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Abstract—Fourier Domain Optical Coherence Tomography
(FD-OCT) is an emerging biomedical imaging technology fea-
turing ultra-high resolution and fast imaging speed. Due to the
complexity of the FD-OCT algorithm, real time FD-OCT imag-
ing demands high performance computing platforms. However,
the scaling of real-time FD-OCT processing for increasing data
acquisition rates and 3-dimensional (3D) imaging is quickly
outpacing the performance of general purpose processors.

Our research analyzes the scalability of accelerating FD-
OCT processing on two potential implementation platforms:
General Purpose Graphical Processing Units (GPGPUs) and
Field Programmable Gate Arrays (FPGAs). We implemented
a complete FD-OCT system using a NVIDIA GPGPU as
co-processor, with a speed up of 6.9x over general purpose
processors (GPPs). We also created a hardware processing
engine using FPGAs with a speed up of 15.5x over GPPs for
a single pipeline, which can be replicated to further increase
performance. Our analysis of the performance and scalability
for both platforms shows that, while GPGPUs offer an easy
and low cost solution for accelerating FD-OCT, FPGAs are
more likely to match the long term demands for real-time, 3D,
FD-OCT imaging.
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I. INTRODUCTION

Clinicians are quickly coming to rely on high-quality
medical imaging technology and fast processing speeds. A
popular form of medical imaging is tomography, which pro-
duces two-dimensional (2D) images of the internal structure
of a solid object by measuring the differences between the
energy passing through the object and its echos/reflections.
Different tomography technologies, such as Computed To-
mography (CT), Positron Emission Tomography (PET) and
Magnetic Resonance Imaging (MRI), have been adopted for
various diagnostic purposes. Fourier Domain Optical Coher-
ence Tomography (FD-OCT) is based on optical interferom-
etry, which is rapidly gaining popularity for cross-sectional
imaging of biological tissues and materials. As it provides
ultra-high image resolution at a micrometer scale along with
fast imaging speeds, FD-OCT is well suited for ophthalmic
imaging in both clinical and research environments.

Fast processing speed and high image quality are crucial
for real-time FD-OCT systems. However, FD-OCT systems
implemented on general purpose processors (GPPs) cannot
scale with the increasing data resolution and acquisition

speeds from newer cameras. Currently, FD-OCT software
is able to deliver a throughput rate of 30MB/s on a quad
core Intel i7 3GHz with 3GB of RAM [1]. Data acquisition
using new imaging equipment is expected to demand 8GB/s
throughput rates [2]. Moreover, real-time 3D volumetric ren-
dering, achieved by stacking multiple 2D FD-OCT images
in real time, will require even greater processing speeds.
Therefore, alternative platforms with better potential for
performance scaling are needed by FD-OCT researchers and
clinicians to meet these requirements.

Previous work to accelerate FD-OCT using either General
Purpose Graphical Processing Units (GPGPUs) or Field
Programmable Gate Arrays (FPGAs) does exist [3], [4].
However, it focused on improving the quality of data ac-
quisition and imaging algorithms, as opposed to how these
two platforms may satisfy the future processing demands
of faster data acquisition rates and real-time, 3D, volumet-
ric rendering. ASIC solutions for FD-OCT have not been
considered due to the low production volume for FD-OCT
applications. Also, FD-OCT researchers prefer platforms
that provide reconfigurability for tuning different optical
parameters.

The FD-OCT algorithm is highly suited to parallel pro-
cessing. GPGPUs provide many processing cores and a large
on-chip cache that can be used to exploit coarse-grained
parallelism. Conversely, FPGAs have less on-chip memory,
but enable fine-grained parallelism (i.e. pipelining). In this
paper, we evaluate the potential of these two platforms to
meet the requirements of real-time FD-OCT by identifying
their limiting factors to scaling performance. The specific
contributions of this work are:

o A complete FD-OCT system with GPGPU accelerated
processing: the GPGPUs provide a maximum through-
put of 527MB/s, whereas the maximum throughput for
the overall system is limited to 207MB/s due to the
overhead incurred by data transfers.

o A fully-pipelined, FPGA-based, FD-OCT processing
engine on Xilinx Virtex 5 devices; the maximum pro-
cessing throughput of one pipeline is 465MB/s, which
can be increased by replicating it.

o An analysis of the FD-OCT algorithm’s performance
on GPGPUs that demonstrates that due to their discrete
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Figure 1. Diagram of our Real-time FD-OCT system.

memory model they cannot scale to meet future data
acquisition rates, whereas FPGAs can.

