and rewiring of nodes. The netlist data-structure,

therefore, needs to be designed to be easily manipulated. In

Odin II, the netlist data-structure consists of unique objects

for the hardware structures, the input and output pins con-

necting to each hardware structure, and the wires (or nets)

inter-connecting pins. This design differs compared to the

netlist data-structures in other CAD tools where the pin and

wire information within the data-structure representing the

hardware structure are embedded. This embedding approach

compresses the amount of memory needed to store the netlist

and speeds up processing the netlist due to locality, but it

makes manipulations to the netlist much more difficult.

Figure 3 (c) shows a more detailed view of the flattened

netlist for the example in Figure 3 (a) and the AST in Figure 3

(b), noting that the output pins for ‘a’ are not shown. A

rounded rectangle is used to show hardware structures, an oval

represents the pins, and a circle represents the nets. Using these

three separate pieces of the netlist allows easy remapping of

structures. For example, if one of the adders in Figure 3 (c) is

replaced by some other structure then only the mapping from

the original adder to the pin needs to be connected properly. If

the pin and net were embedded in the adder, then a complex

process of remapping all these entities would need to be done

for the replaced node.

With both the flattened netlist and AST data structures

representing the design, we can perform various optimizations

on the design. Odin II does not yet support the wide range

of compiler and logic optimizations that were available in

Odin such as one-hot re-encoding of FSMs and arithmetic

optimizations, but Odin II does do some basic compiler

optimizations such as constant folding. See Figure I below

for a comparison between optimizations in Odin and Odin II.

After compiler optimizations, Odin II performs partial-

mapping, which determines how to pack design structures into



Always

NonBlockin
g

Symbol
“a”

Operation
+

Operation
&

Symbol
“a”

Symbol
“b”

Number
“2'b10”

Pin&
NETPin

Pin

PinInput: 
b[0]

NET

Pingnd
NET

Pin&
NETPin

Pin

PinInput: 
b[1]

NET

PinVcc
NET

Pin+
NETPin

Pin

Pinff
NET

Pin

PinPinInput: clk
NET

Pin+
NETPin

Pin

Pinff
NET

Pin

Pin

Fig. 3. The internal data structures in Odin II: (a) sample Verilog, (b) AST, (c) flattened netlist

the hard circuits available on the target technology (FPGA

in our case). For example, if the target FPGA has 8 by 8

multipliers, then the partial mapper needs to find multipliers

in the design and determine how to map them to 8 by 8

multipliers. This problem is even more challenging when there

are a restricted number of hard circuits available on the target

FPGA.

Partial-mapping does two things. First it extracts structures

that are mappable to the hard circuits on the FPGA during what

is known as the inferencing or identification stage. There are

three common ways of doing this. The easiest method is to

explicitly define how to instantiate hard circuits. In the case of

a multiplier, the symbol ”*” is used to instantiate a multiplier.

Similarly, a library can be provided by the tool vendor such

as the Library Parametrized Modules (LPMs) [25] used by

Altera; the designer can then use these LPM structures to

instantiate hard circuits. In the second method, designers are

told to follow specified rules for writing Hardware Description

Language (HDL) descriptions of complex circuits so that the

tool can easily identify what circuits the designer intends to

instantiate. For example, some synthesis tools specify how to

write HDL statements so that flip-flops are identified by the

partial mapper [18]. The final common method of identifying

functions is an open-ended approach in which the synthesis

tool uses matching techniques to extract complex circuits.

This last method is the most difficult to implement and use

due to both implementation complexity and run-time. Odin

II can use all three methods, but does not currently have an

implementation of the open-ended inferencing by sub-graph

matching that is available in Odin.

Once the structures have been identified in the design,

the next step of the partial mapper is to pack the structures

into the hard circuits available on the FPGA. Odin II reads

the architecture file used by VPR 5.0, which describes the

hard circuits available on the FPGA. With this information,

Odin II determines how to pack the structures for the target

technology. For new hard structures, the user is responsible for

building a packer for the proposed technology. For example,



adding floating point units to an FPGA fabric [26] would re-

quire that these structures be properly identified and packed in

Odin II. Although floating point structures are not commonly

found on FPGAs, and thus not supported as part of Odin II’s

basic framework, it is designed such that researchers are easily

able to include these new structures for synthesis and mapping

to their proposed target architecture.

Once all these stages are complete, then the final flattened

netlist is output to a file. Odin II outputs designs in the

Berkeley Logic Interchange Format (BLIF) format [27], but

it is easy to output to other flattened netlist formats (internally

in our tool) or using BLIF2vhdl or BLIF2verilog tools that

will convert the BLIF output into a structural HDL format

(consisting of only logic gates, wires, inputs and output),

which is compatible with almost all CAD flows. The BLIF

output file, in the FPGA CAD flow, is then read by ABC and

the CAD flow continues to map the design to an FPGA as

described in the previous section.

