
Finding System-Level Information and Analyzing
its Correlation to FPGA Placement

Farnaz Gharibian and Lesley Shannon
School of Engineering Science

Simon Fraser University
Email: fga7,lshannon@sfu.ca

Peter Jamieson
Department of Electrical and Computer Engineering

Miami University
Email: jamiespa@muohio.edu

Abstract—One of the more popular placement algorithms for
Field Programmable Gate Arrays (FPGAs) is called Simulated
Annealing (SA). This algorithm tries to create a good quality
placement from a flattened design that no longer contains any
high-level information related to the original design hierarchy.
Unfortunately, placement is an NP-hard problem and as the size
and complexity of designs implemented on FPGAs increases, SA
does not scale well to find good solutions in a timely fashion.
As modern FPGAs can be used to implement Systems- and
Networks-on-Chip, designers are required to spend an increasing
amount of time waiting for place and route tools to complete that
is not being matched by an increase in the power of computing
work stations.

In this paper, we investigate if system-level information can
be reconstructed from a flattened netlist and evaluate how
that information is realized in terms of its locality in the final
placement. If there is a strong relationship between good quality
placements and system-level information, then it may be possible
to divide a large design into smaller components and improve the
time needed to create a good quality placement. Our preliminary
results suggest that the locality property of the information
embedded in the system-level HDL structure (i.e. “module”,
“always”, and “if” statements) is greatly affected by both the
designer and the design itself. A reconstructive algorithm, called
affinity propagation, is also considered as a possible method of
generating a meaningful coarse grain picture of the design.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) have gained
popularity as an implementation platform as their logic density
has grown, allowing them to implement complete Systems-
on-Chip (SoCs). During the development of an automated
Computer Aided Design (CAD) flow for FPGAs, it was
recognized that the placement problem could only be solved
in Non-Polynomial (NP) time [1]. To this end, CAD designers
leveraged heuristics to obtain good quality placement solutions
in a timely fashion.

One of the more popular heuristic placement algorithm im-
plementations for FPGAs is called Simulated Annealing (SA).
It tries to create a good quality placement from a flattened
design that no longer contains any system-level information
from the original design hierarchy. As the size and complexity
of FPGA designs increases, SA does not scale well; in fact, the
time designers are required to wait for the successful place and
route of a design using commercial CAD tools is reportedly
not being alleviated by the gained computing power in new
work stations [2].

The poor scaling of the placement algorithm’s run time is in
part due to the fact that the clock speed of modern day proces-
sors does not increase significantly with each new processing
technology node due to power consumption. Instead, modern
day processors rely on increasing the number of processing
cores to improve task execution through parallelism. This need
to leverage parallelism to reduce run time creates a second
problem as placers must generate deterministic solutions,
independent of the number of processing cores. Based on
this requirement and the typically global approach taken by
placement algorithms (including SA), multi-threaded imple-
mentations of placers typically have problems with the lack
of spatial locality for their data; therefore, these parallelization
techniques do not dramatically improve performance [2] [3].

In this paper, we present a study to determine the quality
and types of system-level information that may be recon-
structed by SA in the final placement; to quantify the quality
of this reconstruction, we use Manhattan Distance (MD) as a
measure of locality. The specific contributions are:

• An analysis that suggests that the quality of the infor-
mation embedded in the high-level circuit structure (i.e.
module, always, and if statements) is greatly affected by
both the designer and the design itself.

• How clustering algorithms, such as affinity propaga-
tion [4], can reconstruct system-level information that
may be used to create coarse grain components to provide
the flexibility needed for multi-phased placement.

• A method of evaluating the quality of system-level in-
formation in relation to placement using MD and the
distribution of system-level granular blocks. This method-
ology allows new reconstructive algorithms to be easily
analyzed and compared to one another.