This analysis will be used in future work to develop a
scalable computing platform to enable real-time, volumetric
rendering for future FD-OCT technologies.

The remainder of the paper is organized as follows.
Section II provides an overview of FD-OCT and related
works. The GPGPU and FPGA hardware implementations
are described in Sections III and IV, respectively. Section V
summarizes our conclusions and avenues for future work.

II. FD-OCT

Creating an FD-OCT image requires 3 steps: data ac-
quisition, processing, and displaying the image. Figure 1
shows the FD-OCT system we use to acquire data. First, a
broadband light source casts laser beams into both the ref-
erence arm and the sample arm. An interferometric pattern
is generated from the light interference reflected from both
arms. The optical signals of this pattern are then converted
into the spectrum domain using a spectrometer. Our current
system uses a CCD line scanning camera to scan and record
individual lines from the spectrometer’s output, where each
“line” has 1024 pixels that fall into different locations of
spectrum. As each line of data is independently acquired
and processed in an FD-OCT system, their throughput rates
are typically reported as the “line rate” (the number of lines
that can be processed per second). These individual lines are
coallated into a single frame using a frame grabber to reduce
the overhead of data transfers to the processing system
by transferring data in batches. Each assembled frame is
then transferred to the host computer over Gigabit Ethernet
(GigaFE) for processing, during which time the next frame
is constructed by the frame grabber.

Figure 2 summarizes our FD-OCT algorithm, highlighting
the key functions required to process the data. Once the
FD-OCT data is acquired, the first processing phase is a
DC Removal procedure that subtracts the average DC levels
from each scanning line. The average DC levels (shown
as Avg. DC in Figure 2) are the average DC components
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Figure 2.

across multiple lines; these are obtained prior to real time
processing as the DC components remain relatively constant
across different acquisitions. Next, the camera’s output data
is Re-sampled into linear wave-number (k) space. The output
data set from the camera is evenly sampled in wavelength
() space; however, the FD-OCT algorithm processes data
in wave-number (k) space [1]. Re-sampling, therefore, is
used to transform the data into the desired form. The
third phase of processing uses the Hilbert Transform to
perform Dispersion Compensation [5], [6]. As the frequency
of broadband light is dependent on the material through
which it propagates, it is necessary to match the dispersion
caused by differences between the sample and reference
arms (see Figure 1) to consistently achieve the high resolu-
tion images [5]. Next, a 1024-point Fast Fourier Transform
(FFT) is performed on each line of data to reproduce the
pattern of interferometric fringes from the spectral signal.
The final processing stage uses Logarithmic Scaling of the
data to increase the visibility of details to improve image
quality. The remainder of this section summarizes work
using GPGPUs and FPGAs to accelerate FD-OCT algorithm.

A. Related Work

As the individual lines of data are acquired independently
and can be processed independently, this parallelism can
be used to accelerate the FD-OCT algorithm to increase
throughput. GPGPUs are becoming a popular method of
accelerating FD-OCT, however not all of our processing
steps have been included in these previous works. For
example, Watanabe et al. [3] used a NVIDIA GTX285
GPGPU to accelerate a FD-OCT system with a 2048-pixel
line size to achieve a real time display of 27.9 frames/sec.
Although they use a 2048-point FFT, their only processing
steps are the DC removal, FFT and logarithmic scaling
(recall Figure 2). More recently, Zhang et al [7] used a
FX5800 GPGPU to accelerate an FD-OCT system similar to
ours (but with no dispersion compensation). They achieved
line rates of 680kHz for 1024 pixels and 320kHz for 2048
pixels. However, these line rates only reflect the GPGPUs
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Figure 3. A typical swept-source FD-OCT system [9].

processing time, and drop to 128kHz (1024 pixels) and
70kHz (2048 pixels) respectively for the system’s actual
throughput. Zhang et al’s system also used 3D real-time
volumetric rendering to the display and achieved a refresh
rate of 10 frames/second [7]. As a minimum refresh rate
of 20 frames/second is required for real time imaging,
significantly higher throughput rates are required.

