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Abstract

This research investigates the use of pyramid coding in various digital image and video

compression applications, the progressive transmission of images, and the e�cient re-

covery of motion information from video sequences. Through the use of feedback,

pyramid coding allows both 
exibility in the choice of �lters, and the use of quanti-

zation noise feedback. While the �lters have a signi�cant e�ect on the properties of

the generated pyramid, quantization feedback allows more control over the distortion

introduced indirectly into the reconstructed image through separate quantization of

the pyramid subimages.

After a frequency domain analysis of pyramid coding, a new class of decimation

and interpolation �lters is developed. The use of both di�erent �lters, and quantiza-

tion feedback in various applications is then explored. This is followed by proposals

regarding possible choices of generation schemes and �lters for the e�cient imple-

mentation of pyramid coding in these applications. Finally, the performance of the

pyramid codec is evaluated against both optimal methods, where appropriate, and

other proposed suboptimal methods.

For example, a �lter pair is proposed for lossless image coding that not only leads to

the generation of low entropy pyramids, but also allows a given image to be represented

as a subsampled pyramid of the same number of pixels. Lossless compression ratios

signi�cantly higher than in the case of related techniques are achieved by this form of

pyramid coding, while generally at a fraction of the computational cost. Appropriate

�lters are also proposed for the generation of pyramids suitable for the recovery of

motion information from video sequences. Using hierarchical motion �eld recovery,

based on pyramids generated with these �lters, it is shown that a motion compensation

scheme achieves a performance close to that achieved when based on the optimal

exhaustive search technique, while at a small fraction of the computational cost.
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Chapter 1

Introduction

Information, the communication or reception of knowledge or intelligence, is the essen-

tial commodity that enables us to learn and make decisions. However, to communicate

and learn from information, we must have some method of transmitting and storing

it. This requires the use of various communications channels, for example radio, tele-

vision or telephone and storage systems, for example electronic memory, magnetic

media or optical media. To make the best use of communication channels and storage

systems, it is necessary to maximize their e�ciency by minimizing the transmission

and storage of redundant, or useless, information. Increased e�ciency translates into

lower bandwidth requirements in a communication channel, or lower memory require-

ments in a storage system. Source coding encompasses a variety of techniques which

strive to minimize information redundancy present in a source and thereby improve

communication or storage e�ciency in various applications.

There exist two broad classi�cations of source coding, namely lossless and lossy

source coding. Lossless source coding does not introduce any distortion into a source,

and �nds applications in, for example, the compression of medical images. Due to

the constraint of perfect reconstruction of the original signal, lossless coding typically

achieves compression ratios up to three. On the other hand, lossy source coding is

capable of achieving much higher compression ratios, but may introduce some distor-

tion into the reconstructed signal. Due to its generally higher compression capability,

lossy coding �nds application in, for example, image databases, teleconferencing and

video-on-demand services.

1
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Pyramid coding is a source coding technique that �nds application in both loss-

less and lossy image and video compression. This thesis presents research directed

at tailoring and integrating pyramid coding into new schemes for image and video

compression.

1.1 Image and Video Sources

Natural images are typically comprised of smoothly varying, continuous tone \sur-

faces", and consequently consist of mostly low spatial frequency information. This

classi�cation encompasses the majority of \real world" scenes. Source coding algo-

rithms for 8 bpp greyscale natural images, for example see Figure B.1, have been

investigated in this research. However, these algorithms may easily be extended for

the coding of higher rate or color natural images.

A video signal is composed of a sequence of frames, spaced at regular time intervals,

as shown in Figure 1.1. Temporal lowpass �ltering of the human visual system (HVS)

leads to the perception of apparent motion from small changes in successive frames

in the video sequence. There exist two broad classes of video, namely progressive

and interlaced video. In progressive video, each frame consists of a complete image,

while in interlaced video, each frame consists of an even or odd �eld. The alternating

even or odd �elds in interlaced video in turn contain either the even or odd numbered

rows in the image frames respectively. For example, the NTSC television standard,

widely used in North America, de�nes an 394� 525 interlaced video signal with

a rate of 60 frames per second. On the other hand, the CCDC HDTV standard

de�nes a 720� 1280 progressive video signal, also with a rate of 60 frames per

second. For 24 bpp color, such a progressive signal represents an uncompressed rate

of 1:3� 109 BPS, and highlights the need for e�cient source coding. In this research,

source coding algorithms for progressive video signals consisting of 8 bpp greyscale

frames, for example see Figure B.2, have been investigated, although they may easily

be extended to higher rate or color progressive video.
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Figure 1.1: Video Sequence Diagram

1.2 Pyramid Coding

Pyramid coding is a source coding technique that was �rst proposed by Burt and

Adelson (1983) for the compression 1 of still images. Subsequently, research done

by Ho and Gersho (1989b), Torbey and Meadows (1989) and Wang and Goldberg

(1989a, 1989b, 1991) has lead to better ways of applying pyramid coding in the

compression of still images. Furthermore, research done by Stiller and Lappe (1991)

and Uz, Vetterli, and LeGall (1991) has lead to new applications of pyramid coding

in video compression. Through pyramid coding, an image may be represented in an

alternative hierarchical form as an image pyramid. An example of a three level image

pyramid is shown in Figure 1.2. An image pyramid consists of a set of subimages of

various sizes, the largest of which is the same size as the original image from which

the pyramid was constructed. Each subimage represents a level of the pyramid, and

contains a di�erent portion of the spatial frequency spectrum of the original image.

In order of decreasing size, the pyramid subimages contain mostly highpass, bandpass

and lowpass information of the original image respectively.

1Compression refers to the process by which data is represented in a more concise, compact form.
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ow Diagram

1.2.1 Advantages

Pyramid coding, like subband coding (discussed later in Section 3.1), has a number

of advantages over other related source coding techniques.

Generally, most energy in natural images is concentrated at low spatial frequen-

cies (Section 1.1). Consequently, the spatial frequency decomposition done by pyra-

mid coding on an image leads to a set of subimages in which the variance increases

with decreasing size. This property may be exploited through separate coding of the

subimages, where the larger, low variance subimages are usually coarsely quantized

to achieve a signi�cant compression.

Filters used in the pyramid generation process have a signi�cant e�ect on the

properties of the generated pyramid (Burt and Adelson 1983). Unlike subband coding,

feedback in the pyramid generation process allows 
exibility in the choice of these

�lters so that pyramid coding can be tailored to generate pyramids suitable for a

particular application.

In quantization of the pyramid, each of the pyramid subimages is quantized sepa-

rately. Without feedback, this leads to an accumulation of quantization noise at low

spatial frequencies (Uz, Vetterli, and LeGall 1991). This is undesirable, since the HVS

is most sensitive to noise in this region (Kronander 1989). However, in the case of

pyramid coding, quantization noise introduced to the pyramid subimages may be fed

back through the pyramid generation process (Wang and Goldberg 1989a), allowing

more control of the distortion introduced indirectly into the image reconstructed from

the pyramid. This is not possible in subband coding where no such feedback path
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exists.

Since the human visual system (HVS) is most sensitive to low spatial frequency

information, the signi�cance of information contained in the pyramid subimages gener-

ally decreases with increasing size. For instance, it is possible to transmit the pyramid

subimages over a channel in order of increasing size, and decreasing importance, so

that the most signi�cant information is sent �rst to be subsequently re�ned with the

arrival of less important information. This technique, which is particularly useful in

the transmission of images over low bandwidth channels, is called progressive trans-

mission (Burt and Adelson 1983). Also, since the pyramid subimages contain di�erent

portions of the spectrum of the original image, the dependence of the sensitivity of

the HVS on spatial frequency may be conveniently exploited through separate coding

of the pyramid subimages.

Since the subimages have di�erent resolutions, pyramid coding may be classi�ed

as a multiresolution technique. The hierarchy of image information contained in the

image pyramid permits the use of various computationally e�cient \coarse-to-�ne"

image analysis strategies.

1.2.2 Disadvantages

However, there exist two main disadvantages to pyramid coding. Firstly, the sum of

the pixels in the pyramid subimages generally exceeds the number of pixels in the

original image, except in the case of a specialized pyramid coding scheme developed

later in this thesis. In subband coding however, the sum of the pixels in the subband

images is the same as the number of pixels in the original image. Secondly, the

pyramid generation and image reconstruction processes generally have a relatively

high computational cost, when compared to other similar source coding techniques.