If some general relationship between good quality placements
and system-level information exists, then it is possible that
dividing a large design into smaller components may improve
the speed with which a good quality placement is obtained as
we could better leverage new multicore processing platforms.
Ideally, the general placement of a design using SA can be
somewhat intuited from the cost function it uses to evaluate
the quality of a placement: minimize the wire lengths of
connected blocks with the objective of minimizing the critical
path. However, as SA relies on randomly swapping clusters,
there is no direct link between the original design structure



and the structure of the final placement.
The remainder of this paper is organized as follows. Sec-

tion II discusses the related work including placement al-
gorithms for FPGAs and using some form of design parti-
tioning/clustering in combination with placement. Section III
describes what we mean by “system-level information” and
why partitioning designs into coarse grain components guided
by system-level information may be valuable for reducing
run time and even improving placement quality. Section IV
summarizes the CAD flow used to obtain our data. Section V
presents our experimental results and Section VI concludes the
paper, with thoughts as to possible directions for future work.

II. BACKGROUND

The goal of placement in the FPGA CAD flow is to find a
valid placement for each logic block while trying to minimize
the critical path; this objective is typically represented as a
cost function used to minimize the total length of intercon-
nect required. There are two main approaches to placement:
analytical and heuristic algorithms. Analytic placers, such as
quadratic placement [5] [6], are commonly used in commercial
FPGA CAD flows to provide an initial high-level placement.
They generally complete in less time than other heuristics but
do not guarantee a legal placement as the final placement
might have overlapping logic blocks [5]. Instead, they are
generally used to provide an initial placement for larger
designs that is fine tuned using heuristic algorithms (e.g. SA)
to remove the overlap, resulting in a more scalable run time
for placers as design complexity increases.

Simulated Annealing [7] (SA) is oftenused for at least a
portion of an FPGA’s placement. Unfortunately, SA requires
significant computation time to produce good placements. SA
swaps random clusters to move through the design space, in
combination with a “cooling table” that allows the algorithm
to select the occasional “poor” placement (in terms of its cost
function) to perform some hill climbing. Different techniques
have been used to improve SA’s run time, some of which
have been included in the version of SA incorporated into the
academic CAD flow VPR [8]. Other techniques for reducing
the run time of SA rely on:

• some form of partitioning/clustering the design into
groups of clusters (which we call super-clusters) before
running the placer [9],

• quickly creating a good initial placement to reduce the
iterations required to find the final placement [10], and

• using multi-threading techniques that allow the placer
to leverage the increased processing power available on
multicore processors [11], [2].

Although our long term research objectives include creating
a placement algorithm that scales better in performance for
multicore processors, the current study focuses on a good
placement’s final structure in relation to the actual design.
As such, the remainder of this discussion on SA focuses on
previous work reducing the actual number of iterations of SA
using partitioning/clustering or a good initial placement. Work

on multi-threading techniques is complementary to this work
as it instead focuses on completing SA iterations more quickly.

In a Two Stage Simulated Annealing (TSSA) placer, the
early randomizing actions occurring at the highest tempera-
tures of the cooling schedule are replaced by a faster heuris-
tic with a traditional, monotonically-decreasing temperature
regime to create an initial placement [12]. The SA phase
leverages this “good” initial placement solution to start at a
lower temperature than is normally required to achieve the
desired solution quality for the problem being considered. For
this reason, the SA phase of the TSSA system is often referred
to as the low temperature annealing phase [12].

Recently, techniques to reduce ASIC placer run times have
also been studied for FPGA placers due to the growth in their
design capacity. Bian et al. [13] investigated three ASIC place-
ment algorithms that include: partition-based [14], a multi-
level approach [15] and a quadratic analytical [16] placer in
conjunction with SA. Their results show that as the number of
clusters increases, VPR’s SA takes more time than these other
placement methods. The authors also introduce a placement
technique based on maximum-bipartite matching [13]. They
report that their method can produce comparable results to
VPR given generous white space.