There has also been some work on FD-OCT acceler-
ators that use FPGAs. These systems typically leverage
a different data acquisition setup than the one shown in
Figure 1, called a swept-source based FD-OCT system,
shown in Figure 3. Swept-source systems use a narrow-band,
sweeping light source to rapidly sweep over a broadband
spectrum, producing interference fringes at each wavelength.
The output is detected by a photo-detector, which converts
the interference signal into a voltage at rates of up to 5.2
MHz per line [8], ~100 times faster than a line scanning
camera acquires a single line. However, unlike camera-
based systems, photo-detectors serially convert the spectral
frequencies to voltages. These voltages are then converted
by an Analog-to-Digital Converter (ADC) for processing. As
these systems acquire individual lines of data for processing
(and not frames), they require less memory for processing
the data and are better suited to FPGAs.

Desjardins et al. [10] used two unspecified Virtex 2
devices integrated into their data acquisition rates to perform
their processing and achieved throughput rates of SMB/s.
Precise details on their hardware implementations for each
device are not provided. Ustun et al. [4] implemented an
FD-OCT accelerator on a more modern Virtex 4 FX12 us-
ing Simulink. Their implementation required 95% resource
usage and achieved a throughput of 27MB/s. We have
been able to achieve a significant speed up over this result
(>17x), likely due to our hardware mapping (e.g. using more
embedded multipliers, etc); however, again, the authors do
not provide a detailed discussion of their implementation, so
we can provide no real analysis.

In summary, the main focus of all this previous work
that uses GPGPUs and FPGAs to accelerate FD-OCT is on
the experimental setups and imaging algorithms to improve
image quality, while trying to speed up processing. However,
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Vector Add Function, same as:

for (int i=0; i<HEIGHT; i++)
for (int j=0; J<WIDTH; J++)
Sum[i] [3] = A[i]([3] + B[i]1[J];

kernel vector_add (matrix A, matrix B, matrix Sum)

{
thread_index i, 3j; /* use concurrent threads =/
Sum[i][3] = A[11[3] + B[i1[]1;

}

/* main function call */
int main (void)
{
matrix a, b, s;
vector_add(a, b, s); /* kernel call x/

Figure 4. Pseudo code example for stream processing.

our work analyzes how the underlying algorithm maps to
the technology to determine what is the most appropriate
platform for the future requirements of increased data ac-
quisition speeds and real time, 3D rendering.

III. GPGPU IMPLEMENTATION

This section discusses our software implementation of
FD-OCT using the Computed Unified Device Architecture
(CUDA) language [11] from NVIDIA Corp and analyzes its
performance and scalability.

A. Mapping FD-OCT onto GPGPU for Parallel Processing

The underlying GPGPU architecture combines hundreds
of processing cores, allowing thousands of tasks to be sched-
uled and executed in parallel. GPGPUs feature a Single-
Instruction, Multiple-Data (SIMD) model to map threads
of execution to these processing cores, enabling efficient
parallel processing of vector operations. Stream processing
divides the data into subsets, called streams, to exploit data
parallelism. Similar kernel operations can be performed on
each stream independently and concurrently. Each instance
of a kernel’s execution is called a thread. Figure 4 shows a
pseudo code example of stream processing, where each ele-
ment of the matrix is one stream. A kernel vector_add is
defined to perform an add operation on each corresponding
element in A and B. Each kernel execution has a unique
thread index, comprised of ¢ and j, to identify it. Finally,
the vector_add is performed on each element (stream).

We leverage the large on-chip cache and device memory
of the GPGPU, as mentioned in Section I, to provide coarse-
grained parallelism by transferring and processing multiple
frames. As the FD-OCT algorithm is mainly comprised of
vector operations, substantial speed-up can be achieved if the
potential parallelism is properly mapped onto the GPGPU.
The two main opportunities identified for parallel processing
in the FD-OCT algorithm are:

« Each line of the image is a stream that can be concur-

rently processed with other lines during all the different
phases of algorithm outlined in Figure 2.
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e Each scanning line can be divided into individual
elements (individual streams) for parallel processing
during some of these processing phases (e.g. the vector
add and subtraction in DC Removal, the vector multi-
plication in A-to-k re-sampling, etc.).

B. Experimental Setup

Our experimental setup is the same as Figure 1, except
that the computer also includes an NVIDIA dual-GPGPU
GeForce GTX295 co-processor connected via PCI-Express
bus. Our current implementation uses one GTX295 GPGPU,
with 240 processing cores running at 576MHz with 8§96 MB
of DDR3 Memory. As the related works [3], [7] use only a
single GPGPU, this enables a fair throughput comparison.
The GTX295 GPGPU board communicates with the CPU
via the 16 lanes PCI-Express v2.0 bus (similar to [3]
and [7]).

