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Abstract We present new techniques for. establishing lower
bounds in robot motion planning.problems. Our scheme is based
on path encoding and uses homotopy equivalence· classes of paths
to encode state. We first apply the method to the shortest path
problem in 3 dimensions.. The problem is to find' the shortest path
under an LP metric (e.g. a euclidean metric) between two points
amid polyhedral obstacles. Although this problem has been ex
tensively studied, there were no previously known lower bounds.
We show that there may be exponentially many shortest path
classes in single-source multiple-destination problems, and that
the single-source single-destination problem is NP-hard. We use
a similar proof technique to show that two dimensional dynamic
motion planning with bounded. velocity is NP-hard. Finally we
extend the technique to compliant motion planning with uncer
tainty in control. Specifically, we consider a point in 3 dimensions
which is commanded to move in a straight line, but whose actual
motion may differ from the commanded motion, possibly involv
ing sliding against obstacles. Given that the point initially lies
in some start region, the problem of finding a sequence of com
manded velocities which is guaranteed to move the point to the
goal is shown to be non-deterministic exponential time hard, mak
ing it the first provably intractable problem in robotics.

1 Introduction

The object of robot motion planpingisto find a sequence of
motions which is guaranteed t"o move the robot to its goal,
while avoiding obstacles in the robot's environment. There
may also be a cost function on the trajectory which is to be
minimized. In this paper we give new lower bounds for three
fundamental classes of motion planning pr9blems: shortest
path, dynamic motion planning, and IDotionplanning in the
presence of uncertainty.
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The simplest motion· planning problem is the find-path
or generalized movers' problem, in which the objective is to
find any collision-free path. This problem reduces to a point
navigation problem in the configuration space of the robot,
[LW] . It is solvable in polynomial time if the number of de
grees of freedom is fixed, [SS] and' [KY] , by adding adja
cency information to cell-deconlposition algorithms of [Col]
and [BKR]. A new method based on singularity theory was
recently described [Ca], which runs in time polynomial in
the environment size for a fixed number of degrees of freedoln,
wit.h an exponent equal to the number of degrees of freedoln,
which is worst-case optimal. Here we show that three natural
extensions to the find-path problem are difficult even in three
dimensions.

1.1 Lower Bound Techniques for Robot
Motion Planning

The first hardness results lor robot motion planning were due
to Reif [Re] who showed that the generalized movers' prob
lem is PSPACE-hard. Other authors have produced PSPACE
hardness results with many movable objects in the plane
[aSS]. In these proofs the number of degrees of freedom
grows with the problem size. Of a different character were
the results of Reil and Sharir [RSh] on dynamic motion
planning, where PSPACE and NP-hardness results were es
tablished for motion planning with a fixed number of degrees
of freedonl among obstacles moving in a known way. Natara
jan [Na] recently gave a PSPACE-hardness proof for motion
planning with uncertainty under a certain dynamic model,
[LMT].

In all the results that follow, the environment consists of
polyhedral obstacles, and the coordinat.es of points, equations
of face normals etc. are assumed to be expressed as rational
quotients of binary integers. The size of the description is
the sum of number of features and the lengths of all binary
numbers in the description.

In this paper we present three proofs using a new t.ech
nique called path encoding. Our results apply to problellls in
which the nUluber of degrees of freedom is small and fixed.
In path encoding we represent discrete state using homotopy
equivalence classes of paths. In bot.h proofs, we generat.e ex
ponent.ially luany path classes in a fixed 3-dimensional poly
hedral environment. In the first two proofs of NP-hardness
of shortest path and dynamic motion planning, each path
class represents a satisfying assignment to a set of boolean
variables.
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nelobst.cles moying with fixed linear velocity (no rotation).
The obstacles are assumed not to collide.

point actually moves with a velocity v!.,.ee which lies in a ball
of radius fVi about the commanded velocity, Le.

Figure 1: (a) Peg and hole environment, (b) Configuration
space showing locus of reference point of peg during compliant
motion.

vlJ
V slide

(a)

(b)

1.4 Compliant Motion Planning with Un-
certainty

We also treat motion planning with uncertainty, where the
objective is to produce a plan which is guaranteed to succeed
even if the robot cannot perfectly execute it due to control
error. With control uncertainty, it is hupossible to perforlll
assembly tasks which involve sliding motions using only posi
tion control. Robot control uncertainty is significant and has
traditionally biased robot applications toward low-precision
tasks such as welding and spray-painting. To successfully
plan high-precision tasks such as assembly operations, uncer
tainty must be taken into account, and other types of con
trol must be used· which allow compliant motion. Compliant
motion ([In], [Ma]) occurs when a robot is comman~ed .to
move into an obstacle, but rather than stubbornly obeyIng Its
motion command, it complies to the geometry of the obstacle.

Compliant motion is possible only with certain dynamic
models. The two most common of these' are the generalized
spring 'and generalized· damper models? [Ma]. Our pro?f
will succeed with either of these models, but the one we WIll

use isa simplified 'version of the damper model described
in [LMT]. We assume that our environment describes the
configuration space of the robot, so that the robot itself is
always a point. The planned path consists of straight-line
commanded motions each for a fixed time interval. That is,
at the ith step, the point is commanded to lllove at velocity
Vi for time tie Because of control uncertainty however, the

I/v!.,.ee - ViII < fVi (1)

Without loss of generality, we assume all Vi have unit magni
tude, and scale the t i accordingly.