Partitioning/Clustering methods to construct high-level in-
formation: The Ultra-Fast Placement algorithm aims to im-
prove the runtime of VPR’s SA placer by initially performing
multi-level clustering [9]. To clarify our discussions, we define
clusters as logic blocks on an FPGA, whereas we define
super-clusters as groupings of one or more clusters in a
design. In Ultra-Fast, the super-cluster sizes at each level
are fixed to facilitate the exchange of clusters during the
swapping moves in SA. The super-clusters are grown based
on a connectivity-based scoring function determined by two
components: the strength of connections between the blocks
and the number of nets that are absorbed if a block is merged
into the super-cluster. Each level is performed in two phases:
a phase to build a good initial placement followed by a low
temperature SA phase. Although we are interested in using
system-level information for clustering algorithms and multi-
phased placement, we do not assume a fixed number of clusters
per super-cluster (like the Ultra-Fast Placement algorithm [9])
or a fixed number of super-clusters (like the K-clustering
algorithms [17]

Design Level Information: FPGA placements based on
SA use random initial placements and do not consider in-
formation embedded in the original design as circuits are
typically flattened before SA is run. Some previous work in
ASIC placers suggest that high-level information and design
hierarchy should be considered during both clustering [18]
and placement [19]. Previously, floorplanning (or hierarchical)
approaches to placement, based on the design’s hierarchy as
specified in its RTL have been introduced [20], [21]. For
example, Emmert et al. [20] start by decomposing the FPGA
device into an array of placement bins with the same physical
dimensions. Then a macro-based netlist of soft and hard
macros targeted to the device is created. Finally, it groups



the macros into clusters that can be mapped into bins.

III. SYSTEM-LEVEL INFORMATION

The idea of trying to replace SA’s time consuming step of
moving from a random placement to a reasonable one via
random swaps with a good initial placement is discussed by
Grover [12]. This TSSA work is based on the hypothesis that:
SA wastes effort using random swaps to generate its first
reasonable solution; instead, it would be better to generate a
good initial placement utilizing more computationally efficient
methods and apply SA at a low temperature. We propose
using System-level Information to guide the generation of this
initial placement, where we define System-level Information
as: a granular grouping of the design based on connectivity
and/or structure that may be obtained either from its graphical
representation or its original HDL (design-level) description.
We are particularly interested in determining if this informa-
tion can be used to create coarse grain substructures to guide
initial placements for heuristics, and potentially lead to a more
scalable placement solution multicore architectures.

To evaluate how useful this approach might be, we first
assume that as SA generates good quality placements, it
uncovers substructures that have locality. We propose that
these “uncovered” substructures fall into two categories: 1)
those that are tied to the original design’s structure and can
be found using system-level information, and 2) those that are
not apparent from the original design but truly “uncovered”
by SA’s random swaps. The remainder of this paper focuses
on the first category of substructures, investigating what types
of system-level information SA “reconstructs” in its final
placement and the quality of reconstruction. To quantify this
metric, we utilize the Manhattan Distance (MD) of the set
of clusters that implement the substructure, where a smaller
MD reflects greater locality for the substructure and thus a
better reconstruction. If certain types of information have poor
locality in an SA placement, it may not be as useful in creating
coarse grain substructures for an initial placement.

In this study, we investigate the locality of system-level
information within a final SA placement using two approaches.
The first is based on the structure of the source HDL, where
we try to determine how hierarchical HDL structures (specif-
ically, module, always, and if blocks) are reflected in the
final placement. Our method of detecting HDL components
and generating results is reported in Section IV. The second
approach uses a reconstructive algorithm, called affinity propa-
gation [4], to analyze the connectivity graph of the netlist after
logic has been packed into clusters. It detects relationships that
determine what clusters should be considered part of the same
coarse grain substructure.

Affinity propagation is a clustering algorithm that is applied
to an input graph to group clusters based on a defined
similarity factor and generate a set of super-clusters. These
super-clusters are created via a series of message passing
steps, where nodes in the graph communicate their attraction
to other nodes. The number and size of the super-clusters
created by the algorithm depends on the structure of the

Front End Synthesis
ODIN-II

Technology Mapping
RASP

Placement & Routing
VPR 5.0

Packing
T-VPACK

INPUT
HDL Design

OUTPUT
Placement file

Creating super-clusters
(Affinity Algorithm)