These disadvantages make the task of applying pyramid coding in image and video

compression more challenging, and are amongst some of the issues addressed in this

research.
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1.3 Motion Compensation

Video sequences typically contain a considerable amount of temporal redundancy as

a result of the fact that neighboring frames 2 generally do not di�er signi�cantly.

Various methods have been proposed to exploit this temporal redundancy in order to

achieve a signi�cant compression of the video information. The most successful and

widely applied of these is motion compensation (MC). MC represents a given frame

as an interpolation of neighboring frames, plus an interpolation error. The details of

this temporal interpolation are described using a motion �eld (MF) that speci�es the

way in which the given frame di�ers from the neighboring frames. The error in the

interpolation when compared to the original frame, which is commonly referred to

as the displaced frame di�erence (DFD), may then be used together with the MF to

reconstruct the video sequence exactly. If the MF is su�ciently accurate in describing

the way in which the given frame di�ers from the neighboring frames, the DFD will

have low energy 3 and may be e�ciently coded, leading to a good compression. How-

ever, accurate calculation of the MF often requires enormous computational e�ort,

and in practice suboptimal techniques must therefore be used. For example, the hier-

archical structure of pyramid coding allows computationally e�cient \coarse-to-�ne"

strategies to be implemented in the calculation of the MF.

1.4 Overview

This thesis documents research done to explore the advantages and overcome the

disadvantages of pyramid coding with the aim of making it more useful in practical

image and video compression applications.

After the development of new classes of decimation and interpolation �lters, based

on a frequency domain analysis of pyramid coding, the signi�cance of the �lters in

pyramid codecs for various applications is analyzed. This is followed by proposals

regarding possible choices of generation schemes and �lters for the e�cient imple-

mentation of pyramid coding in these applications. For example, an e�cient new

lossless image coding technique, based on pyramid coding, is developed. Various bit

2A frame refers to a single image in a video sequence.
3The energy of an image is represented by its variance.
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allocation schemes are investigated for use in lossy pyramid codecs that employ quan-

tization feedback. Progressive transmission of images using pyramids is also explored.

Finally, techniques are proposed to exploit the hierarchical structure of the image

pyramid in video applications, allowing more accurate MF estimates to be calculated

at lower computational cost.

Chapter 2 brie
y reviews basic aspects of source coding after which Chapter 3

discusses the details of pyramid coding. Applications of pyramid coding in image

and video compression are then investigated in Chapter 4 and Chapter 5 respectively.

Finally, Chapter 6 draws some conclusions regarding the use of pyramid coding in

practical applications and suggests some potential areas for future research.



Chapter 2

Foundations In Source Coding

2.1 Source and Channel Coding

Generally, two types of signal coding are implemented in a practical codec, namely

source and channel coding. Source coding attempts to represent data in an alternative

form where signi�cant information is concentrated in some sense and can be trans-

mitted or stored more e�ciently. Channel coding on the other hand, encompasses

various techniques used to encode data prior to transmission or storage in order to

make it more robust to noise and other degradations. In the general model of a codec

shown in Figure 2.1, source and channel coding may be approximated as independent,

cascaded processes. In such a model, separate optimization of the source and channel

codecs leads to an optimal combined codec. This model has proven to be a reasonable

approximation in practice and has been used in this research, where separate opti-

mization of the source codec in image and video applications is investigated. However,

in some cases, joint source and channel coding may provide an overall performance

gain. Optimization of the channel codec is outside the scope of this research.

Source
Encoder

Channel Transmission /
Storage

Channel
DecoderEncoder

Source
Decoder

Data Data

Figure 2.1: General Codec Model
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2.2 Information Redundancy

The objective of source coding is to represent data in an alternative, more compact

form, or \compress" it. This is done by identifying and eliminating information

redundancy, which is generally present in data in one or both of two forms. Firstly,

statistical redundancy results from inter-symbol1 correlation in the data. A signal

that does not possess any statistical redundancy has an autocorrelation function that

is an impulse. Secondly, perceptual redundancy is present in data as a result of

information that is not signi�cant in the application for which it is intended. For

example, in images and video, perceptual redundancy exists as a result of information

content that is not visible or signi�cant to the HVS.

2.3 The Source Codec

The source coder and decoder can be broken down as shown in Figure 2.2 (Sezan

and Lagendijk 1993). Initially, the source coder represents the input signal in an

alternative form, referred to as the representation coe�cients, in which signi�cant

information is concentrated in some way. In the next stage, bits are allocated to the

coe�cients according to their importance in determining the quality of the recon-

structed signal. After bit allocation, the coe�cients are quantized, to produce the

quantization indices. Finally, codewords, the components of which are generally bits,

are uniquely assigned to the quantization indices to produce the bitstream. The de-

coder implements the inverse transformations of the above three stages in the reverse

order to produce the reconstructed signal. For simplicity, Figure 2.2 neglects overhead

information needed to implement the representation, quantization and codeword as-

signment stages and their inverses. Generally, this information represents only a small

fraction of the total bitstream though.

2.3.1 Representation

The representation stage of the source coder can be divided into the four broad classes

of predictive, transform, spectral decomposition and model based coding methods.

1A data symbol refers to the basic unit of a data signal. For example, in images, a symbol refers

to an individual pixel.
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Reconstructed

Signal

Channel

or

Storage

Bitstream

Representation

(Analysis)

Codeword

Assignment
Quantization

(Synthesis)

Representation Codeword

Decoder

Inverse

Quantization

Bitstream
Source

Signal

Representation

Coefficients

Quantization

Indices

Source Encoder

Source Decoder

Figure 2.2: Source Encoder and Decoder Functional Breakdown

For any technique, a tradeo� is made in computational complexity versus e�ciency

of the representation, in terms of describing the most useful information of the source

in the smallest number of coe�cients.

Predictive Coding

In image and video coding, often there exists a signi�cant amount of correlation be-

tween neighboring pixels in the spatial, color or temporal dimensions. This enables

predictive coding to estimate the value of a given pixel from the values of other pixels

that are close by in some sense (Gersho and Gray 1992). A source may therefore be

represented by a prediction equation and prediction error. Since the prediction equa-

tion is most commonly linear with only a few terms, and the decorrelated prediction

error has low energy, this results in a signi�cant concentration of source informa-

tion. The most common implementation of predictive coding is di�erential pulse code

modulation (DPCM). In DPCM, the coe�cients of the linear prediction equation are

calculated in advance, based on measured or estimated statistics of the source. It

therefore assumes stationarity of the source. Alternatively, this technique has also

been implemented adaptively in adaptive DPCM (ADPCM), enabling the predictor
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to \follow" slow changes in the statistics of the source. Since predictive coding tech-

niques rely on perfect synchronization of the encoder and decoder, they are sensitive

to channel errors, and are usually \reset" for resynchronization during operation. Of-

ten, calculation of the coe�cients of the predictor equation introduces considerable

computational complexity into this class techniques and has limited their use in some

applications. Note that prediction in the temporal domain, often applied in video

sequence source coding, is called MC. In later discussions of MC, some important

di�erences between DPCM and MC prediction will become clear.

Transform Coding

Transform coding encompasses a variety of linear techniques used to represent a source

in an alternative form in which signi�cant data is concentrated in only a few transform

coe�cients, thus enabling compression (Netravali and Haskell 1988). The optimal

transformation, in terms of decorrelating the transform coe�cients, is the Karhunen-

Lo�eve Transform (KLT). However, the KLT is source dependent and therefore com-

putationally expensive. A more practical and source independent transform, which

has been widely implemented in practice, is the discrete cosine transformation (DCT)

(Clarke 1985). However, the DCT, and other suboptimal transform coding tech-

niques, are typically block based and therefore exhibit annoying blocking artifacts at

low rates.

Spectral Decomposition Coding

Coding methods implementing spectral decomposition of the source include subband

(Woods and O'Neil 1986), (Woods 1991) and pyramid coding (Burt and Adelson

1983), (Akansu 1992). These multiresolution techniques initially perform an octave

subband decomposition of the spectrum of the original image into a number of sub-

bands or subimages, each of which can then be coded according to its speci�c char-

acteristics. Where the spectral energy of a source is non-uniformly distributed, as is

generally the case in images and video (see Section 1.1), spectral decomposition coding

leads to a set of subbands/subimages with generally di�erent variances. Signal energy

is therefore concentrated in high variance subbands/subimages, and low variance sub-

bands/subimages may often be coarsely quantized. The HVS is most sensitive to low
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spatial frequency content in an image or video source. Most perceptually signi�cant

data is therefore generally found in the low spatial frequency subbands/subimages. It

should be noted, however, that the application of MC prior to spectral decomposition

coding in video compression confuses this relationship between spectral content of

the subbands and the sensitivity of the HVS (Gothe 1993). These techniques have

the advantage that, in the decoding stage, �ltering helps to spread quantization noise

over many pixels so that undesirable e�ects such as blocking and contouring are less

apparent in the reconstructed images.