For a compliant motion, the object moves along an obsta-

The short.est. path problelll is of interest in robotics because
it is the sinlplest. instance of a JniniIllulll cost.. path planning
problenl. The LP -shorfesf path problenl, Illay be defined in
two or three ditllensions as the problelll of finding the shorte,t
obstacle-avoiding path between two given points under ,an LP
metric, with polygonal or polyhedral obstacles respectively.
Efficient algorithms for two dimensional euclidean shortest
path have been known for some tinle. This problem was
first studied by Lozano-Perez and Wesley [LW]. No upper
bounds were given in their paper, but their algorithm should
run in O(n3

) time. Improvements were given by Sharir and
Schorr [SSc] , and by Reif and Storer [RS] O(n(k + log n))
time, where k is the nUlnber of convex parts of the obstacles.
Mitchell and Papadimitriou gave a polynomial time algorithm
for a generalization of the problem analagous to finding the
shortest path for a light ray through polygonal regions of
different refractive index [MP].

While the euclidean shortest path has efficient solutions in
two dimensions, the three-dimensional problem is much more
difficult. There have been a number of papers on restricted
versions of the problem. Mount [Mo] , and Sharir and Balt
sam [SB] gave polynomial time algorit.hms for environments
consisting of a small fixed nUlnber of convex polyhedra. Pa
padimitriou [Pal gave a polynomial time approximate al
gorithnl which finds a path at most a slnall multiplicative
constant longer than the shortest path. The general prob
lem has been dealt with by Sharir and Schorr [SSe] who
gave an 220

(n) algorithm by reducing the problem to an alge
braic decision problem in the theory of real closed fields-. The
best bound is due to Reif and Storer [RSt] who gave both
2n

O(1) -titne, and (nO(logn))-space algorithms by using the same
t.heory but with a more efficient reduction. To date, in spite
of t.he absence of efficient algorithms for the general problem,
no lower bounds were known.

1.2 The Shortest Path Problem

In the third proof, non-deterministic exponeI!tial time. hard
ness of compliant motion planning with uncertaint.y, we use
path classes to represent the contents of aexpone~tial-Iength
Turing machine tape.

1.3 Dynamic Motion Planning with Ve-
locity Bounds

We consider motion planning for a robot with a fixed num
ber of degrees of freedom in an· environment in 'which the
obstacles are moving, and in which the robot has constraints
on its velocity. If there are no motion constraints, and the
trajectories of obstacles can be described algebraically, then
the problem is solvable in polynomial time. [RSh]. However,
if velocit.y limits are added, the problem is more difficult. In
[RSh] it was shown that motion planning in 3-d with rotating
dynamic obstacles is PSPACE-hard in the presence of veloc
ity bounds, and NP-hard in the absence of bounds. However,
the rotating obstacles have non-algebraic trajectories. Here
we give the much stronger result that motion planning for
a point in the plane with velocity bounds is NP-hard, even
when the moving obstacles are convex polygons moving with
constant linear velocity without rotation.

We define the 2-d asteroid avoidance problem as the prob
lem of determining a collision-free path for a point in the
plane with bounded velocity magnitude, with convex polygo-
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cle surface with a sliding velocity vt'ick which is the projection
onto the surface of some vfree satisfying (1). This v tree must
point into the surface, as shown in figure 1. Figure'la shows
a side view of a peg-in-hole insertion, while Ib shows the ob
stacle in configuration space seen by the reference point on
the peg. The motion of the peg (without rotation) can be
determined from the Inotion of the reference point based on
generalized damper dynamics. We will not consider further
details of the dynanlic nlodel since they are not necessary for
our proof, but we recommend the reference [LMT].

The GYompliant Motion Planning with Uncertainty prob
lem is to find a sequence of motions Vi, which is guaranteed
to move every point in a polyhedral start region S into a
polyhedral goal region G, moving among and possibly sliding
on polyhedral obstacles. Each motion is subject to a velocity
uncertainty f as described above. We consider a polyhedral
start region because there will inevitably be some uncertainty
in the initial position of the point. That is, we know that pis
initially somewhere in 5 but we cannot know where exactly.
However, because our plan succesfully moves every point in
S into G, it is guaranteed to move p from its actual position
into G. In [Na] it is shown that this problem is PSPACE
hard. Using some of the new techniques in this paper, we
are able to show that 3-d compliant motion planning is non
deterministic exponential time hard. We believe this to be the
first instance of a provably intractable problem in robotics.

1.5 Outline of Paper

In section 2 we give a brief description of the path encod
ing technique for NP-hardness proofs, and describe the main
structures required. We then complete this section with lower
bounds on the number of shortest path classes in a polyhe
dral environment, and a proof of NP-hardness for the shortest
path problem.

Section 3 gives a similar proof of NP-hardness for 2 di
mensional dynamic motion planning with velocity limits (the
"asteroid avoidance" problem).

Section 4 begins with a description of a simplified dy
nanlic model for compliant motion planning with uncertainty.
Then we describe a class of polyhedral environments for
which finding a guaranteed motion plan is non-deterministic
exponential-time hard.

2 Lower Bounds for the Shortest
Path ProblelD

2.1 Path Encoding for Shortest Paths

First we define the shortest route from any point z in space
to a source q as the sequence of environment edges traversed
by the shortest path from z to q. In some cases there may
be more than one shortest route from z to q. Then we define
an equivalence relation such that two points are equivalent iff
they have the same set of shortest routes to q. This equiva
leBce relation gives us a partition of free space and allows us
to speak of shortest path classes.

To simplify things we will only examine these classes at
certain "one dimensional" slits.' These slits actually have
some finite width f and lie in horizontal plates of thickness
also f. In our construction it is possible to represent the path
classes within a slit using the concept of a "virtual source".
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shortest path class for ~

shortest path class for P:a

shortest path class for Ps

shortest path class for ~

Figure 2: Pat.h (~lasses and virtual sources for a single slit.

A virtual source is a point Pi such that the actual distance
from a point z in the path class to the start point is the same
(to within a small additive error) as the straight line distance
from z to Pi. The straight line is often referred to as an
"unfolding" of the actual path. Each shortest path class has
its own virtual source, and the sources will be evenly spaced
and equidistant from the slit as shown in figure 2.