Fig. 1. FPGA CAD flow used in this research

graph and a similarity factor that describes how every two
nodes in the graph are initially related to one another. We
have implemented two versions of affinity propagation that
use slightly different metrics to create the initial similarity
factors. The first (AFFIN1) assumes that the similarity of two
nodes in the graph (representing circuit components) is higher
for shorter graph distances. For example, if two nodes are
connected directly to each other, the assumption is that they
should be placed closer together on the FPGA. However, for
longer path lengths, the similarity between nodes is lower as
they do not need to be placed close together. Our second
version of affinity (AFFIN2) creates similarities based on
three properties: common connections, proximity, and fan out.
Specifically, a node is considered more similar to another node
by this version of the algorithm if: they have more than one
connection, are close in proximity, and their respective fanout
is high. For example, unlike AFFIN1, AFFIN2 is more likely
to closely place two nodes with many connections than two
nodes with closer proximity yet having only one connection
between them.

IV. EXPERIMENTAL METHODOLOGY

Figure 1 shows the FPGA CAD flow used in this work to de-
termine how structural information from both the HDL design
and the circuit netlist are related to the SA’s final placement. A
Verilog HDL design is inputted to Odin II [22], which creates
a flattened netlist consisting of system-level I/Os, logic gates,
flip-flops, and hard circuits (e.g. multipliers/memories). This
netlist is passed into RASP [23] for logic optimization and
mapping to Look-Up Tables (LUTs). RASP was chosen specif-
ically for this project as it maintains the majority of design-
level naming in the netlist, allowing us to measure the MD
of various structures (i.e. module, always, and if ) in the final
placement. Next, T-VPack [24] takes the output from RASP
and packs the LUTs and registers into clusters. The output of
T-VPack is then placed and routed onto an FPGA architecture
described by the parameters summarized in Table I using VPR
5.0 [25]. Our two versions of affinity propagation (AFFIN1
and AFFIN2) also use T-VPACK’s output to generate super-
clusters based on their respective similarity factors outlined in



TABLE I
THE FPGA ARCHITECTURAL PARAMETERS

Parameter W N K Fcin Fcout Fs routing

Value 20% larger 10 4 0.18 0.1 3 uni-
than minimum directional

TABLE II
RESULTS AFTER VPR COMPLETES PLACE & ROUTE

Benchmark Number Number of Grid Std GMEAN
of IO Clusters Size Dev

cfc18 111 627 26*26 5.08 95.66
cft8 69 1031 33*33 5.59 81.58
desa 190 265 17*17 4.39 111.59
iir1 59 142 12*12 1.02 54.75

oc54 140 530 24*24 0.64 24.60
pajf 103 166 13*13 14.44 233.50
rsd2 32 496 23*23 0.88 57.61

dconvert 258 445 22*22 0.74 20.28
dsystemC 162 409 21*21 0.39 17.98

glue2 40 43 7*7 3.13 91.75
rsd1 20 192 14*14 1.23 131.14

Section III.
We use the Manhattan Distance (MD) of a super-cluster’s

bounding box in the final SA placement to measure the locality
of a super-cluster. Specifically, a super-cluster’s MD is equal
to half the perimeter of the bounding box of all the clusters in
that super-cluster. The clusters in the super-clusters (generated
using affinity propagation or from a benchmark’s module,
always, and if blocks) are located basically the same way
- by searching the final placement for the locations of all
clusters identified in a super-cluster. However, whereas the
affinity propagation algorithm outputs a list of super-clusters
and their component clusters, we use the design-level naming
scheme generated by Odin II and passed through the CAD
flow to locate individual module/always/if instantiations.

V. RESULTS

In this section, we summarize the outputs of the VPR
place and route and discuss how certain types of system-level
information correlate to the final placement.

A. VPR results

Table II shows the VPR statistics for 11 of the larger
open source benchmarks available in Verilog HDL. Column 1
contains the names of the benchmarks, and Columns 2 through
4 list the number of I/Os, the number of clusters, and the array
size for each benchmark respectively. Columns 5 and 6 show
the standard deviation and geometric mean of the operating
frequency of the benchmarks in MHz over ten random seeds.