Model Based Coding

Model based coding methods, for example fractal coding (Barnsley and Hurd 1993),

attempt to represent source in a much higher level symbolic form with a small num-

ber of coe�cients, potentially allowing a very high data compression to be achieved.

However, these techniques typically require a relatively high computational cost, par-

ticularly in the encoder, limiting their application to date.

2.3.2 Quantization

Often, the representation coe�cients in Figure 2.2 consist of a large range of 
oating

point values. In order to store or transmit the coe�cients, it is necessary to assign

unique indices to each coe�cient. However, this assignment generally results in a very

high bitstream rate, and an ine�cient source coder. It is therefore necessary to reduce

the number of unique coe�cients by approximating ranges of coe�cients by single

coe�cients. This process is called quantization. Before quantization, bit allocation

must be done to determine the structure of the quantizers. A common algorithm used

to determine the optimal bit allocation for a set of quantizers, resulting in the lowest

overall distortion for a selection of rates, is the Breiman, Friedman, Olshen and Stone

(BFOS) algorithm (Riskin 1991). Alternatively, the simpler, suboptimal Greedy bit

allocation algorithm (Gersho and Gray 1992) may be used for the same purpose.

Quantization (Gersho and Gray 1992) is a nonlinear transformation whereby a

block of input symbols, each of which is an element of some (possibly in�nite) input

set, is assigned a quantization index. Inverse quantization then consists of uniquely

assigning a block of output symbols, each of which is generally also an element of the
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input set, to each quantization index. In scalar quantization, each symbol is quantized

independently and the block dimension is therefore one. Vector quantization involves

quantization with larger block dimensions. While vector quantization has the ability

to exploit intersymbol correlation in order to achieve a better performance, scalar

quantizer design and implementation is computationally cheaper and therefore more

widely implemented in practice. Another advantage of vector quantization is that it

allows the assignment of fractional bit rates to the coe�cients. Whereas, in scalar

quantization, each unique coe�cient must be assigned a unique quantization index,

and codeword of integer length greater than one.

A scalar quantizer may be decomposed into a set of quantization cells, the ith cell

of which is shown in Figure 2.3. In the quantization operation, all input values in the

range [xi; xi+1) are assigned a unique quantization index, for example i. During inverse

quantization, this index is assigned a predetermined output value yi, generally within

the range [xi; xi+1). In Figure 2.3, xi, yi, xi+1 and � are called the lower boundary,

output, upper boundary and step size of the quantization cell respectively. Quantizer

cells may be classi�ed as granular or overload as shown in Figure 2.4. Granular cells

x
i

x
i + 1

y
i

∆

Figure 2.3: Quantization Cell

are bounded, but overload cells lack one boundary, which is e�ectively set to in�nity.

Scalar quantizers may be classi�ed as either uniform or nonlinear. In the case

of nonlinear quantizers, � may vary from cell to cell, along with the relative posi-

tion of yi in the cell. However, in the case of uniform quantizers, � is constant for

all granular cells and and yi is always the midpoint of the cell. The performance

of uniform quantization, when combined with appropriate codeword assignment, is

asymptotically equal to that of optimal nonlinear quantization with increasing bit

rate (Jayant and Noll 1984). Uniform quantizers are simple to design and implement,
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and the complete quantizer structure may be speci�ed with only a few coe�cients.

Uniform quantizers are also often designed to be symmetrical about the mean of the

signal to be quantized, based on the assumption of a symmetric signal pdf. This is

a valid assumption, for example, in the case of the pyramid subimages that generally

have pixel pdfs resembling Laplacian distributions. A useful parameter called the load

fraction of the quantizer may be de�ned. The load fraction � for a uniform quantizer

with the structure in Figure 2.4, symmetrical about xN=2 which is de�ned to be the

signal mean, is calculated as

� =
�

ymax
(2.1)

where � is the standard deviation of the signal to be quantized, and ymax is the abso-

lute distance from xN=2 to yN�1 or y0. Since any distortion in the reconstructed signal

=x
N

x x x x
N-1

y y y y
0 N-1

overload granular overload

N/2N/2-1 N/2+1

N/2-1 N/2
x

1
x

0
=-

Figure 2.4: Quantizer

generally results mainly from this stage of the source codec, careful bit allocation and

quantizer design is necessary for good overall source codec performance.

2.3.3 Codeword Assignment

In this stage, the quantization indices are uniquely assigned codewords, the compo-

nents of which are usually represented, for transmission purposes, as binary num-

bers. In �xed rate codeword assignment, all codewords have the same length, while

in variable rate codeword assignment, codewords may have di�erent lengths. Fixed

rate codeword assignment allows for both a simpler implementation, and easier syn-

chronization of the encoder and decoder, an important consideration in error prone

channels. On the other hand, variable rate codeword assignment requires the use

of more sophisticated synchronization techniques and bu�ers. The optimal (lowest)

average rate for any assignment in which a codeword is assigned to each quantizer

index, is de�ned by the zeroth order entropy H of the quantizer indices (A.8). Fixed
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rate codeword assignment is only optimal for this stage if each quantization index

is equiprobable. However, for nonuniform quantizer index pdfs, appropriate variable

rate codeword assignment results in an overall average rate closer to the optimal en-

tropy lower bound. For this reason, variable rate codeword assignment is sometimes

referred to as entropy coding. Since this stage of the source coder introduces no dis-

tortion into the reconstructed signal, it is also often referred to as noiseless coding

(Gersho and Gray 1992).

Codewords may be assigned to groups of quantization indices, for example in run-

length coding (Gersho and Gray 1992) or arithmetic coding (Langdon and Rissanen

1981). Alternatively, they may be assigned to each quantization index independently,

for example in Hu�man coding (Hu�man 1952). In the former case, blocks of quantizer

indices must be processed at a time, while Hu�man coding allows instant encoding

and decoding of the quantizer indices, one at a time. However, in Hu�man coding,

each quantizer index must be assigned a unique codeword of integer length greater

than zero. This constraint may cause the overall rate to be signi�cantly higher than

the ideal entropy lower bound in applications where the quantizer index pdf is highly

nonuniform. Codewords may also be assigned using adaptive techniques, capable of

following variations in the statistics of the quantizer indices. Two examples such tech-

niques are adaptive Hu�man coding (Gersho and Gray 1992) and Ziv-Lempel coding

(Ziv and Lempel 1978).

2.4 Lossless / Lossy Source Coding

There exist two broad classi�cations of source coding techniques, namely lossless and

lossy coding.

In lossless coding, the reconstructed signal matches the original signal exactly.

Due to this constraint, lossless coding schemes only exploit statistical redundancy in

the original signal in order to achieve compression, and omit the quantization stages

of the codec. Lossless coding commonly achieves compression ratios C (A.14) in the

approximate range C � [1; 3] (Gersho and Gray 1992). Where a source contains statis-

tical redundancy in, for example, temporal or color dimensions, as well as the spatial

dimension, higher lossless compression ratios can generally be achieved. Lossless cod-

ing �nds application in, for example, medical and satellite imaging, where no loss of
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quality is tolerable for legal or other reasons.

For higher compression ratios, lossy coding may be used. However, some distortion

may be added to the reconstructed signal by the source coder, the severity of which

generally increases with increasing compression ratio. This enables lossy coding to

exploit statistical as well as perceptual redundancy in the original signal. Similar

increases in lossy compression ratios are possible for sources containing additional

correlations in, for example, temporal or color dimensions. Lossy coding, due to its

typically higher compression ratios, is more widely applied in, for example, image and

video compression for the mass media market, including television, video conferencing

and image databasing.

