Customizing Controller Instruction Sets for Application-Specific Architectures

Jian Li, David Dickin and Lesley Shannon
School of Engineering Science
Simon Fraser University
Burnaby, British Columbia, Canada
Email: {jlal93, drdickin, Ishannon}@sfu.ca

Abstract—Previous work has proposed the “Systems Inte-
grating Modules with Predefined Physical Links” (SIMPPL)
architectural framework as one possible method to shorten the
design cycle by utilizing a light weight programmable controller
(SIMPPL Controller) as the system-level interface.

This paper presents a study of how much improvement in
area, power, and performance can be achieved through the
customization of the SIMPPL Controller’s instruction set. Fur-
thermore, we have created a tool to automatically generate the
HDL for SIMPPL Controllers with a user specified instruction
set. Our study on an FPGA platform has shown that using a
customized SIMPPL Controller with a minimal instruction set
results in: an area reduction of 42%, a performance increase
of 16%, and a power reduction of 10%.

Keywords-Systems-on-Chip, SoC Design Methodologies,
Application-Specific Architectures, Application-Specific
Instruction-set Processors, IP Reuse, Design Automation

I. INTRODUCTION

For System-on-Chip (SoC) design, reusing previously
designed Intellectual Property (IP) cores has been one of
the popular methods to reduce system design time. Ideally,
this would be akin to reusing previously designed software
functions. Unfortunately reusing hardware IP is more com-
plicated because each IP may have different forms of inter-
module communication (serial/parallel, broadcast/addressed,
etc.), and integrating them into the new systems may require
significant redesign of the original cores. In fact, the com-
plexity of these system integration challenges may take up
to 30% of the overall SoC design time [1].

This led to the proposal of modelling SoCs as Sys-
tems Integrating Modules with Predefined Physical Links
(SIMPPL), which has been demonstrated to reduce system
integration time to less than 5% of the total design time [2].
The SIMPPL architectural framework models a SoC as a
network of Computing Elements (CEs) interconnected via
point-to-point links (usually FIFOs), and may be used for
SoCs implemented on Field Programmable Gate Arrays (FP-
GAs) or as Application-Specific Integrated Circuits (ASICs).

Figure 1 illustrates the three components of a hardware
CE in terms of their separate modules: the Processing
Element (PE) comprises the datapath, or the actual hard-
ware IP core being reused, in the CE; the SIMPPL Con-
troller provides a programmable inter-CE communication
interface to receive and transmit instruction packets; and the

Internal Rx and Tx
Communication Links (FIFO)

Rx 4 oTx
<L
SIMPPL Controller Qj b Prog Instr
Controller Status |—$m
SIMPPL Controller
PE Control PE Status Sequencer (SCS)
L leads L}
] <L] \
DataRx Data Tx
Processing Element(PE)
Hardware IP Computing
ZeY Element (CE)

3=

Figure 1: The CE abstraction components.

SIMPPL Control Sequencer (SCS), in combination with
instruction packets received by the CE via the receive link,
determines how the PE is used with the overall system. The
benefit of the CE abstraction is that the PE’s functionality
remains unchanged, the designer need only change the
“program” (SCS) executed by the SIMPPL Controller, and
the instruction packets received from other CEs.

The overhead of the CE abstraction is encapsulated by the
SCS and the SIMPPL Controller as they provide the SoC
interface circuitry for the PE. However, the CE’s operations
may be dictated completely by instruction packets received
from other CEs and not to use an SCS. Therefore, the fixed
overhead of using the CE abstraction is incurred from the
SIMPPL Controller itself.

This paper presents a study of how much improvement
in area, power, and maximum operating frequency can be
achieved through the customization of the SIMPPL Con-
troller’s instruction set for individual PEs. Furthermore, we
have created a tool to automatically generate the HDL for
SIMPPL Controllers with a user-specified instruction set.
Our study shows that if only a minimal instruction set is
required, the application-specific version of the SIMPPL
Controller can reduce area by 42%, power consumption by
10%, and increase the operating frequency by 16% relative
to the full SIMPPL Controller on an FPGA platform.

The remainder of this paper is organized as follows.
Section II summarizes the related work and the SIMPPL
Controller architecture and instruction set. Section III dis-
cusses the SIMPPL generator and Section IV provides the
experimental setup and results of our evaluation of the

application-specific SIMPPL Controllers. Section V con-
cludes the paper and discusses possible areas for future
work.

II. BACKGROUND

This section provides an overview of the related work
of customizing SIMPPL Controller instruction set and an
overview of the original architecture and instruction set.