2.2 The Environment

We will be generating· (2n
) path classes in our construction,

and each class may be thought of as encoding an n-bit binary
string, b1 , ••• bn • The construction may be broken down into
three types of substructure:

• Path Splitter: This doubles the number of shortest path
classes by splitting them.

• Path Shuffler: Performs a perfect shuffle of path classes.

• Literal Filter: Filters for those paths which have a par
ticular bit equal to zero or one in their encoding.

Path Splitter
The path splitter has the property that if its input slit

contains n shortest path classes as described above, its output
slit. will contain 2n path classes. A splitter consists of a stack
of 3 horizontal plates separated by f, and is shown from above
in figure 3. The top plate covers the x-y plane except for the
input slit Sin. The middle plate has two slits at 45°, labelled
S1 and 52, and the bottom plate contains the output slit 5out .
Any shortest path from Sin to 50ut passes through either 81

or S2.
The splitter uses the unfolding of paths to generate many

virtual sources. The principle of path unfolding is illustrated
in figure 3. For any point p in the output slit SoUt, the short
est path from that point to the virtual source PI consists
of two straight line segments which make equal angles with
52 (actually this is only true in the limit as f --+ 0, but we
will deal with the finite f case shortly). By mirror symmetry
there is a second virtual source P{ such that the distance of
the shortest path from it any point p in Sout to P1 is the same
as the straight line distance from P to P{.

Suppose we have n virtual sources for the n shortest path
classes in Sin. We have seen that S2 behaves like a mirror and
reflects each virtual source Pi to a new position ~'. Since 51
also produces a reflected copies PI' of the Pi, Sout now sees
2n virtual sources, as shown in figure 4. In other words there
are twice as many shortest path classes in Bout because each
path class from Bin bifurcates into a class that passes through
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Figure 3: Path splitter, showing the principle of path unfold
ing.

~s
1
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numbers of the lower half (hI = 0) of the input slit are dou
bled, while the path numbers of the upper half (hI = 1) are
doubled and incremented. This corresponds to a left shift of
the encoding with wrap around of the leading bit, i.e. a cir
cular left-shift. The spacing between path classes is halved,
so the output slit of a shuffler has half the length of its input
slit.

Figure 5: Path shuffler. The first two plates are shown at
the top, and plates two, three, and foul' at the bottom of the
figure.
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Figure 4: Path splitter showing doubling of the number of
path classes.

8 1 and a class that passes through 82 • The distance between
path classes remains the same, so the output slit of a splitter
is twice the length of its input slit.

The geometric argument above is only true if the plates
have zero thickness and' slits have zero width, however it does
give valid lower bounds for a finite thickness, finite width en
vironment.In section 2.4, we derive upper bounds which
differ by an additive multiple of f. Wit.h these bounds and
a sufficiently small f, we can guarantee that path classes re
nlain distinct, and in section 2.5, we show that the three
dimensional environment has a polynomial size description.

Path Shuffler
A shuffler is shown from above in' figure 5. It consists of 4

horizontal plates of width and spacing f. The top two' plates
simply separate the top and bottom halves of the input slit,
as shown in figure 5(a). The second, third and fourth plates
behave rather like a twisted splitter. The second plate con
tains the two slits 8 1 and 8 2, the third plate coptains the
diagonal slits 83 and 8., and the fourth plate contains the
output slit Souto Paths from 81 to 80ut are constrained by
a barrier to pass through 83 • Thus 83 .acts as a mirror and
produces a copies of the virtual sources in 81• 8. produces a
similar copies of the sources in S2' however these two images
are displaced by half the source spacing6t . This has the ef
fect of interleaving the two sets of path classes, so the class

Literal Filter
The literal filter is designed to filter for those path classes

whose encodings have a zero or a one in the i th bit. We do
this by stretching all other path classes. Recall that the jth

path class encodes a binary string hI, . .. hn • To filter for paths
having bi = 0, we put a barrier in the way of paths having
hi = 1. The problem with doing this on t.he original encoding
is that the barrier may need to be split into exponentially
many sections, e.g. for bn we need to cover every second path
class. Instead we use shufllers to rotate the encoding so that
the ith bit becom~s the most significant bit of the encoding,
at which point all paths having hi = 1 are in the same half of
the slit.

A literal filter for hi = 0 is shown in figure 6. A
single shuffler performs a. I-bit left shift of the encoding,
and after cascadin~ (i - 1) shufHers, the encoding becomes
bi, ... hn , bt , ••• hi-I. Once the ith bit has become the most
significant bit, we block off the upper half of the slit. We
then add (n - i + 1) more s'hufllers to restore the original
encoding. Now the paths which have hi = 1 will have been
stretched slightly by having to travel around the barrier. In
section 2.4, equation (11) we give bounds on the amount of
stretching necessary, and show that stretched paths can be
distinguished from unstretched ones.
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Figure 7: A clause filter.
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where each G'i is a clause of the form (IiI V li2 V li3). Each
literal Iij in turn, is either a variable or the negation of a
variable. The size of the formula can be measured as the sum
of the number of variables n and the number of clauses m.

First we cascaden splitters below the source point, to
give us 2n shortest path classes. Each path encodes an as
signment to the n variables through the binary representation
of the path nunlber. Then we progressively filter out those
classes whose encodings do not satisfy a particular clause in
the formula.

To filter for a particular clause, we place 3 literal filters
in parallel (each consisting of n shufHers) as shown in figure
7. This structure implements a disjunction of literals because
if an assignment satisfies any of the three literals there will
be a short path through the corresponding literal filter. The
collection of literal filters and top and bottom plate will be
call~d a clause filter. We can cascade clause filters to repre
sent all the clauses in the 3-SAT formula, and the output slit
of the m th clause filter will contain short path classes only for
those assignments (if any) which satisfy the formula.