2.5 Source Codec Performance

The performance of a source codec is most commonly measured as its rate-distortion

performance. In image coding, the rate is de�ned in terms of bits per pixel (bpp) (A.4)

while distortion refers to the \quality" of the reconstructed signal when compared to

the input signal. Ideally, in image and video source coding applications, quality would

re
ect the subjective visual quality of the reconstructed data as perceived by the end

viewer. Since the viewer in a vast majority of such applications is human, and the

HVS is far from well understood, this subjective quality is not easily quanti�ed. It

is therefore common practice to substitute some objective, mathematically tractable

measure of quality for the ideal, for example the mean squared error (MSE), normal-

ized mean squared error (NMSE), signal to noise ratio (SNR) or peak signal to noise

ratio (PSNR) (A.10,A.11,A.12,A.13). In the interest of comparing results presented

in this research with other related research, these objective measures have been used.

It should be noted that, given some measure of distortion, the rate-distortion

performance of a codec is dependent not only on the methods employed by the codec,

but also on the data. In order to optimize the performance of a codec for a certain

application, it is therefore necessary to match the codec to the speci�c characteristics

of the data. This requires choosing a coding technique that is capable of exploiting

particular statistical and perceptual information redundancies present in the data.

Alternatively, the codec can be made adaptive so that it can \follow" changes in the

characteristics of the data during operation.
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There may also be a need for the rate of the source codec to be variable in some

applications, for example in communications over a mobile channel with time variant

characteristics. In such an application, the source codec must drop or increase its

rate during operation to limit the error probability. In this case, it is desirable that as

the rate of the codec becomes more constrained, the quality of the data output from

the decoder degrades gracefully. Graceful degradation requires that the distortion

introduced into the data by the codec does not contain annoying artifacts.

A further consideration in, for example, \packetized" ATM networks is the ability

to prioritize packets of data (Chen, Sayood, and Nelson 1992), since this allows the

network to alleviate congestion by discarding low priority packets. For an e�cient

communication system, such prioritization of a given packet must be closely linked

to the perceptual importance of the source coding coe�cients contained within. A

source coding technique that facilitates such prioritization is therefore desirable in

these applications.



Chapter 3

Principles of Pyramid Coding

As discussed in Section 2.3.1, subband and pyramid coding are examples of spectral

decomposition coding. After a brief outline of subband coding, in order to contrast

some of the unique features of pyramid coding, both lossy and lossless schemes for

various pyramid coding applications will be examined in detail.

3.1 Subband Coding

In e�cient source coding, it is desirable to concentrate useful information from a

source (see Section 2). Natural images typically contain most of their energy at

low spatial frequencies (see Section 1.1). Therefore, it is possible to concentrate the

image information to some extent by decomposing the spatial frequency spectrum of

the image source into into subbands (see Section 2.3.1). The subband containing the

low spatial frequency detail usually contains the most important image information,

to the HVS, in a concentrated form. This is the principle behind subband coding

(Woods and O'Neil 1986), a more detailed description of which follows.

The basic subband codec analysis-synthesis iteration is shown in Figure 3.1. In

the coder, the original signal s(n) is �ltered by a pair of analysis �lters Al(!) and

Ah(!) with lowpass and highpass responses respectively. Subsequently, the two �lter

outputs are subsampled by a factor of two (# 2), quantized (Q) and entropy coded

(E) for transmission or storage. The decoding iteration proceeds in the reverse or-

der, beginning with entropy decoding (E�1), followed by inverse quantization (Q�1),

upsampling (" 2) and �nally, synthesis �ltering with the lowpass and highpass �lters

18
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Sl(!) and Sh(!) respectively. The summed outputs of the synthesis �ltering opera-

tions form the reconstructed signal ŝ(n). The iteration in Figure 3.1 decomposes s(n)

into two subbands, each subsampled by a factor of two, with the same total num-

ber of samples as in the original signal. For decompositions into a larger number of

subbands, the iteration is repeated with s(n) as the subsampled output of Al(!). In

summary, subband coding performs an octave subband decomposition (see Figure 3.8)

on the spectrum of the original signal.
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Figure 3.1: The Basic Subband Codec Analysis-Synthesis Iteration

Ideally, the analysis �lters Al(!) and Ah(!) are \brickwall" lowpass and highpass

�lters, with cuto�s at �
2
, unity gain in the passband, and in�nite attenuation in

the stopband. These �lters would allow the outputs to be subsampled by a factor

of two without any aliasing. Similar ideal synthesis �lters Sl(!) and Sh(!) would

allow the unwanted \interpolation image", resulting from the upsampling operation,

to be stopped perfectly so that the original signal can be reconstructed exactly. In

practice however, these �lters cannot be realized, and noise from both aliasing and

\interpolation images" gets added in the codec operation. However, by imposing a set

of constraints on the analysis-synthesis �lter pairs, it is possible to ensure aliasing free,

perfect reconstruction of the original signal so that, in the absence of quantization,

ŝ(n) = s(n). Quadrature mirror �lters (QMF) (Esteban and Galand 1977) are an

example of a �lter class that satisfy these constraints. The constraints for QMF

�lters are summarized below.

jAl(!)j = jAh(! + �)j
Sl(!) = 2Al(!)

Sh(!) = �2Ah(!)

jA2

l (!)j+ jA2

h(!)j = 1 (3.1)

In practice, these constraints can be closely approximated using appropriate FIR
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�lters that have a modest size. In image and video coding applications, the subband

decomposition may be done in two, or sometimes three dimensions (Gothe 1993)

by applying the one dimensional QMF �lters (3.1) separably. It is also possible to

implement subband decomposition using nonseparable �lters, although the design of

such �lters is a complex problem.

In real applications, �ltering becomes a problem near the signal limits, for example

the edges of an image, where samples are not present. This problem can be handled

in at least three di�erent ways. Firstly, the unknown samples can assume the value

of some constant. Secondly, the signal extremes can be joined, for example the image

can be joined at its top and bottom, and left and right in a way that is analogous

to circular convolution (Oppenheim and Schafer 1989). Thirdly, Smith and Eddins

(1987) have shown that when the unknown samples are assigned values by re
ection

about the signal extremes, the energy of the subbands is generally reduced. See

further in Section 3.5.2 for a more detailed discussion of �ltering edge e�ects.

Subband coding, unlike pyramid coding, has the advantage that the total number

of samples in the subbands equals the number of samples in the original signal. How-

ever, the analysis-synthesis �lter pairs are rigidly constrained and may not be altered

to suit a particular application, without losing the ability to reconstruct the original

signal perfectly. In addition, it is not possible to implement feedback in the subband

coding iteration. Consequently, separate quantization of the subbands may lead to

an undesirable accumulation of quantization noise in the reconstructed signal.

On the other hand, it is possible to use feedback in the pyramid coding iteration,

allowing both 
exibility in the choice of �lters and more control of the distortion

introduced indirectly into the reconstructed signal, as a result of separate quantization

of the subimages. These, and other advantages of pyramid coding have been explored

in this research, and will be discussed in more detail in the following chapters.

3.2 Background

The �rst scheme used to generate image pyramids is shown in Figure 3.2. After low-

pass �ltering an image, subsampling is done, generally by a factor of two horizontally

and vertically, to produce a \coarse" quarter size version of the original image called

the decimated image. The original and decimated image then form the base and top
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subimages of a two level pyramid. For pyramids with more than two levels, the gen-

eration iteration can be re-applied with the previous decimated image as the original

image and so forth. The purpose of the lowpass �ltering operation is to attenuate

the high spatial frequencies, above �=2, in the original image to reduce the e�ects of

aliasing during subsampling. Burt and Adelson (1983) proposed that, since the im-

pulse response of their lowpass �lter (for use in the generation iteration in Figure 3.2)

resembles a Gaussian function, the generated pyramid should be referred to as the

Gaussian pyramid. Since then, Gaussian pyramid has been be adapted to refer to all

pyramids generated with the iteration in Figure 3.2, a convention that has been used

in this research.

2

Decimation
Decimated

Image

Pyramid Generation

Original

Image

Figure 3.2: The Gaussian Pyramid Generation Iteration

Although the Gaussian pyramid has found extensive application in various, e�-

cient coarse-to-�ne image analysis tasks, particularly in the realm of computer vision,

it has not been applied directly for source coding of images or video. This is due

to the fact that the Gaussian pyramid is a redundant image representation, in that

the base of the pyramid is the same as the original image, and the other pyramid

subimages represent overhead, or redundant, information. There also exists a large

amount of correlation both within the subimages, and between the subimages of the

Gaussian pyramid. However, as will be shown in Chapter 5, indirectly, the Gaussian

pyramid �nds important application in the source coding of video.