We used version 2.3 of CUDA to develop and debug
the FD-OCT algorithm on the GTX295 GPGPU. Figure 5
shows the algorithm flowchart, as well as the data flow
between the Host (CPU and main memory) and the Device
(GPGPU and device memory). In this GPGPU accelerated
system, only data acquisition and display are performed on
the GPP. Pending availability, one or more frames of data
are transferred as a batch to the GPGPU for processing
to amortize the cost of the transfer. It should be noted
that this memory transfer from the CPU to the GPGPU
(memcpyHtoD) is not due to the GPGPU’s situation on a
PCI-Express daughter-card. Instead, the memory transfer
is inherent to the GPGPU architecture. Even integrated
GPGPUs (e.g. the NVIDIA GeForce 9400M), which reside
with CPU on the same motherboard, will require these
memory transfers from host to device memory.

While we wrote most of the processing kernels for the FD-
OCT algorithm, NVIDIA’s optimized CUFFT library [12]
for the FFT operations in the Dispersion Compensation and

Figure 6. A sample retina image using GPGPU.

FFT processing phases. As with the GPP implementation of
the FD-OCT algorithm, the user is able to choose between
a 1024 and 2048-point FFT (so that the fringes in the
displayed results are easier to observe). For the 2048-
point FFT, we zero pad the 1024 data samples and use
NVIDIA’s 2048-point FFT function. Finally, as our GTX295
accelerator cannot directly display from the GPGPU memory
onto the screen, the GPGPU’s processed data is copied
back to the CPU (memcpyDtoH) for rendering and display’.
Figure 6 shows a sample retina image with a resolution of
1024x512 processed using our system.

C. GPGPU Results

We measured the total FD-OCT processing time including
the memory transfer time between host and device using
cudaprof [13], the program profiler provided by NVIDIA.
The throughput of the system is calculated by using cudaprof
to measure the overall run time of all the processing steps
for one whole frame, plus the additional data transfer time
for the frame between the host and device.

As GPGPUs are configured as co-processors, without
direct access to the main memory of the host processor,
we wanted to ensure that we transferred sufficient data in a
single memory copy to amortize the cost of the transfer dur-
ing processing®. We presented the overall system throughput
versus different data transfer sizes in [2] and showed that the
overall throughput increased with batch size up to 2048 lines
where it plateaus, achieving the maximum throughput at a
batch size of 8192 lines. We also demonstrated in [2] that the
overall performance could be improved by 22%, assuming
an integrated GPGPU (physically sharing memory with the
CPU) with the same processing power of GTX295.

Figure 7 illustrates the percentage of the FD-OCT al-
gorithm’s run-time as attributed to its various component

deally, the GPU can directly display the post-processed data without
this additional device-to-host copy, which we are currently investigating.

2Data Sets are “batched” into larger blocks to amortize the overhead of
initiating data transfers between device and host memory [11].
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functions for a batch size of 8192 lines [2]. Similar results
were seen in Watanabe et al. [14], but they didn’t include
dispersion compensation, a key component in high resolution
FD-OCT. Figure 7 shows that the processing phases of
the FD-OCT algorithm (DC-Removal, Resample, Dispersion
Compensation, FFT and Logarithmic Scaling) account for
~40% of the total run-time time, while the memory (data)
transfers (host-to-device and device-to-host) require approx-
imately 60% of the time. For a frame with 1024 by 512
pixels, the total processing and data transfer time is 4.82 ms,
resulting in an overall system throughput of approximately
207MB/s or a line rate of 110kHz. When compared to a
throughput rate of 30MB/s on a Intel i7 3GHz with 3GB
DDR2, this equals a 6.9x increase.

To compare with the most recent previous work, we
exclude the dispersion compensation and data transfers and
compare processing-only throughput for lines with 2048
pixels. Whereas Zhang et al.’s system had a maximum line
rate of 320 kHz on the FX5800 GPGPU [7], our system’s
maximum line rate is 680 kHz on the GTX295 GPGPU.
Therefore, our system is able to achieve a significantly faster
line rate on a GPGPU with the same number of processing
cores, but less memory and a slower clock rate. As the
dispersion compensation phase accounts for more than 50%
of the overall processing time, it slows our maximum
processing-only line rate down to 320 kHz, which is only
14% slower than [7] (which excludes this extra processing
step).