I I I I I I I I
I I I I I I I I

2
n

shortest path classes

~
01234567

(i-I) Shufflers

2.3 Lower Bounds for 3-d Shortest Path

(n-i+1) Shufllers

Figure 6: A literal filter with barrier to stretch paths having
bi = 1.

hi is most significant bit -

o 1 234 567

The following theorem follows immediately from the proper
ties of splitters:

Theorem 2.3.1 The number of shortest path classes in a
polyhedral environment may be exponential in the number of
faces, edges and vertices in the environment, and {}(2VN )
where N is the length of the description of the environment.

Proof We cascade n splitters each of which has constant
nUluber of faces, edges and vertices, giving us 2n shortest path
classes. Applying the results of section 2.5, we need only
O(n) bits to describe each environment vertex (since there
are no shufHers), and thus N = O(n 2) bits for the whole
environment. 0

Theorem 2.3.2 The problem of finding a shortest" path un
der any LP metric in a three-dimensional polyhedral environ
ment is NP-hard.

Proof Given a 3-SAT formula, we construct a polyhedral
environment, and source and target points, such that knowl
edge of the shortest path between source and target allows
us to decide in polynomial time if the formula is satisfiable.
The size of the environment description is polynomial in the
formula size.

Recall that a 3-SAT formula in n variables bI , ... bn has
the form

(2)

The final step is to collect all these path classes into a
single path class. This is done using a series of n inverted
splitters. The effect is to form the disjunction of all the sat
isfying assignments. In the absence of any barriers in the
preceding clause filters, there would be a single path class in
the output slit and a single virtual source. Below this slit and
aligned with the source, we place the target point q'. Let I be
the approximate length of the shortest path from q to q' when
the barriers are removed. We then ask if the shortest path
from q to q' in an environment containing barriers has length
close to 1. It will if and only if there is some path through the
environment which was not stretched by having to go around
a barrier. Such a path encodes a satisfying assignment to the
formula, and since we have encoded all possible assignments,
the path has length close to 1 (see section 2.4 for a precise
definition) if and only if the formula is satisfiable. Finally,
by the results of section 2.5, the description of the environ
ment has $ize polynomial in n and m-and can be computed
i.polyoomial time. 0

i=l,...m
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Corollary 2.3.3 Determining even the sequence of edges
~ouched by the shortest path (under an LP metric) is NP-hard.

Proof Each path class is uniquely determined by the se
quence of splitter edges it touches. Thus this sequence of
edges encodes a satisfying assignment to the 3-SAT formula,
if one exists.

Corollary 2.3.4 For a polyhedral ent,ironmeni of size N, de
termining O(..;N) bits of the length of the shortest path be
tween two points in the environment is NP-hard.

Proof. We first construct an environment that encodes
a 3-SAT formula of length W so that m and n are both
less than W. Using the values computed in section 2.5,
we notice that the value of f defined in (12) leads to a gap
between the upper bound on unstretched length and the lower
bound on stretched length. This gap is at least 2-2nm-3n-3,

so that O(nm) = O(,fN) bits suffice to distinguish stretched
and unstretched paths. 0

2.4 The Virtual Source Approximation

Here we show that an approximate virtual source can be used
to accurately model the path lengths at the input and output
of a shortest path splitter or shuffler. We show that the error
at the output of a shortest path splitter is 5f greater than the
error at its input. The proof generalizes to shufHers which
have four plates rather than three and gives a bound of 7f.

First we define a local coordinate system for each slit,
fixed at one end of the s.lit (say the end closest to paths which
encode 0). Let the t coordinate measure position along the
slit. Thus t lies in the range [0, I] where I is the length of
the slit. Let u, and v measure respectively the horizontal and
vertical position of a point in the slit, so that u and v both
lie in the range [0, f]. If u increases in the upward direction,
the position of the coordinate origin in the slit is completely
determined when we add the constraint that the t-u-v system
be right-handed.

Let di(x, q) denote the distance of the shortest path in the
i th path class froln a point x == (t, u, 11) in the slit to the actual
source q. Let d( x, Pi) be the straight-line distance frolll x to
the ith virtual source Pi.

Lemma 2.4.1 The following bound holds at the output of the
nth cascaded splitter or half-shuffler:

Furthermore, d( x, Pi) is independent of the u and v co
ordinates, i.e. we can write d(x,pd = d(t,pd. In this way
we can think of the slit as being one-dimensional, and absorb
the values of the u and v coordinates in the error term. The
virtual source Pi is specified by two values, its t coordinate
ti = i~t, assuming sources are uniformly spaced by ht, and a
distance h normal to the taxis, (h is the same for all sources
in a given slit, so we drop the subscript i). Thus we have a
simpIe expression for d(x, Pi):

d(x,pd = II(t i - t,h,O)IIP (4)

where z = (t, u, v) as before. Our proof of the output hy
pothesis will be essenti18lly the same for both splitters and
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half-shufHers, since we only need to consider one edge of the
middle plate.

Base case:
If n =°have only the true source point q above the center

of the first input slit. Let h be the height of the source above
the slit. Then clearly d(X,pi) from (4) is a lower bound on
the distance to any point in the slit, where Pi = q and ti is
half the length of the slit. On the other hand, d(x, q) +2f is a
valid upper bound because every point in the slit is within 2f
(under any LP metric) of a point at the top of the slit whose
distance is d(x, q) from the source.

Inductive step:
We assume the hypothesis holds at the output of the nth

splitter, and consider the path from input io output of the
(n + 1).t. We first obtain a lower bound on the path length
between any a point x in the input slit and a point x' in the
output slit. For lower bounds, we consider the projection of
paths in the x-y plane, since these lengths are less than or
equal to the three-dimesionallengths.