A. Related Work

Previously proposed architectural frameworks and on-
chip communication structures that are similar to SIMPPL
include Berkely’s SCORE [3] architecture, which divides
system computations into fixed-size pages and uses streams
as a data abstraction for passing data between pages. Like
SIMPPL, the streams use a point-to-point communication
link; however, no physical connection is defined. Adaptive
System-on-Chip (aSOC) [4] utilizes a point-to-point commu-
nication architecture where each module’s communication
interface is tailored in hardware to optimize performance.
SIMPPL does not optimize the physical implementation
of each module’s communication interface. Instead, the
SIMPPL interface is common between all modules to ease
the integration process. The SIMPPL Controller and SCS
are used to customize each PE’s communication scheme to
work in the overall system.

Several well-defined IP design methodologies have been
proposed [5][6] to ensure that cores with fixed functionality
and fixed interfaces have high reusability in future designs.
However, they do not address the situation where a core’s
functionality is required but the system-level interaction
requirements have changed. VSI Alliance proposed the Open
Core Protocol (OCP) [7] to enable the separation of a core’s
functionality from its communications by using a socket
interface for IP. The socket allows a designer to connect
their core to the many bus types supported by the standard.
The OCP approach is similar to the SIMPPL model, except
that SIMPPL uses a direct communication model for all on-
chip communications.

The term Application-Specific Instruction-set Processor
(ASIP) design was originally referred to automatically gen-
erating complete Instruction-Set Architectures (ISA) for spe-
cific applications to improve system performance, resource
usage, etc[8]. However, ASIP design is extremely challeng-
ing because it requires a complete software and hardware
tool flow to support programming and designing proces-
sors with customized instruction sets [9] [10]. Therefore,
ASIP research started focusing on extending instructions of
generic processors to avoid the complexity of (re)designing
a complete hardware and software tool-chain [11].

The AutoTIE system [12] from Tensilica is one example
of the ASIP solutions that enhances a base processor with
specific ISA extensions. AutoTIE first generates various
combinations of ISA extension configurations based on

Table I: Full SIMPPL Controller instruction set

Instruction Type Addr | Data
Field | Field

Reset

No-op

Bypass X

Register Initialization X

Register Arithmetic

Immediate Data Transfer

Immediate Data Transfer + Immediate Address X
Immediate Data Transfer + Indirect Addressing X
Immediate Data Transfer + Autoincrement X

el

application profiling and analysis, and then performs archi-
tecture explorations to select the best suited implementation.
Our work differs from AutoTIE and previous ASIP research
as the focus is on customizing light weight controllers that
provide the interface and system-level control of custom
IP to reduce the overhead of the SIMPPL framework as
opposed to customizing traditional processor ISAs.

B. The SIMPPL Controller

The SIMPPL Controller (highlighted in Figure 1) func-
tions as a programmable system interface that processes
instruction packets received from other CEs and generates
instruction packets for processing by other CEs [2]. Table I
lists the complete instruction set supported by the SIMPPL
Controller. All data transfer instruction formats allow data
read, data read request and data write operations. The
SIMPPL Controller also includes an optional debugging
infrastructure for debugging a new PE’s integration. The “de-
bug” version (as opposed to the normal “execute” version)
of the controller is equipped with additional state logic that
can be used to monitor the run time status of the controller
and PE [2]. Morever, we also investigated the possibility of
customizing the “full” execute version of the controller (Full
Controller) for PEs that only produced (Producer Controller)
or consumed (Consumer Controller) data to reduce system
overhead. For example, an ADC only requires a Producer
Controller as the PE has no facility for reading in data,
whereas a DAC requires a Consumer Controller has it cannot
generate data.

III. CREATING cUSTOM SIMPPL CONTROLLERS

The SIMPPL Controller Generator, simpplgen, gener-
ates application-specific SIMPPL Controllers by removing
unused logic. The SIMPPL Controller has a traditional three-
stage micro-controller architecture, consisting of: 1) fetch, 2)
decode, and 3) execute. The pseudo code in Figure 2 shows
the decode and execute stages of the controller (marked
as Decode Block and Execution Block respectively in the
Figure 2). If an instruction is removed from the controller’s
ISA, then its corresponding “if” clause can be removed
from the Decode Block. If none of the instructions in the
controller’s ISA use a specific flag, then both the flag and
the corresponding action become unnecessary logic.

if (opcode == INSTO) {
flag 0 <
flag_1 <
flag_2 <

/* Decode Block =*/

1;
1;
0;

flag_n <= 0;
}

if (flag_0 == 1) { /* Execution Block =*/
action_A; clear flag 0;

}

if (flag_1l == 0) {
action_B; clear flag_1;

}

Figure 2: Pseudo Code for Decoding and Executing SIMPPL
instructions.

flag 0| flag 1| flag 2 flag n
INSTO 1->0 1->0 0 0
INST1 0 0 1 1
INSTm 0 0 1 1

Figure 3: The matrix used in simpplgen.