While excluding the memory transfer time allows us
to compare our system with previous work, to properly
evaluate the real-time performance of a GPGPU accelerated
implementation, the data transfer time must also be included.
This overhead for existing GPGPU architectures reduces
the maximum camera line rate for the complete system
implementation to ~110 kHz, or 207MB/s.

Therefore, to significantly increase the maximum line
rate, there needs to be a change to the underlying memory
architecture of the GPU to limit the number of memory
transfers between the CPU and GPGPU. Ideally, the GPGPU
would be able to share memory with the CPU and then

directly render its processed data to the display without
the memory copies. However, even if the discrete model
is maintained, the ability to directly render the data to
the display would significantly impact the line rate of the
system, increasing it nominally by ~1.3x to a line rate of
~143kHz.

We also implemented the algorithm on NVIDIA’s latest
Fermi architecture, the GTX480. We are currently inves-
tigating how to support the new features of the Fermi
architecture, such as duplex data transfers between the host
and device, in our implementation. The GTX480 exhibits
performance versus data transfer size trends similar to the
GTX295, but GTX480 delivers more than twice the pro-
cessing throughput of the GTX295 [2]. Moreover, as the
GTX480 allows duplex data transfers, it could reduce the
impact of the memory copy by writing post-processed lines
back to the CPU while new data for processing is read onto
the GPU. Furthermore, we are pursuing the use of multiple
host threads to exploit the additional spatial parallelism
available on multi-GPU devices so that while one device
processes the latest data, the other device can be used to
render 3D images to the display. In general, the key to
improving the throughput rates for real time processing of
FD-OCT data on GPGPUs will be to minimize and/or hide
the cost of the data transfers between the CPU and GPGPU.

However, even the GPGPUs maximum processing-only
line rate on the new GTX480 (~610 kHz [2]) is still
insufficient to meet the current maximum data acquisition
rates swept-source based systems (5.2 MHz) by a factor
of 8.5. Based on the current scaling of GPGPU processing
power and data acquisition rates alike, GPGPUs will not
likely be able to keep pace as they are unable to leverage
sufficient parallelism from the algorithm.

IV. FPGA IMPLEMENTATION

This section describes our hardware implementation of
the FD-OCT processing algorithm (recall Figure 1), and
analyzes its performance and scalability.

A. Mapping FD-OCT onto FPGA

FPGAs have less on-chip memory than GPGPUs and thus
cannot process large amounts of data concurrently (i.e entire
frames) However, FPGAs can leverage fine-grained paral-
lelism using pipelining and replicated pipelines to process
multiple lines in parallel. To achieve the maximum possible
throughput rates for the FPGA implementation of FD-OCT,
we assume that input is provided serially from a swept-
source based system (recall Figure 3). This allows the lines
to be processed individually without requiring intermediate
memory to store a complete frame. As with the original GPP
software implementation, each sample is assumed to be a
16-bit word and all calculations are performed using fixed
point arithmetic. Unlike the GPGPUs, which used single
precision floating point, this requires an additional scaling
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factor be used during some of the processing stages (e.g.
FFT). Finally, unlike the GPP and GPGPU based systems,
we do not allow the user to select the size of the FFT (1024
vs 2048 point) and instead hard code 1024-point FFTs into
our design.

As discussed previously in Section III-A, parallelism can
be exploited between the various processing phases as each
line of data is independent. Furthermore, some computa-
tional sub-components of these phases are also independent
(vector adds, subtracts, et.), providing further opportunities
for parallel processing. Our design leverages both types of
parallelism and is fully pipelined, able to receive new data at
every clock edge so that it can operate at the same frequency
as the data acquisition system. As some phases require the
entire scanning line for processing (e.g. FFT), buffering
mechanisms are provided between phases to ensure that
individual samples in a scanning line can be stored without
stalling the other pipeline stages and reducing throughput.

Assuming there are sufficient hardware resources, the
throughput of the FPGA implementation can be increased
by duplicating the pipeline. Figure 8 illustrates how the
input is de-multiplexed into individual lines, which are then
processed by one of the pipelines. After processing, these
lines can be coallated into frames to be displayed.