For f = 0, let zIt be the point at which the path between
x and x' touches the middle plate. Then the total length of
the path from the source to z' is bounded below by

d(X,pi) + liz" - xilP + Ilz',z"IIP (5)

For each such path, we form a second path by reflecting the
first two path segments about the middle slit, similar to figure
3. The mirror image path will have the same length as the
original under any LP Iuetric if the middle slit is either paral
lel to the z or y axis, or at 450 to these axes. We can always
build our environment so that this is the case. The length of
the three segment path from z' to the mirror image p~ of the
virtual source Pi is bounded below by the straight line dis
tance from x' to p~ (this follows frOlll the triangle inequality,
which holds for any metric). Thus we have

d(x',p~) 2: I/(t' - t~, h +1, O)IIP (6)

where z' = (t', u', t,') is given in local slit coordinates.
We can also obtain an upper bound on the length of the

shortest path between x and x'. To do this we build a path
which consists of the horizontal straight line segments in the
path for l = 0, plus three vertical jumps of f. This path moves
vertically from the input slit to the top of the middle plate,
horizontally to the to edge of the middle plate, vertically to
the bottom edge of the middle plate, horizontally along the
bottom surface of the middle plate, and vertically down to the
output slit. Finally we need an upper bound which is valid
throughout the bottom slit, which may involve traversing the
slit in the u and v directions, an extra distance of at most
2f, giving us a total of 5f more than the lower bound for the
distance between x and z'. Thus if the upper bound on path
length at the input is d(z,pd + (5n + 2)f, the upper bound
at the output is d(:l',p~) + (5(n + 1) + 2)f. 0

2.5 Environment Size

To complete our construction, we must verify that the envi
ronment we have defined has a polynomial length description.
In particular, 'we must find the constraints on f for the virtual
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source approximation to be valid, and ensure t.hat it requires
only polynomially many bits. We show furthermore that:

Lemma 2.5.1 Every environment dimension can be de
scribed with O(nm) bits.

Proof. We first observe t.hat the output. slit. of a splitter
has twice the length of its input slit. We set the length of
the top slit (arbitrarily) to be 1. Then after n splitters, we
will have a slit of length 2n with unit spacing bet.ween virtual
sources. This is the maxinlum length of any structure in the
environment. So we have

Remark 2.5.2 All dimensions In the environment are
O{2n ).

A shuffler's output slit has half the length of its input slit.
Each clause filter consists of n shufflers in cascade, and there
are m clause filters in series, so at the output of the last filter
we have a slit of length 2n(1-m) with virtual sources spaced
by 2-nm

• All the slits in between have length and spacing in
between these two extremes.

When a barrier blocks off half of a particular slit, every
path that previously passed through the barrier is displaced
horizontally by at least half the source spacing at that slit.
For the L1 metric we aSSUlne that t.he input and output slits
of all stages are aligned wit.h the x or y axis, then the new
path has length

lltretched 2: I +bmin for p = 1 (7)

where 1 is the lower bound on the unstretched length of the
path from source to target, and bmin is the minimum source
spacing. For all other LP metrics, we align the input and
output slits at 45° to the x and y axes. Recall that "mirror
image" paths have the same length in either case. T·hen the
length of the shortest stretched path is bounded below by

for 1 < p S 00

(8)
where 1is the lower bound, this time under the LP metric, on
the path length. For p = 00, we take the limit of the above
expression as p -+ 00. Now 1 is the SU111 of all the slit lengths
plus the distance to source and target points, which we can
adjust so that I = 23n

• So long as hmin S 1, the following
lower bound holds for all metrics:

I h~in .t (9)
Iltretched 2: +~ lor 1 S p S 00

To obtain this bound, we raise the right-hand sides of
equations (8) and (9) to the pth power, and compare the 2ith

degree term from (8) with the sum of the ith and (p - i + l)th

terms fr,om (9). Since our proof requires that we can decide
whether a path has been stretched, we must have the differ
ence between stretched and unstretched lengths greater than
the error in our source approximation. Now the actual un
stretched length lunltretched is subject to the following bound
(for all metrics):

1S luiutretched S 1+ (7nm + IOn +2m + 4)f (10)

shlce there are nm shufflers in cascade with 2n splitters each
adding 7f and Sf error respectively, and 2f error for the
source, target and clause filter plates. To be able to det.ect a
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stretched path, we must have the lower bound on stretched
length greater than the upper bound on unstretched length,
i.e.

62 ,:;;n > {7nm + IOn +2m +4)f (11)

and using the fact that hmin = 2-nm and 1 = 23n , the above
inequality holds if we set:

2-2nm-3n-3

f = (12)
(7nm + IOn + 2m +4)

and then f can be specified with O(nm) bits. The entire
environnlent fits in a cube of size 1 = 23n , and the smallest
dimensions that need to be specified are of size approximately
f, thus the specification of any dimension in the environment
requires O{nm) bits. 0

Corollary 2.5.3 The entire environment can be described
with O( N4) bits, where N is the length of the input SAT for
mula.

Proof The environment consists of 3m shufHers, and 2n
splitters. Each shuffler consists of O(n) plates with a fixed
number of edges and vertices. Each splitter has a fixed num
ber of faces, edges and vertices. Thus there are O(nm,) edges,
vertices and faces in the environlnent each of which can be
specified with O(nm) bits, and since both nand m, are linear
in the forlllula length N, our construction can be specified in
space O( N4), and computed in polynolnial tilue. 0

3 Dynamic Motion Planning

3.1 Lower Bounds for the Asteroid Avoid·
ance Problem

We can generalize the proof technique of the last section to
motion planning with moving obst.acles, where the robot has
velocity limits. We have

Theorem 3.1.1 The 2-d asteroid al'oidance problent is NP
hard.