Later, it will be shown that, through the use of di�erent generation schemes, it is

possible to generate other types of image pyramids with di�erent properties.
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3.3 The Pyramid Codec

The implementation details of both the pyramid coder (also referred to as the pyramid

generation scheme) and the pyramid decoder (also referred to as the image reconstruc-

tion scheme) di�er in the case of lossy and lossless coding.

3.3.1 Lossy Pyramid Coding

The basic pyramid generation and image reconstruction iterations for lossy pyramid

coding can be represented as shown in Figure 3.3 (Burt and Adelson 1983). In the

decimation process, an image is �rst lowpass �ltered by a two dimensional decima-

tion �lter, after which it is subsampled by a factor of two horizontally and vertically.

The decimated image contains the low spatial frequency information present in the

original image, but has only 1=4 the number of pixels. The purpose of the decimation

�lter is to reduce aliasing by attenuating spatial frequencies above �=2 in the original

image prior to subsampling. The interpolation process consists of upsampling the

decimated image by a factor of two horizontally and vertically. Unknown pixels in the

upsampling operation are padded with zeros. This is followed by lowpass �ltering of

the upsampled image using a two dimensional interpolation �lter. The purpose of the

interpolation �lter is to amplify the spatial frequencies below �=2 in the upsampled

image that are attenuated as a result of the upsampling operation, and to attenuate

the spatial frequencies above �=2 representing the unwanted \interpolation image".

The pyramid generation iteration consists of decimation, followed by interpo-

lation and subtraction of the interpolated image from the original. The di�erence

and decimated subimages form the base and top of a two level pyramid, and contain

mostly high and low spatial frequency information respectively. Larger pyramids can

be generated by cascading the generation iteration so that the top of the pyramid

formed from the �rst iteration is the original image for the second iteration and so

forth. Where the decimation and interpolation �lter impulse responses resembleGaus-

sian functions, the generation iteration in Figure 3.3 approximates the application of

a di�erence of Gaussian (DOG) operator (Burt and Adelson 1983). In turn, the DOG

operator has been shown to approximate the Laplacian operator (Marr 1982), used

widely in image processing for edge detection. Therefore, Burt and Adelson (1983)

proposed that this type of pyramid be called the Laplacian pyramid, a convention
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that has been followed in this research.

Generally, the pixels of the pyramid subimages consist of a wide range of 
oating

point values, as a result of the �ltering operations, and must be quantized (Q) before

entropy coding (E) can be e�ciently applied. In the image reconstruction itera-

tion, entropy decoding (E�1) followed by inverse quantization (Q�1) are �rst used to

recover the pyramid base and top subimages, after which the reconstructed image, an

approximation of the original image, can be calculated by interpolating the pyramid

top and adding it to the pyramid base. The reconstruction iteration may be cascaded

in a similar manner to the generation iteration for larger pyramids.
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Figure 3.3: General Lossy Pyramid Coding and Decoding Iterations
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3.3.2 Lossless Pyramid Coding

Quantization of the pyramid subimages in the codec shown in Figure 3.3 leads to

undesirable distortion in the reconstructed image. However, the pyramid subimages

cannot usually be entropy coded e�ciently without �rst being quantized, as discussed

in Section 3.3.1. To solve this dilemma, feedback can be used in the pyramid gener-

ation scheme, enabling quantization of the subimages, while preserving the ability to

reconstruct the original image exactly. Two such schemes for applying quantization

feedback are now discussed.

Lossless Pyramid Coding with Quantization Feedback

The �rst scheme for lossless pyramid coding, employing quantization feedback, is

shown in Figure 3.4. This scheme was �rst proposed by Wang and Goldberg (1989a).

Since quantization of the pyramid top is done prior to interpolation and calculation

of the pyramid base, quantization noise introduced into the pyramid top is fed back

to the pyramid base. This allows the range of pixel values in the pyramid top to be

restricted through quantization, leading to e�cient entropy coding of the pyramid

top, while preserving the ability to reconstruct the original image exactly. However,

such a generation scheme generally results in a pyramid base with a wide range of


oating point pixel values, making it unsuitable for e�cient entropy coding. As well,

the pyramid base cannot be quantized without introducing distortion into the original

image, since there is no way to implement quantization feedback from the pyramid

base. This subimage is also the largest of the pyramid, and therefore contributes

signi�cantly to the total rate. Consequently, such a scheme is not practical for e�cient

lossless pyramid coding. It does however have important advantages when used as a

lossy codec, as will be discussed further in Section 3.6.3.

Practical Lossless Pyramid Coding with Quantization Feedback

Figure 3.5 illustrates a second scheme for lossless pyramid generation, which is more

practical than the technique proposed by Wang and Goldberg (1989a) (see Figure 3.4)

since it also allows e�cient entropy coding of the pyramid base. This scheme is

a generalization of that proposed by Goldberg and Wang (1991), where the post-

decimation and post-interpolation quantizers are constrained to quantize the 
oating
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Figure 3.4: Lossless Pyramid Coding and Decoding Iterations Using Quantization
Feedback

point values to the nearest integer.

In the scheme shown in Figure 3.5, the range of 
oating point pixel values in the

pyramid subimages is restricted by the use of quantization after both the decimation

and interpolation �ltering operations. For example, if the original image consists of

integer pixel values, and the quantizers in the decimation and interpolation processes

quantize each 
oating point pixel value to the nearest integer, then the pyramid

subimages will consist of only integer pixel values. This allows e�cient entropy coding

of all the pyramid subimages, while preserving the ability to reconstruct the original

image exactly.

Note that the quantization stages in Figure 3.5 have been incorporated into the

decimation and interpolation processes since these operations may be carried out
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implicitly by constraining the �ltering operations to output only a �nite set of pixel

values. It will shown later in Section 4.1.1 that, through appropriate choice of pyramid

�lters, it is possible to implement �nite �eld arithmetic in the subtraction and addition

operations in the pyramid codec shown in Figure 3.5. This allows the pixels in the

pyramid subimages to be represented in the same number of bits as the pixels in the

original image.

E E

Channel / StoragePyramid

Base

Pyramid

Top

Original

Image

E
-1

E
-1

Σ 2Q

Interpolation

2 Q

Decimation

Σ 2Q

Interpolation

Original

Image

Pyramid Generation

Image Reconstruction

+

+

+

-

Figure 3.5: General Lossless Pyramid Coding and Decoding Iterations

3.4 Pyramid Coding in the Frequency Domain

The e�ect of subsampling and upsampling by a factor of two on the spectrum of the

original signal is illustrated in Figure 3.6 (Oppenheim and Schafer 1989). Clearly,

the ideal decimation �lter, needed to avoid aliasing in the subsampling operation, is
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Figure 3.6: Subsampling and Upsampling in the Frequency Domain

a \brickwall" lowpass �lter with a cuto� at �=2, unity gain in the passband (PB),

and in�nite attenuation in the stopband (SB). The ideal interpolation �lter, needed

to stop the unwanted \interpolation image" resulting from the upsampling operation,

is identical, except it must have a gain of two in the passband. These ideal �lters

are shown in Figure 3.7. Pyramid generation with these ideal �lters would result

in a perfect octave subband decomposition of the spectrum of the original image

into the pyramid subimages, in that there would be no \overlap" in the frequency

ranges assigned to the di�erent pyramid subimages. For example, a �ve level pyramid

generated with these ideal �lters would result the frequency decomposition shown in

Figure 3.8, where region 0 would be assigned to the pyramid base through to region

4 which would be assigned to the pyramid top.
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3.5 Pyramid Filters

Feedback in the pyramid generation process permits the use of a large variety of

decimation and interpolation �lters. This can be contrasted with subband coding,

where the choice of such �lters is severely constrained (see Section 3.1). The choice

of these pyramid �lters has a signi�cant in
uence on the properties of the generated

pyramid (Burt and Adelson 1983), and allows pyramid coding to be \tailored" to suit

a particular application.

In spite of this 
exibility, and the signi�cance of the �lters on the properties of the

pyramid, the majority of previous pyramid coding research has not properly addressed

the issue of what �lters to choose for the generation of pyramids suitable for a given

practical application. There are two known exceptions to this. Firstly, Burt and

Adelson (1983) de�ned a new �lter class in which a particular �lter was found to lead

to the generation of the lowest entropy pyramid, for that class. However, the same

�lter class was used for both the decimation and interpolation �ltering operations
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(see Figure 3.3.1). As was shown in Section 3.4, the objectives of the decimation and

interpolation �ltering operations are di�erent, and this is an unnecessary constraint.