Finally, along with Look-up Tables (LUTs) and Flipflops
(FFs), modern FPGAs provide embedded DSP blocks and
dual-ported Block RAMs (BRAMs) that have much greater
area efficiency and clocking rates than their equivalent
circuits mapped to LUTs and FFs. Given the nature of the
algorithm, both of these resources can be leveraged to im-
prove the design’s throughput. For example, the DSP blocks
are used in the multiply-accumulate operations required by
the FFTs. Furthermore, instead calculating the logarithmic
scaling at runtime, values are obtained from a look-up table
stored in the BRAMSs. Also, the Resampling module is
required to reorder the input data as part of its processing.
Therefore, we fix one port of the BRAM as the input port
used to reorder the data when it is stored to the BRAM, and
the other port is used to sequentially read out the reordered
data for the next processing phase.

B. Experimental Setup

The FD-OCT algorithm is written in VHDL and synthe-
sized using version 11.5 of Xilinx’s Platform Studio (XPS)
for Virtex 5 LX 155T devices. We use Xilinx’s system
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Figure 9. FD-OCT Design Partitioned onto BEE3.

generator to create the FFT IP cores (version 7.0) used in the
Dispersion Compensation and FFT modules. As our design
requires almost all of the DSP40E slices available on one of
these devices, it does not place and route well on a single
device. Therefore, we tested and verified the design on the
Berkley Emulation Engine 3 (BEE3) platform [15], which
has four Virtex 5 LX155Ts, allowing us to emulate much
larger devices (e.g. the Virtex 6 SX475T and the Virtex 7
870T). By partitioning the design onto different FPGAs on
the BEE3, we achieve significantly higher clock frequencies,
and thereby better throughput.

Figure 9 shows the partitioning scheme for implementing
our design on the BEE3 platform. FPGAO implements both
the DC Removal and the Resample module, two of the
simplest modules in the design. The next phase, Dispersion
Compensation, is the most complex module and is imple-
mented on its own VLX155T FPGA (FPGAI). Finally, the
remaining two phases, the FFT and the Logarithm are imple-
mented on FPGA3. As the FPGA-based processing engine
is not currently hooked into a real system, both FPGAO and
FPGA?2 also include one MicroBlaze processor for initiating
the data transfer and receiving the results. The inter-FPGA
connections are uni-directional, GPIO-based buses called
Ring Wire Buses provided by the BEE3 platform. The
direction of each of the inter-FPGA connections has been
indicated in Figure 9 and are guaranteed to operate reliably
for operating frequencies up to 400MHz [15].

As we currently do not have access to a swept-source
based FD-OCT system, the FPGA design also includes two
MicroBlazes, MB0O and MBI, to emulate the data acquisition
system and the display, respectively. Data acquired using
our current camera based system is pre-loaded into MBO’s
BRAM. MBO reads in this data and writes it directly to
a Fast Simplex Link (FSL) bus, a FIFO provided by the
MicroBlaze for integrating hardware accelerators. This FSL
bus is connected to the first processing module, DC Re-
moval. After the last processing phase has been completed
(Logarithmic Scaling), the data is written to another FSL
connected to MBI, which reads in the data and stores it to
its own BRAM. The correctness of the design is verified by
reading this data off the board onto a host PC, where it can
be compared to the GPP software implementation.



Table T
RESOURCE USAGE FOR THE PROCESSING BLOCKS.

FPGA ID Modules 6-LUT FF BRAM DSPE48 Max Freq
#  Percent # Percent KBit Percent #  Percent (MHz)
DC Removal 71 1% 19 1% 18 1% 1 1% 246
FPGA 0 Resample 151 1% 115 1% 216 7% 3 2% 268
MBO0 1237 1% 1388 1% 2048 27% 3 2% -
FPGA 1 Dispersion Compensation 8952 9% 10884 11% 324 4% 64 50% 244
FFT 3548 3% 4304 4% 162 2% 56 43% 276
FPGA 2 Log Scaling 112 1% 14 1% 1080 14% - - 358
MBI1 1237 1% 1388 1% 2048 27% 3 2% -
FPGA 0,1,2  Overall 15308 18112 5896 - 130 - -

C. FPGA results

Figure 10 shows the image quality of the FPGA output
is degraded compared to the GPGPU. This is largely due to
the FPGA implementation using 16-bit fixed point numbers
for data representation, so the current scaling method (trun-
cation) causes overflow/underflow errors to propagate along
the pipeline. Future work will aim to improve image quality
from the FPGA by opting for a different scaling method
and/or increasing the data representation width.