Proof The proof follows from the results of the previous
section if we can construct splitters and shuffiers and specify
their dimensions with a polynomial nunlber of bits. A single
construction can be adapted to implement both functions,
and is shown in figures 8 and 9. We assunle the velocity limit
is 1. In this case, two points are in the same path class if
they can be reached by a homotopically equivalent sequence
of motions, i.e. p and q are in the sanle path class if we
can continuously change the sequence of nlotions that lead
to p into a sequence that leads to q, without colliding with
obstacles. In our construction, path classes at a given tiIne
are approximately circular. Figure 8 shows four circular path
classes which were points at some earlier time. Two moving
obstacles in figure 8 effectively form two copies of the path
classes, one moving up and the other moving down with ve
locity 1. Figure 9 shows a second obstacle B, which is llloving
very fast almost parallel to its lower edge, but nevertheless
the normal component of this velocity is still 1. Thus the two
copies of the path classes are pushed back together, but the
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Figure 8: Path splitter in an asteroid environluent.

B

Figure 9: Path "reflection" for the asteroid probleln. Path
classes on object B move normal to B at the DlaxiDlum ve
locity.

two obstacles B do not collide. Instead, with their high ve
locity, they move off to the left and right while leaving small
slivers of the path classes intact. Depending on the direction
of ·the second motion and the distance travelled during the
first motion, the path classes Dlay either be concatenated for
a split, or their upper and lower halves interleaved for a shuf
fle. In the latter case, fast-Inoving vertical obstacles destroy
t.he unused path classes, or Illay be used to select a particular
literal.

Quantitatively, we suppose that each path class after the
i th shuffle is contained in a rect.angle of height hi and width Wi,

and that it. contains a circle of dialueter hi. Then if the angle
between VI and the x-axis is (}i, and the distance traveled in
the first motion is 1, we define h~ = 9 where 9 is the gap
between A and B, and

W: = (Wi + ~)cos28i + hi sin2ih (13)

as the dimensions of an approximate bounding rectangle
(aligned with B) at the end of the first tnotion. Then the path
class at the completion of the second motion is contained in
a rectangle of size hi+1 = hi and

Wi+l ::; w~ +~ (14)

Let n be the number of variables and m the number of clauses
in a 3-SAT formula which we wish to encode. Then by choos
ing sin 8i ~ 2- i

-
1

, 1 = 1, hi = 9 = 2-4mn , WI = 2-2mn , and
an initial spacing of 2-n for the path classes, the above recur
ren~e shows that the pa.th classes remain distin-ct. F~rther

more, all the dinlensions and veioeities of -ob--rtacle polY80ns
are simple rational functions of -these quanti*ies. Thus we
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can specify a dynamic environment which encodes a 3-SAT
formula ·of n variables arid m clauses in O(m2n2

) space and
polynomial time. 0

4 Motion Planning with U ncer
tainty

In our proof we construct, for any non-deterministic exponen
tial tinle bounded Turing machine M, an environment that
sinlulatest.hat nlac.hine. We assume wlog that M has a binary
tape (of exponential size), which initially contains its input.
Given a description of M and its input, and a constant c such
that the running time of M is bounded by 2cn , we construct a
polynomial-size environment and start and goal regions and
specify an uncertainty such that a successful motion plan ex
ists if and only if the non-deterministic machine M Bas a pa.th
to an accepting state. At the ith step, let q( i) be the internal
state of M,h(i) its head position, and T(i,j) the contents
of the jth tape square. We define the local state of M as the
pair (q(i),T(i,h(i))).

At the start of a motion plan, the point p is somewhere
in the start region S. When we execute the plan, at each
time t there is a set of possible positions of p. We call this
set the instantaneous foru,ard projection of S and denote it
Fs(t), see [Erl. The instantaneous forward projection will
consist of a number of connected components which we will
call blots. The physical interpretation of this is that p at
tiDle t may lie anywhere inside any of the blots. We use
the forward projection to represent the state of the Turing
machine. The points in each blot are related by a homotopy
of paths from the start region. Thus we are again making
use of a path encoding scheme, and we will be generating
exponentially many blots to encode an exponential tape.

In fact, using a proof very similar to those of the pre
vious section, we can show that verifying a single step of a
motion plan with uncertainty (with or without sliding) in 3
dimensions is hard. That is:

Theorem 4.0.2 Determining whether a point p is in the for
ward projection Fs(t) at some time t for a fixed commanded
velocity is NP-hard.

4.1 Blot Motion
The blot model allows a simple characterization of the time
evolution of the forward projection. All blots are assumed to
be contained in spheres of radius r(t), satisfying the following
condition:

r(t) = fO +ft (15)

so that the environment is initialized with all blots contained
in spheres of radius fOe If a blot at time t is contained in a
sphere of center c(t), i t sho~uld be fairly clear from (1) that if
we command a motion Vi for time ti, and the blot does not
encounter obstacles, the center of the blot is simply displaced
to c(t) +Viii.

If the comnlanded motion moves the center of the blot
into a wall, then the motion of the center of the blot can be
broken into two parts: a straight line motion in the direction
-of -oommanded motion, and then m<ltion along th-e wall with
velocity equal to the projection of the commatlded velocity
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along the wall. In other words, the center of the blot moves
compliantly as though there were no Inotion error.

It is easy to verify that blots satisfy the radius condition
(15) for all motions except those where the blot is moved into
a convex edge or corner. We will make use of this later to
give us a splitting of blots, but generally these Dlotions are
to be avoided.

Goal region

Figure 10: A filter for motion in the x-y plane.

Figure 11: A filter for horizontal motion in the left half-plane.

Figure 12: A one-way gate.

---...
possible commanded velocity

,-,,-:::::
-----"..-----".._-------- .

.,~:::::::::::

---~

DD

fixed vertical displacement of h, say upward. The bottom
blot will move away from the wall by h, while the other will
slide against its wall. In order to move the displaced blot to
the goal, we must eventually make a motion with a downward
component, but this will move the other blot away from its
wall etc. Thus once a motion with a vertical displacement is
executed, no sequence of motions can Illove both blots into
the goal region. This environlllent funct.ions .as a filter for
commanded nlotions, and allows only horizont.al ones.