B. Affinity and HDL Placement Correlation Results

Table III summarizes the results of our first experiment
using AFFIN1 (top) and AFFIN2 (bottom) to reconstruct high-
level information into super-clusters. First, we run both AF-
FIN1 and AFFIN2 to create the super-clusters and then find the
MD of these super-clusters in the ten placements generated for
each benchmark to evaluate our affinity propagation clustering
algorithms. Columns 2 shows the number of super-clusters

0.00

0.50

1.00

1.50

2.00

2.50

3.00

Fig. 2. Ratio of the Global Manhattan Distance: AFFIN2/AFFIN1

1

1.5

2

2.5

3
AFFIN1 AFFIN2

0

0.5

1

1.5

2

2.5

3
AFFIN1 AFFIN2

Fig. 3. Average local MD per cluster for AFFIN1 and AFFIN2

constructed by each version of the algorithm. Columns 3
through 6 gives the distribution of clusters in the super-clusters
where the 1st two columns list the minimum and maximum
number of clusters in a super-cluster and Columns 5 and 6
show the standard deviation and the geometric mean. Columns
7 through 10 list the distribution of super-cluster MDs (Local
MDs) in a similar format. Columns 11 and 12 give the standard
deviation and geometric mean of the Global MD generated by
totalling the MDs of each super-cluster. Column 13 contains
the ratio of the average Local MDs for the super-clusters
(Column 10) divided by the average number of clusters per
super-cluster (Column 6).

Table IV shows the results of our second experiment,
measuring how the module, always, and if HDL constructs
relate to the final placements generated by the SA placer (for
ten random seeds). The results for all three constructs are
reported using the same format. Subcolumn 1 states the total
number of each construct located in the source HDL versus
the total number that we could successfully map to clusters
on the final design. The number of constructs that could
be successfully mapped to clusters is less than the total as
certain (unknown) logic optimizations in RASP remove high-
level naming information from the output netlist, meaning that
these high-level constructs are “lost” in the final placement.
Therefore, the number and percentage of clusters successfully
mapped to super-clusters are listed in Subcolumns 2 and 3
respectively. Finally, Subcolumns 4 and 5 list the standard
deviation and geometric mean of the number clusters per HDL
construct-based super-cluster.

C. Data Analysis

An examination of the results shown in Table III indicates
that AFFIN2 generally creates fewer super-clusters (excluding
pajf ) with a more even distribution of clusters and a larger
number of clusters per super-cluster on average. In contrast,
the Local MD of super-clusters in AFFIN2 is also generally



TABLE III
RESULTING SUPER-CLUSTERS USING TWO DIFFERENT AFFINITY PROPAGATION METRICS.

AFFIN1

Benchmark Super-clusters Clusters Local MD Global MD Local MD/Clustersmin max STD Gmean min max STD Gmean STD Mean
cfc18 65 1 179 21.52 6.71 0 49 8.6 16.6 23.44 1041.8 2.47
cft8 91 3 516 53.51 5.84 2 63 12.07 14.35 25.34 1332.6 2.46
desa 6 6 231 91.53 12.22 5 31 10.61 9.33 1.78 57.5 0.76
iir1 15 5 51 11.57 7.32 6 22 4.99 11.2 6.28 169.1 1.53

oc54 43 3 247 36.72 6.88 2 45 7.88 17.14 12.15 737.4 2.49
pajf 5 3 148 64.18 8.82 3 24 7.92 10.8 2.66 54.2 1.22
rsd2 50 3 209 28.78 6.03 3 43 7.51 10.94 14.33 563.3 1.81

dconvert 38 3 228 36.08 6.16 3 41 8.35 13.76 12.64 520.5 2.23
dsystemC 37 3 222 35.68 5.48 2 39 8.16 11.73 14.61 414.7 2.14

glue2 6 3 21 6.94 5.46 3 11 3.14 5.67 3.38 34.1 1.04
rsd1 19 3 88 19.01 6.2 2 26 6.18 10 9.69 190.8 1.61