The resource usage for each individual processing module
on a Virtex 5-155T device is listed in Table I. The usage of 6-
input LUTs, FFs, BRAMs and DSP48E slices are listed from
Columns 3 through 6 respectively. Each column contains two
sub-columns indicating the number of each type of resource
used and the percentage of that resource used on this
device. Column 7 shows the maximum frequency of each
module. All modules, except Dispersion Compensation, use
a relatively small number of LUTs and FFs, no more than
4% of those available on the Virtex 5 LX155T. However,
both the Dispersion Compensation and FFT modules use
a high percentage of DSP48E slices to increase the speed
of their multiply-accumulate operations. The Logarithmic
Scaling module uses the most BRAM (14%) due to its look-
up table architecture, which reduces its design complexity.

Recalling from Section IV-A that our design is fully
pipelined, the module with the lowest operating frequency
dictates the maximum overall throughput of the processing
system. Assuming the swept-source based data acquisition
set up shown in Figure 3, where data can be acquired at
every clock cycle, the maximum overall system throughput
is 465MB/s or a line rate of 238kHz. Recalling the maximum
throughput of the GPP based system, 30MB/s, the FPGA
based system has increased throughput by 15.5x. Recalling
that 5.2 MHz is the current maximum data acquisition rate
for swept-source based systems, the FPGA design is 21.8x
too slow. However, as ISE v11.5 supports Virtex 6 devices,
we synthesized the entire design onto a single Virtex 6
LX130T, which has approximately 25% of the resources

Figure 10. A sample retina image from FPGA.

of the SX475T (the largest device in the Virtex 6 family).
On the Virtex 6 LX130T, the maximum clock frequency
is 238MHz, with a resource usage of 8.1% LUT, 8.7%
FF, 36.3% DSP48El and 19% BRAM, suggesting that the
pipeline could be easily replicated 22x on the SX475T.
Furthermore, based on the data sheets posted for the Virtex
7 VH807T, a preliminary estimation suggests that there are
sufficient resources to replicate the processing pipeline 30x,
which is more than is currently required.

The next phase of this work will investigate integrating
this processing system with a data acquisition system. Al-
though our initial swept-source based system would not have
a 5.2MHz line rate, we need to determine how to utilize
the FPGAs high-speed I/Os to acquire input data at high
speeds. We also need to confirm that the memory copy
required to transfer the data back to the host PC for display
can be performed in parallel with the FPGA processing
new samples. Our preliminary analysis suggests that the
FPGA based processing system will be able to continue
processing and storing new data while host PC system copies
the existing data back for display. Furthermore, we would
also like this data to be copied to a GPU for 3D, volumetric
rendering in the future.



V. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated how GPGPUs and FPGAs
can be used to accelerate FD-OCT processing for current and
future data acquisition rates. We implemented a complete
FD-OCT system using a GPGPU as a co-processor and
achieved an overall system throughput of 207MB/s. We also
demonstrated a hardware FD-OCT processing engine on a
BEE3 board, using three Virtex5-155Ts, with a maximum
overall system throughput of 465MB/s. The GPGPU speed
up over the original GPP implementation [1] is 6.9x; for
our FPGA implementation, it is 15.5x, and able to scale
with logic replication on Virtex 6 and 7 devices.

GPGPUs provide an easier programming model than
FPGAs, able to provide moderate speedups to FD-OCT
processing. Moreover, GPGPUs require a much shorter de-
sign turn-around time: the FD-OCT GPGPU implementation
took ~3 months, where as the the FPGA implementation
took almost 4x longer. However, the discrete memory model
of the current GPGPU architecture imposes additional data
transfers between CPU and GPU memory; these transfers are
the limiting factor for the GPGPU platform. For this reason,
it will be extremely difficult to scale GPGPU implementa-
tions for future FD-OCT processing demands. Conversely,
given a large enough/multiple FPGA devices, replicating our
existing pipeline 22x will allow FD-OCT processing speeds
to match the current fastest data acquisition rate of 5.2 MHz.

Work is currently underway to investigate the imple-
mentation of bi-directional data transfers using the new
Fermi architecture GPU GTX480. We are also investigating
how to best integrate the FPGA processing engine with a
swept-source based system to form a complete FD-OCT
system. Our immediate concern is how to transfer the post-
processed data to the display without stalling processing of
new samples on the FPGA. Long term, we are investigating
how to integrate the FPGA into swept-source based systems
with extremely high data acquisition rates.
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