Quant.itatively, if the height of the goal region is b, and if
t.he commanded nlotion causes a net vertical displaceluent of
the center of a free blot at any tilue t < t f of greater than
2(h + ft f), then from the laws of blot Illotion the sum of
the distances.of the blot centers froDl the surf~ces must be
at least 2(h + ft f), and can never be made less than this. It
follows that one of the two blots Inust be entirely outside the
goal at time tf.

Once we have constrained the commanded Inotions to the
x-y plan~ (or to within a region of height 2(b + ft f)), we can
add a varIety of other constraints. Figure 11 shows a structure
which constrains the command~dmotion directions to a semi
circle. Commanding motion into a vertical wall (shown solid)
is permissible, and causes sliding in the horizontal plane but
commanding motion into a sloped wall (dashed) cause~ the
bl~t to be displaced vertically. If the goal region is at the same
heIght as the start region, the blot in this environment can
never reach it once it has been' displaced upward. Figure 12
shows a structure which contains two blots, and implements
a one-way gate.

The legal move filter is shown in figure 13. Notice that
all motions are in the z-y plane. The channels at move 3

4.2 The Environment

4.3 Legal Move Filter

The key to the simulation is to constrain commanded motions
which may otherwise be arbitrary to a small set of motions
in the z-y plane. Since the planner is free to command any
motion it desires, we must build the environment in such a
way that after an undesired motion, no subsequent sequence
of motions can move the point to the goal. It is clear that
we can constrain the motion of individual blots by placing
them in a narrow channel (e.g. [Nal). Unfortunately, since
we have exponentially many blots we cannot use this tech
nique. Consider now figure 10. Here there are two blots in
two distinct boxes, and we must command a sequence of mo
tions that is guaranteed to move both blots into their respec
tive goal regions. It is fairly clear that a sequence of purely
horizontal motions will succeed, as long as the last motion
terminates inside the goal, and there are not too lllany 1110

tions (because of the growth due to uncertainty). Suppose
on the other hand, that we execute a single nlotion with a

• State logic. This structure performs updates on blots
that represent the internal state of the Turing machine.

Initially, all of these structures contain some blots of for
ward projection. Now each legal move, corresponds to a cer
tain local state transition. However, the legal move filter does
not exa~ine tape cont~nts or machine state, so at each step,
the motIon correspondIng to every possible state transition
is legal, even if the simulated machine is not in the state as
sumed by' the transition. We say a legal move is .valid if it
does correspond to a Turing machine transition, given the
current local state of the simulated machine. The tape and
state logic structures ensure that if legal but invalid move is
executed, then no later sequence of legal llloves can reliably
Illove the point to the goal. Thus the only possible way to
reliably reach the goal is by executing a sequence of valid
moves, thereby simulating Turing machine steps.

Our environment can be broken into three distinct and phys
ically separated polyhedral structures:

• Legal move filter. According to our model, it is possible
to command any motion in any direction at each step.
However, we would like the commanded motions to give
us an orderly simulation of a Turing machine. We must
therefore restrict the allowable motions to certain legal
moves. The legal move filter enforces this by making it
impossible to reliably reach the goal by any sequence of
moves after an illegal move.

• Tape logic. When legal moves are executed, this struc
ture performs the necessary updates on the tape itself,
changing tape contents, head position and tape end
marker fields.
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Figure 13: The legal move filter, consisting of three boxes.
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Figure 14: Tape encoding.

4.4 Tape and State Logic Structures

In order that a legal move be valid, the (q(i),T(i,h(i)))
pair assumed by the move must correspond to the actual
local state encoded when the move is executed. For a non
deterministic machine there may be several valid moves for a
given local state. The tape and state logic structures ensure
that only commanded motions that simulate valid transitions
can possibly lead to the goal.

Our machine has a binary tape, and the encoding of a
single square includes two rectangular regions, one to encode
0, the other 1. Exactly one of the sites must contain a blot
of forward projection. Also, we have a tape end marker field
with three sites, exactly one of which will contain a blot.
These· sites designate the square as the top, bottom or as an
intermediate square. An example of an encoded tape is given
in figure 14. Notice that the distance between tape squares
is much larger than the height of each square.

Figure 15 shows a slice through tape and state structures
at the jth level. There will be a pair of such structures for
each state transition of M. Notice that there is tape logic
for only one square of the tape, namely the square currently
under the head. An important difference between tape and
state struct.ures is t.hat while the tape blots are free to move
up or down during t.he tape shift phase of a legal motion
(tnove 4), state blots are trapped in channels and funneled
back to t.heir originaly position, as shown in figure 16.

If t.he legal move corresponding to this state transition is
executed but the tape contents are not T( i, (h( i)), then some
tape blot will run into a sloped wall and be displaced verti
cally. Otherwise, it will slide against a wall into the correct
position for the value to be written on the tape. Sim~larly if
the internal state before the move is not q(i), the state transi
tion structure will cause a blot to be displaced. Thus the legal
move corresponding to the transition from (q(i), T(i, h(i)))
will be valid if and only if the (simulated) tape contents re
ally are T( i, h(i)) and the internal state is q(i). Since validity
of tape and state can be verified independently, tape and state
structures can be physically separated.

Each level implements a state transition similar to the one
described above, with the exception of transitions that require
shifting beyond the limits of the tape. Such a transition is
shown in figure 17, and denote this state transition by Qij •

Here we notice that the square below the head is completely
blank, but it must be correctly initialized during this move.
Since there are only 2 blots entering the tape structure but

o
1

top of tape
bottom of tape
middle of tape

----------------,
""r------;::::::::~:

,," : ~:::::::~ I

/" ,.--------':
~~ ~~::::::::J

~~-----------i~:::::::;,
" I L "":

, 'r-------,, , ,
',~ ~~~~~~~~~S:________________ J

[:::::::

all have one-way gates of the type shown in figure 12, which
are not shown in figure 13 for sinlplicity. Each distinct y
level at move 3 corresponds to a particular Turing machine
transition, and is indexed by the local state of M. Observe
that these transitions lead to overall displacement of the tape
by one square either up or down, which c.orresponds to the
correct head motion for that transit.ion.