Secondly, Gurski, Orchard, and Hull (1992) presented a technique for calculation of

the optimal pyramid �lters that minimize the variance of the pyramid base in each

generation iteration. However, these optimal �lters are image dependent, and the

proposed technique therefore involves a vast amount of computation to calculate the

optimal �lters prior to generation of the pyramid.

This research includes the derivation of a more practical, image independent class

of decimation and interpolation �lters for use in a variety of di�erent pyramid cod-

ing applications. Although it is not possible to realize both the ideal passband and

stopband responses of a pyramid �lter1 together, as de�ned in Section 3.4, they can

be realized separately. The design of a practical pyramid �lter therefore requires a

tradeo� to be made between the ideal passband and stopband responses. Using this

frequency domain approach to pyramid coding, a new class of pyramid �lters has been

designed.

3.5.1 A New Class of Pyramid Filters

Generally, the more complexity allowed in a �lter, the closer it can be made to ap-

proximate an ideal response. However, for any practical �lter implementation, there

is a limit in computational cost, and indirectly the complexity. It is desirable for

the pyramid �lters to also have the property of zero phase, so that they have a real

frequency response and do not impart a \shift" to any frequency in the image during

the �ltering operations. A zero phase �lter may be conveniently realized as a symmet-

ric, noncausal �nite impulse response (FIR) �lter (Elliot 1987). These requirements,

together with considerations of stability and simplicity in design, lead to the choice

of 5� 5 coe�cient FIR pyramid �lters in this new class. The pyramid �lters have

also been constrained to be separable, allowing the two dimensional �ltering opera-

tion to be realized more simply as two separate one dimensional �ltering operations.

Separability is a property that allows a given pyramid �lter to be completely speci�ed

using only one coe�cient, as will be demonstrated further in the derivation of this

1Pyramid �lter is a collective term referring to either the decimation or interpolation �lter used

in the pyramid codec.
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new �lter class.

A separable pyramid �lter F can be represented as the outer product of a 1� 5

FIR �lter f

F = fT � f

= [f�2 f�1 f 0 f 1 f 2]
T � [f�2 f�1 f 0 f 1 f 2]: (3.2)

The resulting �lter F has a rectangular region of support in the two dimensional

frequency domain, determined by the one dimensional frequency response of the �lter f

from which it is calculated. Therefore, design of a two dimensional pyramid �lter may

be simpli�ed to the design of a one dimensional �lter. Consequently, the coe�cients

of f may be represented as

f = [ f�2 f�1 f 0 f 1 f 2 ]

= [ c b a b c ];
(3.3)

where a; b; and c are real constants, so that the one dimensional frequency response

can be found by

F [f ] =
2X

k=�2

fk e
�jwk

= a+ 2b cos(w) + 2c cos(2w): (3.4)

The decimation and interpolation �lters, designed in the rest of this section, have

been constrained to have perfect DC2 responses, leading to near ideal low spatial

frequency responses, since this is where most energy is found in natural images. The

performance of a pyramid �lter in a given frequency band is calculated as the squared

error (SE) of its response, when compared to the ideal response (see Section 3.4)

in that band. For design of both the decimation and interpolation �lters, the one

dimensional passband and stopband �lter performances are �rst represented as a

function of the �lter coe�cients a; b and c in (3.3). The overall squared error �lter

performance may then be represented as a combination of the passband and stopband

performances, where the �lter coe�cients are constrained to yield a �lter with a perfect

DC response. Finally, minimization of this overall performance with respect to the

�lter coe�cients leads to a system of equations that can be used to completely specify

a 5�5 pyramid �lter, given a single parameter that speci�es the tradeo� in passband

versus stopband performance for that �lter.

2DC refers to the zero frequency part of the spatial frequency spectrum.



CHAPTER 3. PRINCIPLES OF PYRAMID CODING 31

The Decimation Filter

The passband performance (PBSE) of the decimation �lter is given by

PBSE =
Z �=2

0
(F [f ]� 1)2dw

=
Z �=2

0
(a+ 2b cos(w) + 2c cos(2w) � 1)2dw

=
Z �=2

0
2c2 cos(4w)dw

+
Z �=2

0
4bc cos(3w)dw

+
Z �=2

0
(4ac+ 2b2 � 4c) cos(2w)dw

+
Z �=2

0
(4ab+ 4bc � 4b) cos(w)dw

+
Z �=2

0
(a2 + 2b2 + 2c2 � 2a+ 1)dw

= �4bc

3
+ 4ab+ 4bc� 4b+

�

2
(a2 + 2b2 + 2c2 � 2a+ 1); (3.5)

and the stopband performance (SBSE) by

SBSE =
Z �

�=2
(F [f ]� 0)2dw

=
Z �

�=2
(a+ 2b cos(w) + 2c cos(2w))2dw

=
Z �

�=2
2c2 cos(4w)dw

+
Z �

�=2
4bc cos(3w)dw

+
Z �

�=2
(4ac+ 2b2) cos(2w)dw

+
Z �

�=2
(4ab+ 4bc) cos(w)dw

+
Z �

�=2
(a2 + 2b2 + 2c2)dw

=
4bc

3
� 4ab� 4bc +

�

2
(a2 + 2b2 + 2c2): (3.6)

To satisfy the requirement that the decimation �lter have an ideal DC response, the

following constraint is introduced

a+ 2b + 2c = 1: (3.7)
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This leads to the overall performance of the decimation �lter, JSE, which may be

represented as a linear combination of the passband and stopband performances in

(3.5) and (3.6), constrained by (3.7)

JSE = �dPBSE + (1 � �d)SBSE + �(a + 2b+ 2c� 1)

=
4bc

3
� 4ab� 4bc +

�

2
(a2 + 2b2 + 2c2)

+�d(�8bc

3
+ 8ab+ 8bc � 4b � �a+ �=2)

+�(a+ 2b+ 2c� 1): (3.8)

0 � �d � 1

In this equation, �d is a parameter used to specify the relative importance of the

passband versus the stopband performances in the �lter design, while � is a Lagrange

multiplier used to incorporate constraint (3.7) into the optimization. Di�erentiating

JSE with respect to a; b; c and � gives

dJSE
da

= �4b+ �a+ 8�db� ��d + �

dJSE
db

=
4c

3
� 4a� 4c + 2�b� 8�dc

3
+ 8�da+ 8�dc

dJSE
dc

=
4b

3
� 4b+ 2�c� 8�db

3
+ 8�db+ 2�

dJSE
d�

= a+ 2b+ 2c� 1: (3.9)

Setting these derivatives equal to zero then leads to the following system of equations
2
6666664

� (8�d � 4) 0 1

(8�d � 4) 2� (16�d � 8)=3 2

0 (16�d � 8)=3 2� 2

1 2 2 0

3
7777775

�1 2
6666664

��d

4�d

0

1

3
7777775
=

2
6666664

a

b

c

�

3
7777775
: (3.10)

Given a choice of �d, this system of equations can be solved to completely specify a

decimation �lter.