Currently, the user manually specifies the SIMPPL in-
struction set they want to support as an input file read
by simpplgen. simpplgen then removes the logic for
the instructions that are “deselected” by the user from
the full SIMPPL ISA, specifically, the circuitry responsible
for decoding and executing these unused instructions. This
“unnecessary” logic is detected via a matrix, which is used
to relate the instructions to the corresponding series of flags
that they set. Figure 3 illustrates how the matrix is used to re-
move the instruction INST0. In the Full SIMPPL Controller,
both flag_0 and flag_1 are decoded for INSTO only, and
marked with a ‘1’ to indicate that their corresponding actions
must be performed to complete the instruction. If the user
indicates that INSTO is to be removed, then simpplgen
updates the corresponding matrix entries from *1’ to ’0’.
Since both flag_0 and flag_I are only decoded for INSTO
(i.e. none of the other INST entries set these two flags to
‘1°), then simpplgen can remove the logic related to these
flags without affecting other parts of the controller.

IV. EXPERIMENTAL SETUP AND RESULTS

The resource usage and maximum clock frequency num-
bers, as well as the power consumption for each customized
controller were obtained using version 10.1.3 of ISE CAD
flow on a Virtex 4 LX40-12 device. The Modelsim™
simulator from Mentor Graphics [13] was used for design
debugging. This section presents a comparison of the results
of using a minimal SIMPPL Controller ISA versus the
original SIMPPL Controller ISA.

To quantify the minimal overhead that can be incurred by
using the SIMPPL Controller interface, an ISA supporting

Fullixe ConsExe Prod Exe FullDbg ConsDbg Prod Dbg

= FullInstr Imm Instr Only

Figure 4: Number of 4-LUTs used for different SIMPPL
Controller configurations

FullExe ConsExe ProdExe FullDbg ConsDbg ProdDbg

= Fullinstr Imm Instr Only

Figure 5: Number of flipflops used for different SIMPPL
Controller configurations

only the immediate data tranfer instructions and the no-
op instruction is used, see bolded instructions in Table I.
This ISA does not support addressing schemes, eliminating
these components from the datapath and reducing the decode
and execute stage logic. To evaluate this minimal ISA,
simpplgen is used to generate custom versions of the six
original SIMPPL Controller configurations (execute/debug,
full/consumer/producer), as discussed in Section II-B.

Figures 4 and 5 illustrate the different controllers’ Look-
Up-Table (LUT) and Flipflop resource usage, respectively,
on a Virtex 4 LX40-12 device. The dark grey columns
indicate the resource usage of the original controllers from
previous work [2], which support the full instruction set
for the given configuration (full/producer/consumer, exe-
cute/debug). The lighter grey bars indicate the resource us-
age of the corresponding SIMPPL Controller configurations
based on the minimal ISA generated by simpplgen. The
final two columns in both Figures 4 and 5 is the geometric
mean of the LUT and flipflop resource usage over all six
configurations for the original SIMPPL Controllers versus
those generated by simpplgen from the minimal ISA.

Overall, the LUT usage of the different SIMPPL Con-
troller configurations is reduced by 41% on average and the
number of flipflops is reduced by 43% on average. Although
the debug versions require significantly more resources, they
are only to be used during design phase, and if only the “Ex-
ecute” versions of the SIMPPL Controllers are considered,
LUT and flipflop resource usage is reduced on average by
51% and 61%, respectively.

Figure 6 summarizes the maximum clock frequency ob-

FullExe ConsExe ProdExe FullDbg ConsDbg ProdDbg

= FullInstr Imm Instr Only

Figure 6: Maximum Clock Frequency (MHz) for different
SIMPPL Controller Configurations

FullExe ConsExe ProdExe FullDbg ConsDbg ProdDbg

= FullInstr

Imm Inste Only

Figure 7: Estimated Power Consumption

tained for each of the SIMPPL Controller configurations,
with a similar column format. On average, the autogenerated
SIMPPL Controllers have a 16% increase in operating fre-
quency. As before, by considering only the Execute SIMPPL
Controllers, an average increase of 20% in the operating
frequency is observed.