B. Comparison of Odin and Odin II

Table I shows a comparison between the synthesis tools,

Odin and Odin II. The features and optimizations are listed in

the first column and comments on whether Odin or Odin II

has these features or supports these optimizations are listed in

Columns 2 and 3 respectively. From the table, you can see that

Odin II includes new features, but Odin II does not support

all the original optimizations available in Odin. The reason for

this is we built Odin II, completely, from scratch. The missing

features in Odin II were implemented to bring Odin close to

parity in terms of speed and area of mapped designs compared

to the Quartus tool [1]. In the future, we will be adding these

extensions to Odin II, noting that the software structure has

been designed to easily add these features.

IV. USEFUL NEW FEATURES IN ODIN II

In this section, we illustrate some of the new possibilities

Odin II allows for with three experiments. These include

identifying FSMs using the AST, reading downstream CAD

outputs back into Odin II to estimate multiplier area, and iden-

tifying multipliers based on an FPGA architecture description

file.

A. Finite State Machine Identification

As described earlier, identification of various hardware

structures, part of partial-mapping, is important so that a

synthesis tool can make the best decisions as to how to map

these structures to the target technology. For example, FSMs

when implemented on FPGAs with one-hot state encoding

are both smaller and faster than most other state encoding

schemes [28]. In this section, we show how Odin II identifies

FSMs using the AST, and we explain how this is better than

the approach taken in the original Odin.

The original Odin can identify FSMs and this identifica-

tion is done by traversing the flattened netlist searching for

feedback paths that satisfied specific rules. The problem with

this approach is that it takes significant processing time to

do the search and the algorithmic implementation is complex,

allowing for the possibility that some FSMs might be missed.

A faster way of identifying FSMs is to use the AST and

associated symbol table. Specifically, by examining always

blocks and case statements in the design and using the symbol

table to identify where and how candidate registers are used

in the design, we can analyze candidate state registers to find

FSMs.

The basic approach to search for an FSM in the Odin tools

is to identify candidate state registers and determine if there is

a combinational feedback path from the candidate register to

itself. Note, both Odin and Odin II search for FSMs based on

similar principles, but the feedback search is simplified when

using the AST and the symbol table. The same search using

the flattened netlist requires a depth first search that terminates

only when all combinational paths have been searched.

To illustrate the quality of our method, we pass ten bench-

marks through the Odin II flow and Altera’s synthesis tool,

Quartus II, version 9.0 web edition [29]. Both tools identify

the number of FSMs that are in a design.

Table II shows the number of FSMs identified by

Quartus and Odin II. Column 1 shows the benchmark

name: benchmarks “glue” and “io expander” are from the

GroundHog 2009 benchmark suite [30], benchmark “iir” is

from OpenCores [31], the raytrace benchmarks [32] and

stereo vision [33] were created at the University of Toronto.

Column 2 shows the number of unique FSMs in the bench-

mark. Column 3 and 4 show the number of FSMs identified by

Quartus and Odin II respectively, where Quartus identifies the

number of instantiated FSMs and Odin II identifies the number

of unique FSMs. Note that Column 2 and Column 4 match,

meaning Odin II identifies FSMs with 100% accuracy, and

the value differences between column 3 and 4 are described

below.

In general, the identification methodology in Odin II iden-

tifies all FSMs as we can see in the second and fourth column

match. In some cases, it appears that Quartus identifies more

FSMs in the design than Odin II. The reason for this difference

is based on how the two tools report identified FSMs. Quartus

describes the number of instantiated FSMs where as Odin

II describes the number of unique FSMs in the design. For

example, if a module has an FSM in it and is instantiated

twice by a higher level module, then Quartus would identify

2 FSMs and Odin II would identify 1 FSM. Both are correct

in terms of their respective context and it is a simple matter

of the generated reports.

B. Reading Output of Other CAD Stages

Odin II can read in the output files from downstream

CAD tools into the netlist data-structure within Odin II. For

example, Odin II can read in the outputs from the academic

FPGA CAD flow after tech-mapping (the output of ABC) and

clustering (the output of T-Vpack). These outputs are read

into the same flattened netlist data-structure, described earlier.