Interpolation Filter

The passband performance (PBSE) of the interpolation �lter is given by

PBSE =
Z �=2

0
(F [f ]� 2)2dw
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=
Z �=2

0
(a+ 2b cos(w) + 2c cos(2w) � 2)2dw

=
Z �=2

0
2c2 cos(4w)dw

+
Z �=2

0
4bc cos(3w)dw

+
Z �=2

0
(4ac+ 2b2 � 8c) cos(2w)dw

+
Z �=2

0
(4ab+ 4bc � 8b) cos(w)dw

+
Z �=2

0
(a2 + 2b2 + 2c2 � 4a+ 4)dw

= �4bc

3
+ 4ab+ 4bc� 8b+

�

2
(a2 + 2b2 + 2c2 � 4a+ 4); (3.11)

and the stopband performance (SBSE) by

SBSE =
Z �

�=2
(F [f ]� 0)2dw

=
4bc

3
� 4ab� 4bc +

�

2
(a2 + 2b2 + 2c2); (3.12)

as in (3.6). To satisfy the requirement that the interpolation �lter have an ideal DC

response, the following constraints are introduced

a+ 2c = 1; 2b = 1; (3.13)

This leads to the overall performance of the interpolation �lter JSE, which may be

represented as a linear combination of the passband and stopband performances in

(3.11) and (3.12) respectively, constrained by (3.13)

JSE = �iPBSE + (1� �i)SBSE + �1(a+ 2c� 1) + �2(2b� 1)

=
4bc

3
� 4ab� 4bc +

�

2
(a2 + 2b2 + 2c2)

+�i(�8bc

3
+ 8ab+ 8bc� 8b� 2�a+ 2�)

+�1(a+ 2c� 1) + �2(2b � 1): (3.14)

0 � �i � 1

Again, �i is the parameter used to specify the tradeo� to be made between the pass-

band and stopband performances, while �1 and �2 are Lagrange multipliers used to
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incorporate the constraints in (3.13) into the optimization. Di�erentiating JSE with

respect to a; b; c; �1 and �2 gives

dJSE
da

= �4b+ �a+ 8�ib� 2��i + �1

dJSE
db

=
4c

3
� 4a� 4c + 2�b� 8�ic

3
+ 8�ia+ 8�ic� 8�i + 2�2

dJSE
dc

=
4b

3
� 4b+ 2�c� 8�ib

3
+ 8�ib+ 2�1

dJSE
d�1

= a+ 2c� 1

dJSE
d�2

= 2b� 1: (3.15)

Setting these derivatives equal to zero then leads to the following system of equations
2
6666666664

� (8�i � 4) 0 1 0

(8�i � 4) 2� (16�i � 8)=3 0 2

0 (16�i � 8)=3 2� 2 0

1 0 2 0 0

0 2 0 0 0

3
7777777775

�1 2
6666666664

2��i

8�i

0

1

1

3
7777777775
=

2
6666666664

a

b

c

�1

�2

3
7777777775
: (3.16)

Given �d and �i, (3.10) and (3.16) can be solved to completely specify a decimation

and interpolation �lter respectively. �d; �i = 0 gives �lters with good3 stopband per-

formances, while �d; �i = 1 gives �lters with good passband performances. Varying

the values of �d; �i between these extremes causes a smooth variation in the frequency

responses of the corresponding �lters, as shown in Figure 3.9 where one dimensional

decimation and interpolation �lter responses are shown for di�erent �d and �i.

In summary, an image can be �ltered by convolving it with a 5 � 5 pyramid

�lter. However, a problem arises in �ltering near the edge of an image where pixel

are \missing". These issues are referred to as �ltering edge e�ects and are discussed

in the next section.

3.5.2 Filtering Edge E�ects

Filtering edge e�ects can be handled in various ways, three of which are discussed

below. These di�erent techniques all substitute some value for that of an unknown

pixel outside the borders of the image.

3A good �lter response is close to the ideal response in a squared error sense.
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Figure 3.9: Decimation and Interpolation Filter Responses for Various �d and �i

Padded Edges

In this technique, a constant is substituted for unknown pixels. The constant is

usually chosen to have some value close to the mean of the image being �ltered. It is

the simplest edge handling technique to implement, and is widely applied in practice.

Wrap-Around Edges

In this method, the image surface is extended by simulated joining of the image at its

top and bottom, and left and right. This technique is analogous to circular convolution

(Oppenheim and Schafer 1989).

Re
ected Edges

Lastly, the image surface can be extended at its borders as if it were 
ipped and

joined left, right, up, down and diagonally so that pixels on the immediate border

of the original image would be duplicated across the original image boundary on

the extended image surface. A similar edge handling technique has been previously

applied in subband coding (Smith and Eddins 1987) and is referred to as symmetric

extension. This technique has been found in practice to result in the lowest energy

pyramid subimages, leading to the most e�cient coding, and is therefore the edge

handling method used throughout this research.
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3.6 Pyramid Quantizers

3.6.1 Properties

Uniform quantization followed by entropy coding is asymptotically optimal with in-

creasing bit rate (see Section 2.3.2), and has therefore been used in this research to

quantize the pyramid subimages.

In this research, uniform quantizers are designed to be symmetrical about the

mean of the image to be quantized (see Section 2.3.2). Since these quantizers have

been constrained to give quantizer indices (see Figure 2.2) with integer bit rates, they

must have 2n quantization cells for some integer n � 0. For n = 0, the quantizer

has a single quantization cell, so that all pixel values are quantized to the image

mean. Whereas, for n > 0, a quantizer has an even number of cells and will therefore

be midrise with a quantization boundary on the image mean, as opposed to being

midtread with a quantization output on the image mean (see Figure 2.3). It should

be noted here that midtread quantizers have the advantage of a \dead-zone" that, for

highly non-uniform distributions, may result in a signi�cant reduction in the entropy

of the quantization indices. A complete uniform quantizer may therefore be de�ned

with only four parameters, namely the rate (n), the image mean, the image standard

deviation and the load fraction.

3.6.2 Design

Before designing a quantizer for a pyramid subimage, the rate of the quantizer must

be speci�ed. This is generally done with the use of a bit allocation scheme (see

Section 2.3.2). The image mean and standard deviation are calculated as in equa-

tions (A.7) and (A.5). The optimal load fraction, in terms of maximizing the PSNR

(A.13) of the quantized image, depends on the pixel value distribution of that image.

The quantization process may be modeled as the addition of noise, or distortion, to

the original image. Two types of distortion arise in the use of a quantizer, namely

granular and overload distortion. Granular distortion represents the quantization

noise added in the quantization of pixel values within the granular cells. Overload

distortion on the other hand results from quantization of pixel values in the overload

cells (see Figure 2.4). The choice of a load fraction below the optimal value leads to
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excessive granular distortion, while the choice of a load fraction above the optimal

value leads to excessive overload distortion. The optimal load fraction in terms of

minimizing the overall quantizer distortion therefore represents a tradeo� between

granular and overload distortion. Figure 3.10 shows a typical graph of the PSNR of

a quantized natural image as a function of the load fraction. This optimal load frac-

tion can be calculated for a given image and rate using the iterative Golden Section

algorithm (Press 1992), which minimizes the quantizer distortion in a MSE (A.10)

sense with respect to the load fraction. Note that, for a given load fraction in this

research, the distortion resulting from the quantization of an image was measured by

�rst quantizing the image, and then measuring the resulting distortion. However, in a

practical application, this distortion could be estimated at lower computational cost

based on prior knowledge of the image variance and pixel pdf.
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Figure 3.10: Quantizer Distortion as a Function of Load Fraction

3.6.3 Quantization Noise in the Pyramid

Quantization noise from the pyramid subimage quantizers can be approximated as

white (Gersho and Gray 1992), with the accuracy of this approximation improving

with increasing quantizer rate. However, the spectrum of the overall noise introduced

into the reconstructed image, indirectly from the quantization of the pyramid subim-

ages, depends on the pyramid generation scheme (Uz, Vetterli, and LeGall 1991). For

a pyramid generation without quantization feedback (see Figure 3.3), quantization
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noise accumulates at low spatial frequencies during the image reconstruction process.

This is due to the lowpass �ltering done in the interpolation process, which attenuates

mainly the high spatial frequency quantization noise prior to adding the interpolated

image to the next lower level of the pyramid. Since the quantization noise in the

interpolated subimage and the image to which it is being added are uncorrelated,

they will add arithmetically, resulting in an overall quantization noise spectrum that

is biased towards low spatial frequencies. This is particularly undesirable, since the

HVS is most sensitive to low spatial frequencies. However, for a pyramid generated

with quantization feedback (see Figure 3.4), quantization noise is corrected at each

stage of the interpolation during the image reconstruction process. Therefore, quan-

tization noise in the reconstructed image results only from the quantizer used for the

largest subimage, or pyramid base. This quantization noise is approximately white

and less o�ensive to the HVS. The latter pyramid generation scheme is therefore more

desirable from a quantization noise point of view.

3.7 Codeword Assignment in the Pyramid

In order to exploit statistical redundancy present in the quantization indices, it is

desirable to apply some form of entropy coding in the codeword assignment process.

Hu�man coding (Section 2.3.3) is an entropy coding technique that assigns integer

length codewords uniquely to each quantizer index to achieve a low overall rate. For

the images used in this research, the overall rate achieved through Hu�man coding

has been demonstrated to be close to the optimal lower entropy bound. In addition to

this, Hu�man codes are simply designed, e�ciently implemented in practice, and have

the desirable property of instant decodability. For these reasons, Hu�man coding has

been used for all entropy coding in the simulations performed in this research.