AFFIN2

Benchmark Super-clusters Clusters Local MD Global MD Local MD/Clustersmin max STD Gmean min max STD Gmean STD Mean
cfc18 13 18 75 17.67 44.8 13 46 8.35 32.23 9.52 435.8 0.72
cft8 35 12 131 21.78 25.06 9 62 15.22 24.51 21.26 860.9 0.98
desa 8 17 64 19.45 29 11 22 3.72 17.88 6.66 139.9 0.62
iir1 8 7 31 7.7 16.17 5 21 5.28 15.25 5.82 113.5 0.94

oc54 18 9 52 12.89 26.46 13 31 5.04 23.17 6.11 417.4 0.88
pajf 118 1 40 3.63 1.07 0 15 1.77 0.3 2.67 38 0.28
rsd2 16 5 204 52.1 13.99 4 36 10.33 18.5 15.42 284.8 1.32

dconvert 25 6 47 12.47 14.16 4 39 9.83 18.2 13.94 420 1.29
dsystemC 27 4 32 8.36 12.84 3 37 9.83 18.11 12.94 476.9 1.41

glue2 2 14 29 10.61 20.15 9 11 1.41 10 0.92 18.8 0.50
rsd1 6 11 75 24.67 25.57 10 23 4.8 16.33 9.81 94.6 0.64

TABLE IV
RESULTING SUPER-CLUSTERS BASED ON module, always, AND if STATEMENT DECLARATIONS.

Bench- ALWAYS IF MODULE
mark blocks clusters %Map STD Geo blocks clusters %Map STD Geo blocks clusters %Map STD Geo
cfc18 114:74 166 0.26 18.57 458 114:0 0 0.00 0.00 0 1:1 627 1.00 0.00 49
cft8 387:91 285 0.28 56.27 763 387:2 10 0.01 1.17 7 1:1 911 0.88 0.32 63
desa 11:1 32 0.12 2.87 25 0:0 0 0.00 0.00 0 11:3 202 0.76 4.12 71
iir1 3:2 21 0.15 2.12 23 3:2 21 0.15 2.12 23 5:5 142 1.00 2.62 74

oc54 22:18 399 0.75 9.34 364 26:15 171 0.32 11.80 302 8:8 464 0.88 3.80 184
pajf 7:5 166 1.00 1.34 65 13:3 85 0.51 1.34 41 4:3 166 1.00 0.52 34
rsd2 42:22 264 0.53 5.19 237 17:17 143 0.29 6.74 173 23:7 267 0.54 4.68 175

dconvert 1:1 300 0.67 0.32 41 1:1 300 0.67 0.32 41 1:1 445 1.00 0.00 41
dsystemC 1:1 289 0.71 0.00 39 1:1 289 0.71 0.00 39 1:1 409 1.00 0.00 39

glue2 4:3 41 0.95 1.05 16 13:6 40 0.93 0.48 12 1:1 41 0.95 0.48 12
rsd1 54:25 174 0.91 8.44 155 21:20 121 0.63 6.43 102 31:7 180 0.94 3.84 110

larger than that of AFFIN1, which may suggest poorer locality
of AFFIN2 super-clusters in the SA placement. However,
Figure 2 highlights how the Global MD using AFFIN 2 is
generally less than AFFIN1 (excluding desa and dsystemC)
using the relation AFFIN2/AFFIN1, suggesting that the larger
Local MDs are mostly due to the larger number of clusters
in AFFIN2’s super-clusters. This argument is strengthened by
looking at the average Local MD per cluster ratio shown in
Figure 3. As the MD of a single cluster is zero, this metric
decreases the more tightly packed clusters are within a super-
cluster mapping. For all our benchmarks, AFFIN2 has the
lower ratio.

The correlation between HDL constructs and final place-
ments is harder to interpret as shown in Table IV. First of all,
the loss of clusters due to loss of naming information during
logic optimization (as discussed in Section V-B) results in only
“samples” of these HDL-construct-based super-clusters being
visible for analysis. Furthermore, in the cases of the always
and if blocks, these are generally small percentages of the
design; in fact, only the bottom four entries of Table IV can
provide super-cluster mappings that represent at least 60% of