This feature is included in Odin II to facilitate a number of



TABLE I
FEATURE LIST FOR ODIN AND ODIN II

Feature or Optimization Odin Odin II

Target CAD flows VPR 5.0 and Quartus VPR 5.0
Reads Architecture File No Yes

Internal Parser External (Icarus) Yes
Flexible Netlist Data Structure No Yes
Read Later CAD flow output No Yes

Multiplier Packing Yes Yes
Memory support No In Development

Dead node warnings No Yes
Multiplexer Motion/Collapsing Yes No

FSM identification Yes Yes
FSM one-hot encoding Yes No

Sub-graph Matching Yes No
Algebraic Simplification Some for add and multiply No

Constant Folding No Yes
Common Sub-expression Elimination No No

Strength Reduction No No

TABLE II
FSM IDENTIFICATION COMPARISON

Benchmark # of unique FSMs # of FSMs Altera # of FSMs Odin II

glue 3 3 3
iir 1 1 1

io expander 5 5 5
raytrace 0 7 9 7
raytrace 1 3 5 3
raytrace 2 7 7 7
raytrace 3 4 5 4

stereo vision 0 0 0 0
stereo vision 1 2 48 2
stereo vision 2 0 0 0
stereo vision 3 1 1 1

possibilities, and the stages of the FPGA CAD flow that can,

currently, be read into Odin II are shown in Figure 4.

To illustrate how this feature might be useful, imagine that

you want to compare different multiplier designs in terms

of area in minimum width transistor counts. In this case we

want to compare 36x36, 18x18, and 9x9 with and without

booth encoding [34]. You could achieve this in a number of

ways including finding standard cell implementations of the

multipliers and their associated area or building an equation to

estimate the number of transistors for each of the 6 multipliers.

For our approach, we use Odin II to find the transistor

estimates of the six multipliers in the following way. First, we

create a Verilog HDL design that includes the statement “a =

b * c;”. By changing the size of the input and output pins (b,

c, and a) we can change the size of the instantiated multiplier.

We input these 3 designs into Odin II and configure Odin II to

map multipliers into logic gates using either booth encoding

or not. The output from Odin II for each of these six designs

is a BLIF file containing a gate level implementation of a 9x9,

18x18, and 36x36 multiplier with and without booth encoding.

Next, we pass these 3 designs through ABC to perform logic

optimization. The logic optimized designs are read back into

Odin II into the flattened netlist data-structure.

We built a custom function in Odin II that counts the number

of minimum width transistors needed to implement a design

that is purely implemented with logic gates. For simplicity, we

assume a CMOS implementation of all logic gates and that the

P-doped transistor are 2 minimum width transistors.

Table III shows the minimum width transistor counts for

each of the six multipliers passed through the Odin II flow and

calculated based on an equation. The key difference between

column 3 (Odin II flow) and column 4 (equation based) is

that the equation based approach overestimates the number

of transistors in a multiplier. We believe the reason for this

overestimation is that the logic optimization tool performs area

optimizations that reduce the number of gates and the resulting

number of transistors.

This experiment illustrates how reading in outputs from

downstream CAD flow can be used to quickly and more accu-

rately estimate area. Another idea we have for this feature is

Odin II could read downstream outputs and make connections

between the original Verilog design and later downstream

outputs. These connections will help us understand what

the algorithms in the CAD flow have done. For example, a

module in the initial Verilog design could be identified after

clustering by showing which FPGA clusters contain pieces that

implement the module. This would help designers understand

how their designs are being optimized by each stage of the

CAD flow.

Finally, we believe that the most important use of this



TABLE III
TRANSISTOR ESTIMATES FOR 9X9, 18X18, AND 36X36 MULTIPLIERS

Multiplier Encoding Minimum Width Transistors Minimum Width Transistors
Size Odin II Equation

9x9 Normal 4592 4617
9x9 Booth 1702 1769

18x18 Normal 17932 18468
18x18 Booth 6331 6453
36x36 Normal 72203 73782
36x36 Booth 23770 24570

��$%�����!������������	
����$	������������ ���	
��$%�����!����������	

������� '#"()

����	��

��$*���
� 
�������	��$*���

� (�&������� '��+�#(,)

�-�	����	. "���

�-�	����	. "���

�-�	����	. +�
	/���	������

Fig. 4. The outputs in the CAD flow Odin II can read

feature will allow researchers to implement post-processing

CAD algorithms using Odin II. Though researchers can take

time to learn each of the CAD flow tools in an open source

academic flow and implement their algorithms, in some cases,

a simple algorithm might need to be quickly implemented (this

is similar to scripting versus programming). Odin II can speed

up implementing these circuit “scripts” since researchers can

use the common netlist data-structure and functions to manip-

ulate this netlist in Odin II. For example, we used this feature

as part of the power estimation framework (to do the activation

estimation) in an updated VPR 5.0 with power estimation

(http://www.users.muohio.edu/jamiespa/vpr 5 pow.html).