An operating frequency of 194 MHz is used for the power
estimation as this is the maximum operating frequency of
the Full Debug SIMPPL Controller, the slowest of all the
SIMPPL Configurations (see Figure 6). Figure 7 presents
the power consumption estimation results using the same
format as the preceding figures. The geometric mean of the
reduction in power consumption across all six configurations
is 10%. Interestingly, the average drop in power consumption
for only the “Execute” SIMPPL Controllers is 8%, less than
the overall average. We expect that this is partially due to
the placement and routing of the SIMPPL Controllers on the
device. As the controllers use such a small percentage of the
device (<5%), the CAD flow need not used as compact a
placement. This would result in using more of the routing
fabric, which would not be reflected in the LUT and flipflop
resource usage and yet still consume more power.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a study of how customizing the
SIMPPL Controller architecture with an application-specific
instruction set can greatly reduce the the overhead of using
the SIMPPL framework. Specifically, customizing the con-
trollers with a minimal instruction set can reduce resource
usage by 42% and power consumption by 10% while in-
creasing the operating frequency by up to 16%. The paper

also introduces simpplgen, a CAD tool for automatically
generating application-specific SIMPPL Controllers based
on a user specified ISA.

Present work is focused on adding an error checking
function to the generator to ensure that the user input file has
a valid format and specifies a valid ISA. The autogenerated
versions of the SIMPPL Controllers are also being synthe-
sized to ASIC standard cell libraries to see how this might
reduce the overhead of using the SIMPPL SoC framework
for ASICs. Finally, the current structure of the simpplgen
suggests that it may be possible to allow users to incorporate
new instructions into the ISA. A feasibility study is currently
underway, with the hope that this will be possible in the
future. A long term goal for this project is to allow users
to compile a high-level language description of the system-
level CE interactions into the appropriate SCS’s and their
corresponding application-specific SIMPPL Controllers.

REFERENCES

[1] (2003) MEDEA+ EDA roadmap, executive summary europe.
[Online]. Available: http://www.medea.org/

[2] L. Shannon and P. Chow, “SIMPPL: an adaptable soc frame-
work using a programmable controller ip interface to facilitate
design reuse,” IEEE Trans. VLSI Syst., vol. 15, no. 4, pp. 377—
390, 2007.

[3] E. Caspi, M. Chu, R. Huang, J. Yeh, J. Wawrzynek, and
A. DeHon, Stream Computations Organized for Reconfig-
urable Execution (SCORE), ser. Lecture notes in computer
science. Springer Berlin / Heidelberg, 2000, pp. 605-614.

[4] J. Liang, A. Laffely, S. Srinivasan, and R. Tessier, “An ar-
chitecture and compiler for scalable on-chip communication,”
IEEE Trans. VLSI Syst., vol. 12, no. 7, pp. 711-726, 2004.

[5] W. Savage, J. Chilton, and R. Camposano, “IP Reuse in the
System on a Chip Era,” in Proc. of 13th Int’l Symposium on
System Synthesis, 2000, pp. 2-7.

[6] G. Martin, “Design methodologies for system level IP,” in
Proc. of the Conf. on Design, Automation and Test in Europe,
Paris, 1998, pp. 286-289.

[71 VSI Alliance. [Online]. Available: http://www.vsia.org

[8] B. K. Holmer, “Automatic design of computer instruction
sets,” Ph.D. dissertation, UC Berkeley, 1993.

[9] J. Van Praet, G. Goossens, D. Lanneer, and H. De Man, “In-
struction set definition and instruction selection for ASIPs,”
in Proc. of the 7th Int’l Symp. on High-level Synthesis. 1Los
Alamitos, CA, USA: IEEE Computer Society Press, 1994,
pp. 11-16.

[10] I. Huang and A. Despain, “Synthesis of application specific
instruction sets,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 14, no. 6, pp. 663-675, Jun. 1995.

[11] K. Atasu, L. Pozzi, and P. Ienne, “Automatic application-
specific instruction-set extensions under microarchitectural
constraints,” in Proc. of Design Automation Conf., 2003, pp.
256-261.

[12] D. Goodwin and D. Petkov, “Automatic generation of appli-
cation specific processors,” in Proc. of the 2003 Int’l Conf. on
Compilers, Arch. and Synthesis for Embedded Systems, 2003,
pp. 137-147.

[13] ModelSim users manual. Mentor Graphics Inc.