0 2

0.4

0.6

0.8

1

1.2 IF ALWAYS MODULE AFFIN1 AFFIN2

0

0.2

0.4

0.6

0.8

1

1.2 IF ALWAYS MODULE AFFIN1 AFFIN2

Fig. 4. Minimum MD over actual MDs in super-clusters

the design. Of these four benchmarks, dconvert and dsystemC
highlight an important consideration for using HDL-constructs
to generate super-clusters: they only have one module, always,
and if block that encapsulates most of the clusters in the
design. Therefore, using HDL-constructs to generate a coarse
grain mapping of the design requires that the design be large
enough and that the designer has used these constructs to
encapsulate sufficient design hierarchy (i.e. modules) and/or
control structures (i.e. always, if ) that multiple meaningful
super-clusters can be generated.

Since the HDL-construct-based super-clusters considered



here do not generally represent a significant portion of their
overall designs, Global MD comparisons with the results from
affinity propagation are not very meaningful. Instead, we need
a metric that considers the average Local MD of the super-
clusters found in all cases, normalized to reflect the value
of denser cluster packing. Specifically, for each super-cluster
in a benchmark, we determine its minimum theoretical MD
(based on the number of clusters) and divide this by the
actual MDs that resulted in the SA placement. We then found
the geometric mean of this measure over all super-clusters in
a benchmark and plotted this data for all five super-cluster
generation options in Figure 4. The resulting data can be
interpreted as follows: this ratio ranges from zero to one and
approaches one as the super-clusters are placed on the FPGA
with close to the theoretical minimum MD.

At first glance, these results suggest that using module
instantiations provide a good basis for super-cluster genera-
tion. However, excluding the paij benchmark, all values over
0.6 occur when there is only a single module in the design.
Similar results can be seen for the always and if, (excluding the
glue benchmark). Nevertheless, while these results suggest that
HDL constructs cannot be used to generate super-clusters for
these benchmarks, the outliers suggest that if our designs were
much larger, these constructs might be useful. Still, this would
also be dependent on the nature and the structure of the design.
Although both versions of affinity propagation have lower ratio
values using this metric, we again see that generally AFFIN2
does better than AFFIN1 in producing super-clusters that
reflect better spatial locality within SA’s placement. We expect
that using the metrics for comparing the quality of super-
cluster locality within a placement illustrated in Figures 3
and 4, we can evaluate and better tune the similarity factors
to construct better super-clusters for an initial coarse grain
placement. They can also be used to assess other constructive
algorithms.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have summarized a study of how system-
level information may be reconstructed by SA in its final
placement. We presented a method of evaluating the locality
of coarse grain substructures within a placement along with
an analysis of how specific types of system-level information
correlate to an SA’s final placement. Our results suggest that
system-level information can be used to find coarse grain
mappings that could improve placement algorithms. Finally,
we described and implemented two different versions of the
affinity propagation algorithm and demonstrated how the sim-
ilarity factors (AFFIN2) can be tuned to obtain better system-
level information with a better relation to their final placement
on an FPGA.

Currently, we are looking into methods of ensuring that all
design-level information is maintained throughout the entire
CAD flow. We are also examining other possible structures
(i.e. Buses, Datapath) for possible correlations in the final
placement to determine which structure(s) has the best correla-
tion in the final placement. Future work includes investigating

new possible similarity factors that may result in coarse grain
structures with better locality on a SA placement and trying
to use system-level information to generate an initial coarse
grain placement.

ACKNOWLEDGMENT

The authors would like to acknowledge NSERC’s funding of this
research and thank Mr. Kevin Chung for his help and advice.

REFERENCES

[1] W. E.Donath, “Complexity theory and design automation,” in In Proc.
of the 17th Design Automation Conference, 1980, pp. 412–419.

[2] A.Ludwin et al., “High-quality, deterministic parallel placement for
fpgas on commodity hardware,” in Proc. of the 16th Int’l ACM/SIGDA
Symp. on FPGAs, 2008, pp. 14–23.

[3] J.Chandy et al., “Parallel simulated annealing strategies for vlsi cell
placement,” in 9th Int’l Conference on VLSI Design, 1996, pp. 37–42.

[4] B. J.Frey et al., “Clustering by passing messages between data points,,”
in Science, vol. 315, Feb. 2007, pp. 972–976.