Notice that none of the structures in the legal nlove filter
have an adjacent pair of vertical walls, so that. blots cannot be
split. in this environment. The t.hree blots Illove in unison ex
cept at move 5. Three structures are necessary to ensure that
blots are not separated at move 5, and that only horizontal
motion to the left is possible during Dlove 5. Notice that after
a cycle of moves 1 through 5, all blots terx:ninate in their start
positions. For moves 1, 2, and 4, commanded motions may
in fact be in the forward or backward direction, and this will
not affect the simulation. There are one-way gates at move
3 to ensure that blots do not move in the wrong direction
through tape or state logic.

We claim that the total cUDlulative error during a move
cycle, i.e. the error between the displacement of a free blot
and the distance between tape squares (take this to be 1), is
a small constant times the channel width. If M runs for 2cn

steps (n is the input length), then we need a linear number
of bits to specify f and channel width slnall enough that the
cumulative error is a small fraction of the distance between
tape squares. All environment dimensions are linear in n.
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Figure 15: Tape and state logic (one level only).

4.5 Initialization and Termination

We have seen that tape and state logic structures allow only
valid moves,and that any sequence of motions which reliably
moves p to the goal must simulate Turing machine steps.
To complete our simulation we must show that it can be
correctly initialized and terminated. Initialization involves
specification of the start region S, while terlllination involves
specification of the goal region G.

Firstly, the start region lllust correctly describe the initial
internal state of the lnachine. This requires only a single blot
(of start region) in the appropriate channel of t.he state logic
structure. The start region must also correctly describe the
initial state of the tape. This is straightforward as the tap'e
initially needs only a linear number of blots. This is because
the tape need only represent the input data to the machine
M, and as explained above, if we shift beyond the tape limits,
the neighboring squares are correctly setup during move (3).

The'legal nlove generator has its blots in goal regions only
at the end of move 3. The goal region for the tape structure
is simply a rectangular box large enough to contain all tape
blots at the end of move 3. Thus all tape blots will be in the
goal region after move 3 of any sequence of valid moves. The
goal region for the state logic on the other hand, is a region
at the exit from the machine's halt state QJ. At this time
the point p is guaranteed to be in the goal region, and so the
sequence of valid moves constitutes a succesful Inotion plan.
Such a plan exists if and only if the non-deterministic Turing
machine M halts on (accepts) that input. Thus we have

o
•o
o
o
o

y

fitap::c
I I (one level)

,:::.c=1Il1iiiiiiiiiiiiW--- ZL
~ :J X

length of move 1

-----.
move 3

Figure 16: State logic (global view).
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Figure 17: tape logic for shifting beyond the end of the tape

we need 4 to exit, we must split some of the entering blots, as
shown in the figure. Special conduits carry the blots to the
location of the new tape square, since this is at some distance
from the tape logic. In order for this splitting to occur, we
need tighter control that normal over the direction of t~e
commanded velocity for this move. The structure shown In
figure 17b is added at move 3 in one of the legal move filter
structures at the y-Ievel corresponding to Qij. It ensures ~hat
some part of the forward projection must pass over both sIdes
of the splitter in figure 17.

Theorem 4.5.1 Oompliant Motion Planning with Uncer
tainty is Non-Deterministic Ezponential Time Hard

Proof We have described a polyhedral environment and
start and goal regions such that a guaranteed motion plan ex
ists if and only if M has a path to an accepting state. Since
the amount of logic for each tape or state transition is con
stant, and since there is tape logic under only one square of
the tape, the number of objects in the environment is poly
nomial in the length of the description of M. By the results
of the previous sections, we need a polynolnial nUlnber of bits
to describe the structures and start and goal regions in the
environnlent. Finally, the description of these structures can
be COlllputed in polynonlial time. 0

5 Conclusions

In this paper we used path encoding to give new lower bounds
for three fundamental robot motion planning problems. We
gave the first non-trivial lower bounds for 3-dimensional
shortest path under any LP metric. We showed that finding
the shortest path is NP-hard, and that a polyhedral environ
ment may contain exponentially many shortest path classes.
The best known upper bounds require more than polyno...
mial space, so that the exact complexity of the problem re
mains open. The difficulty in finding good bounds seems to
stem from the fact that the problem has both a combinatorial
(edge sequence touched) and an algebraic character (position
of contact points on edges). We made use of the combinato
rial aspect only in our NP-hardness proof.

However, knowing the edge sequence is not sufficient to
determine the path, because the position of contact points on
edges does not seem to be describable as a polynomial-size al
gebraic number, so there is no obvious NP or E2 algorithm for
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the problem. The conta.ct points are defined by. high degree
polynomials, and Bajaj [Ba] has shown these polynomials
are irreducible in some ca.ses.

Notice that our proof requires some large rational num
bers to describe the environment, and no longer succeeds if
integers are coded in unary. Thus we have demonstrated NP
hardness but not strong NP-hardness. This is not surprising
in the light of Papaditnitriou's [Pal approximate algorithm
for the problelu, which t.akes titne polynoluial in both the
environlllent size and the length of a unary approximation
error.

We showed that 2-ditllensional dynalllic motion plan
ning with bounded velocity luagnitude is NP-hard even with
polygonal (in fact convex) obstacles moving with constant ve
locity. This result should readily generalize to the case where
the velocity is bounded by any conVex polygon, rather th~n

a circle.
We also gave a non-deterministic exponential· time hard

ness proof for the lllotion planning with uncertainty problem.
Here control uncertainty was a fundamental limitation to our
representation of state using path encoding~ It seems plau
sible that the proof could be extended to exponential space
hardness by periodically squeezing all of the state blots, with
a "refresh" of the tape.
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