C. Using Target Technology Architecture Description

As described earlier, one of the key steps in a CAD flow

is identifying and mapping functional units in a design to the

target technology. There is no clear conclusion on which stage

of the CAD flow should do this mapping, but HDL synthesis

contains sufficient high-level information of the design to

perform this action. In Odin, partial-mapping was done by

creating a proprietary library that described the hard circuits

available on a target FPGA. This approach, however, required

that researchers create both this library and FPGA architecture

description file to match exactly. In Odin II, we have added

the feature so that Odin II directly reads VPR 5.0 FPGA

architecture files, and uses the information in this file to

identify and map hard circuits.

To illustrate this feature, we used Odin II to identify

multipliers for an FPGA with 9x9 hard multipliers and an

FPGA with hard 18x18 multipliers in the ten benchmarks used

in the FSM experiment above. We created two architectures

files for VPR 5.0 that describe an FPGA with a 9x9 multiplier

and an FPGA with 18x18 multiplier, and we input these

architecture files along with the benchmarks into Odin II. Odin

II identifies multipliers based on the “*” symbol, and then uses

a packing algorithm to determine how to map the different

sized multipliers in the design to the multipliers available on

the FPGA. For example, a 10x10 multiplier in the design will

be mapped to one 9x9 hard multiplier and some soft logic on

an FPGA instead of two 9x9 multipliers, because the previous

approach is both faster and consumes less resources.

TABLE IV
NUMBER OF HARD MULTIPLIERS USED WHEN PACKED BY ODIN II

Benchmark # of hard 9x9 # hard 18x18

glue 2 1
iir 14 5

io expander 0 0
raytrace 0 0 0
raytrace 1 0 0
raytrace 2 45 18
raytrace 3 0 0

stereo vision 0 0 0
stereo vision 1 152 152
stereo vision 2 852 564
stereo vision 3 0 0

Table IV shows multiplier packing results for each of the

10 benchmarks run through Odin II. Column one shows

the benchmark name, and columns two and three shows the



number of hard 9x9 multipliers and 18x18 multipliers used by

the design when mapped to both types of FPGAs.

For each of these benchmarks we can see that, depending

on the type of hard multiplier available on the FPGA there

is a varying number of multipliers used. Note that it takes 4

hard 9x9 multipliers to implement an 18x18 multiplier, and

in each of the benchmarks that uses multipliers there are less

than four times as many used 9x9 hard multipliers than used

18x18 multipliers. The reason for this is that each benchmark

contains varying sizes of multipliers, and only in the case when

a benchmark contains only 18x18 multipliers (or larger) will

we see the number of hard 9x9 multipliers be exactly four

times the number of 18x18 multipliers.

The benchmark stereo vision 1 shows that there are an

equal number of used 9x9 and 18x18 hard multipliers. The

reason for this is the multipliers in this benchmark are all

sized less than or equal to a 9x9 multipliers. In the FPGA

with 18x18 hard multipliers it is more efficient to implement

these design multipliers on an 18x18 multiplier if available.

V. CONCLUSION

ODIN II provides researchers with a much needed frame-

work for HDL elaboration tool investigation. Although the

original Odin provided an initial open source tool that achieved

results similar to commercial tools, it was inflexible and,

therefore, not suited to CAD research.

Odin II is an open source HDL elaboration environment

that converts Verilog HDL designs and maps them to CAD

flows targeting ASICs and FPGAs (currently targets VPR 5.0

FPGA exploration). A significant effort has been made to

make this tool useful to researchers and designers. Odin II

is a significant improvement over its predecessor Odin, and

this was achieved by including a parser and focusing on the

design of the software tool, including the netlist data-structure.

Odin II also includes features that will allow researchers to

learn and implement new ideas for mapping designs to FPGAs.

We illustrated three of these features including experimental

results.

Odin II source code, regression benchmarks, and more

documentation can be found at http://www.users.muohio.edu/

jamiespa/odin II.html.

REFERENCES

[1] P. Jamieson and J. Rose, “A Verilog RTL Synthesis Tool for Heteroge-
neous FPGAs,” in Field-Programmable Logic and Applications, 2005,
pp. 305–310.

[2] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. M. Fang, and
J. Rose, “VPR 5.0: FPGA CAD and Architecture xploration Tools
with Single-Driver Routing, Heterogeneity and Process Scaling,” in
ACM/SIGDA International Symposium on FPGAs, Feb 2009.

[3] Verilog Hardware Description Reference, Open Verilog International,
March 1993.