[5] B. M.Riess et al., “Speed: Fast and Efficient Timing Driven Placement,”
in IEEE Int’l Symp. on Circuits, 1995, pp. 377–380.

[6] K.Vorwerk et al., “Engineering details of a stable force-directed placer,”
in Proc. of the 2004 IEEE/ACM Int’l Conf on CAD, 2004, pp. 573–580.

[7] S.Kirkpatrick et al., “Optimization by Simulated Annealing,” Science,
vol. 220, no. 4598, pp. 671–680, May 1983.

[8] V.Betz et al., Architecture and CAD for Deep-Submicron FPGAs.
Kluwer Academic Publishers, 1999.

[9] Y.Sankar et al., “Trading quality for compile time: ultra-fast placement
for fpgas,” in ACM/SIGDA Int’l Symp. on FPGAs, 1999, pp. 157–166.

[10] J. M.Varanelli et al., “A fast method for generalized starting temperature
determination in homogeneous two-stage simulated annealing systems,”
Computers and Operations Research, vol. 26, no. 5, pp. 481–503, 1999.

[11] M.Haldar et al., “Parallel algorithms for fpga placement,” in 10th Great
Lakes Symp. on VLSI, 2000, pp. 86–94.

[12] L. K.Grover, “Standard cell placement using simulated sintering,” in
Proc. of the 24th ACM/IEEE DAC, 1987, pp. 56–59.

[13] H.Bian et al., “Towards scalable placement for fpgas,” in Proc. of the
18th annual ACM/SIGDA Int’l symp. on FPGAs, 2010, pp. 147–156.

[14] A. E.Caldwell et al., “Optimal partitioners and end-case placers for
standard-cell layout,” Int’l Symp on Physical Design, pp. 90–96, 1999.

[15] T. F.Chan et al., “Multilevel optimization for large-scale circuit place-
ment,” in IEEE/ACM Int’l Conf on CAD, 2000, pp. 171–176.

[16] N.Viswanathan et al., “Fastplace: Efficient analytical placement using
cell shifting, iterative local refinement and a hybrid net model,” Proc.
of the 1997 Int’l Symp. on Physical design, 2004.

[17] J. B.MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Proc. of the fifth Berkeley Symp. on
Mathematical Statistics and Probability, vol. 1. University of California
Press, 1967, pp. 281–297.

[18] D.Behrens et al., “Circuit partitioning using high-level design informa-
tion,” in Conference on Integrated Design - process Technology, 1996,
pp. 259–266.

[19] Y. W.Tsay et al., “Preserving hdl synthesis hierarchy for cell placement,”
Proc. of the 1997 Int’l symp. on Physical design, pp. 169–174, 1997.

[20] J. M.Emmert et al., “A methodology for fast fpga floorplanning,” in
Proc. of the 7th Int’l ACM/SIGDA Symp. on FPGAs, February 21-23,
1999, pp. 47–56.

[21] R.Tessier, “Fast placement approaches for fpgas,” ACM Trans. on Design
Automation of Electronic Systems, vol. 7, no. 2, pp. 284–305, April 2002.

[22] P. A.Jamieson et al., “Odin II - An Open-source Verilog HDL Synthe-
sis Tool for Academic CAD Flows,” in Field-Programmable Custom
Computing Machines, Annual IEEE Symp. on, 2010.

[23] J.Cong et al., “RASP: A General Logic Synthesis System for SRAM-
Based FPGAs,” in ACM/SIGDA Int’l Symp. on FPGAs, 1996, pp. 137–
143.

[24] A.Marquardt et al., “Using Cluster-Based Logic Blocks and Timing-
Driven Packing to Improve FPGA Speed and Density,” in ACM/SIGDA
Int’l Symp. on FPGAs, Monterey, CA, 1999, pp. 37–46.

[25] J.Luu et al., “VPR 5.0: FPGA CAD and Architecture xploration Tools
with Single-Driver Routing, Heterogeneity and Process Scaling,” in
ACM/SIGDA Int’l Symp. on FPGAs, Feb 2009.