[4] IEEE Standard VHDL Language Reference Manual, IEEE, 1987.
[5] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M.

Anderson, S. W. K. Tjiang, S. wei Liao, C. wen Tseng, M. W. Hall,
M. S. Lam, and J. L. Hennessy, “SUIF: An Infrastructure for Research
on Parallelizing and Optimizing Compilers,” ACM SIGPLAN Notices,
vol. 29, pp. 31–37, 1994.

[6] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs. Kluwer Academic Publishers, 1999.

[7] C. I. Simplescalar, D. Burger, and T. M. Austin, “The SimpleScalar Tool
Set, Version 2.0,” Tech. Rep., 1997.

[8] S. Williams, “ICARUS Verilog at http://www.icarus.com/eda/verilog/,”
2007.

[9] GNU, “Bison - GNU parser generator,” http://www.gnu.org/software/
bison/, 2009.

[10] Vern Paxson, “The Lex & Yacc Page,” http://dinosaur.compilertools.net/
flex/index.html, 2009.

[11] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “Improvements to
technology mapping for LUT-based FPGAs,” IEEE Transactions on
CAD, vol. 26, no. 2, pp. 240–253, 2007.

[12] A. Singh and M. Marek-Sadowska, “Efficient Circuit Clustering for
Area and Power Reduction in FPGAs,” in ACM/SIGDA International
Symposium on FPGAs, 2002, pp. 59–66.

[13] A. Marquardt, V. Betz, and J. Rose, “Using Cluster-Based Logic Blocks
and Timing-Driven Packing to Improve FPGA Speed and Density,” in
ACM/SIGDA International Symposium on FPGAs, Monterey, CA, 1999,
pp. 37–46.

[14] Altera Corporation. 101 Innovation Drive, San Jose CA 95134, “1996
Data Book,” 1996.

[15] “XILINX at http://www.xilinx.com.”
[16] Magma Design Automation Inc., “Blast FPGA,” 2005.
[17] Synopsys, “Design Compiler FPGA,” 2004.
[18] Synplicity, “Synplify Pro,” 2003.
[19] Mentor Graphics, “LeanardoSpectrum,” 2001.
[20] SAVANT, “SAVANT: VHDL Analysis Tools,” http://www.ece.uc.edu/

∼paw/savant/, 2009.
[21] Veriwell, “Verilog Simulator,” http://sourceforge.net/projects/veriwell/,

2009.
[22] Wilson Snyder and Duane Galbi and Paul Wasson, “Introduction to

Verilator,” http://www.veripool.org/wiki/verilator, 2009.
[23] FreeHDL, “A project to develop a free, open source, GPL’ed VHDL

simulator for Linux!” http://www.freehdl.seul.org/, 2009.
[24] J. Jones, “Abstract syntax tree implementation idioms,” in Proceedings

of the 10th Conference on Pattern Languages of Programs (PLoP2003),
2003.

[25] “Electronic Industries Association standard for Library Parametrized
Modules,” 1993, http://www.edif.org/lpmweb/intro/what\ is\ lpm.htm.

[26] C. W. Yu, A. Smith, W. Luk, P. Leong, and S. Wilton, “Optimizing
coarse-grained units in floating point hybrid fpga,” in ICECE Technology,
2008. FPT 2008. International Conference on, Dec 2008, pp. 57–64.

[27] U. of California Berkeley, “Berkeley Logic Interchange Format (BLIF),”
1992.

[28] S. Golson, “One-hot state machine design for FPGAs,” in 3rd PLD
Design Conference, Santa Clara, CA, Mar. 1993, pp. 1–6.

[29] Altera, Quartus II Handbook, Volumes 1, 2, and 3, 2004.
[30] P. Jamieson, T. Becker, W. Luk, P. Cheung, and T. Rissa, “Benchmarking

Reconfigurable Architectures in the Mobile Domain,” in Proceedings
of the IEEE Symposium on Field-Programmable Custom Computing
Machines, 2009.

[31] “http://www.opencores.org,” 2007.
[32] J. Fender and J. Rose, “A High-Speed Ray TRacing Engine Built on

a Field-Programmable System,” in IEEE International Conf. On Field-
Programmable Technology, 2003, pp. 188–195.

[33] A. Dharabiha, J. Rose, and W. MacLean, “Video-Rate Stereo Depth
Measurement on Programmable Hardware,” in IEEE Computer Society
Conference on Computer Vision & Pattern Recognition, 2003, pp. 203–
210.

[34] A. D. Booth, “A signed binary multiplication technique,” Quarterly
Journal of Mechanics and Applied Mathematics, no. 2, pp. 236–240,
1951.