However, when codeword assignment must be done for a very low entropy distribu-

tion, Hu�man coding may not result in a rate close to the entropy lower bound. This

is due to the constraint that each Hu�man codeword must be of length greater than or

equal to one bit. Consequently, the overall Hu�man code rate will be greater than or

equal to one bit per symbol. For such low entropy distributions, or where there exists

appreciable intersymbol correlation, there may be signi�cant advantage in using an

alternative entropy coding technique, for example arithmetic coding (Section 2.3.3).



Chapter 4

Pyramid Coding Of Still Images

As previously discussed, pyramid coding can be tailored to suit a particular applica-

tion. Lossless or lossy image coding, or the coding of images for progressive trans-

mission are examples of such applications. Some of the issues that arise in the use of

pyramid coding in these di�erent applications will now be discussed.

4.1 Lossless Coding

In lossless image coding, the objective is to represent an image using the least number

of bits without introducing any distortion whatsoever into the reconstructed image.

This objective can be achieved by minimizing the statistical redundancy generally

present in the original image representation (see Chapter 2). Minimization of the

statistical redundancy can be achieved by minimizing the entropy (A.8) of the image

representation. This in turn maximizes the compression ratio (A.14). The �rst lossless

pyramid coding scheme proposed for images (Wang and Goldberg 1989a) is outlined in

Figure 3.4, but is not practical in real lossless coding applications due to the fact that

it does not allow quantization of the base subimage of the pyramid without distortion

being introduced into the reconstructed image. Subsequently, a more practical lossless

pyramid coding schemewas proposed (Goldberg andWang 1991) in which the pyramid

subimages were constrained to have integer pixel values. In general, lossless pyramid

coding can be applied to images as outlined in Figure 3.5.

Some important issues arise in the application of lossless pyramid coding to images.

As previously described, the choice of pyramid �lters used in the generation scheme

39
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has a signi�cant in
uence on the properties of the generated pyramid. In order to

generate pyramids suitable for lossless coding, the entropy of the pyramid must be

minimized. Here, the entropy of a pyramid is de�ned as the combined entropy of

all of the pyramid subimages together, and is a straightforward extension of (A.8).

As outlined in Chapter 3, the base of the pyramid is the same size as the original

image. Since a factor of 2 is used in the subsampling and upsampling processes,

each subsequent pyramid level generated will have 1=4 the number of pixels of its

predecessor. Therefore, the factor R by which pyramid coding increases the total

number of pixels, when compared to the original image, may be represented by the

sequence

R =
N�1X
i=0

1

22i
=

4

3
(1� 2�2N ); (4.1)

where N is the number of pyramid levels and i = 0 for the pyramid base subimage. In

the limit,N tends to in�nity and it is easily shown that this ratio tends to 4=3. This is

an undesirable property of pyramid coding, since increasing the number of pixels in an

image representation increases the number of bits needed to send or store the image,

and therefore decreases the compression ratio that can be achieved. Pyramid coding

also requires the convolution of images with decimation and interpolation �lters, a

computationally expensive process even for the new class of 5� 5 FIR pyramid �lters

developed in Section 3.5.1.

In the next section, a novel implementation of pyramid coding, suitable for lossless

image coding, will be developed. This technique not only achieves a low pyramid

entropy through appropriate choice of pyramid �lters, but also allows an image to

be represented in a subsampled pyramid of the same number of pixels, and can be

e�ciently implemented at low computational cost.

4.1.1 Minimal Entropy Pyramid Coding

Minimal entropy pyramid (MEP) coding (Houlding and Vaisey 1994) requires the use

of the pyramid coding scheme outlined in Figure 3.5, in which the �lters de�ned in

Section 3.5.1 are used in the decimation and interpolation processes, and quantization

of the �lter outputs is to the nearest integer.
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A search was done to determine which pyramid �lter pair, within the developed

�lter class, generates a pyramid with minimal entropy. Six level pyramids were gen-

erated using various di�erent decimation and interpolation �lters from the new �lter

classes. In Figure 4.1, the pyramid entropy is shown as a function of �d and �i (see

equations 3.10 and 3.16), for \Lenna" in Figure B.1. For a wide variety of test im-
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Figure 4.1: Lenna1 Pyramid Entropy versus Decimation and Interpolation Filter Type

ages, the following decimation �lter, g(�d; i; j), and interpolation �lter, h(�i; i; j), were

found to be optimal, within the new �lter class, in terms of minimizing the pyramid

entropy

g(1:0; i; j) =

2
6666666664

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

3
7777777775
;

h(0:5; i; j) =

2
6666666664

0 0 0 0 0

0 1=4 1=2 1=4 0

0 1=2 1 1=2 0

0 1=4 1=2 1=4 0

0 0 0 0 0

3
7777777775
: (4.2)

The pyramid generated using the �lters in (4.2) shall be referred to as the minimal
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entropy pyramid (MEP). It is interesting to note that the e�ective size of the inter-

polation �lter is 3� 3 , and that the \center" coe�cient is unity. This property,

together with the fact that the decimation �lter is a unit impulse, ensures that pix-

els subsampled from the original image in the decimation process are interpolated to

their original values in the interpolation process. Subtraction then forces 1=4 of the

pixels in all of the pyramid subimages except the smallest to zero, causing the sharp

entropy minima in Figure 4.1, and allows the MEP to be subsampled so that a given

image may be represented in an equivalent MEP of the same number of pixels. This

is in contrast with pyramid coding in general, for which the number of pixels to be

coded increases by a factor of approximately 4=3.

It is interesting to note that the decimation and interpolation �lter coe�cients in

(4.2) may all be represented as powers of 2. This allows the decimation and inter-

polation �ltering operations to be closely approximated using only integer additions

and bit shift operations at a considerable saving in computational cost. Through this

use of only integer operations, the MEP is guaranteed to contain only integers, and

no quantization is necessary in the decimation and interpolation processes, leading to

a further reduction in computational cost.

Given an integer image with n bit precision, every pixel value exists in the integer

�nite �eld, or Galois Field, GF (2n) (Lin and Costello 1983). Both the MEP decima-

tion and interpolation processes are approximated by integer operations that produce

pixel values also in GF (2n). However, subtraction of the interpolated image from the

original image produces integer pixel values in the �nite �eld [�2n + 1; 2n � 1]. This

is undesirable, since it means that an extra bit is needed to represent each of the

pixels in the di�erence image. However, since the pixels in both the original and in-

terpolated images exist in GF (2n), it is also possible to represent the di�erence image

pixels in GF (2n). This requires that the di�erence image be computed using GF (2n)

�nite �eld arithmetic. Through this use of �nite �eld arithmetic in MEP coding and

decoding, the MEP pixels are assigned intensities on GF (2n), and may be represented

in n bits. This is an extension of the use of �nite �eld arithmetic previously applied

in a another lossless hierarchical coding method (Torbey and Meadows 1989).

There are at least two related hierarchical coding schemes that are in the same

class as the MEP coding scheme previously outlined. These are namely Reduced

Di�erence Pyramid (RDP) coding and Paired Pyramid (PP) coding. To facilitate
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later comparison, these alternative schemes will now be outlined brie
y.

4.1.2 Reduced Di�erence Pyramid Coding

RDP coding was �rst proposed as a lossless image coding technique by Wang and

Goldberg (1989b), and later evaluated against related techniques (Goldberg and Wang

1991), where it was found achieve the highest performance in terms of three crite-

ria : the equivalent entropy, the rate-distortion performance in progressive transmis-

sion and total lossless transmission bit rate.

The RDP is based on the truncated mean pyramid. To illustrate the derivation

of the truncated mean pyramid, consider a simple 2� 2 image with integer valued

pixels xi as shown in Figure 4.2. Parent node y0 is calculated as

y0 = Q(
x0 + x1 + x2 + x3

4
) (4.3)

where Q() denotes quantization to the nearest integer. This basic iteration is easily

extended for larger images, where each 2� 2 group of nodes in the original image

produces one parent node. A two level pyramid is generated on the �rst pass, which

may then be repeated on the resulting image of parent nodes to give a three level

pyramid and so forth. A high degree of spatial correlation generally exists in the

various levels of the truncated mean pyramid, leading to statistical redundancy. The

RDP reduces this redundancy by representing the pixels x0�3 as y0�3, where

y0 = as above;

y1 = x1 � x3;

y2 = x2 � x0;

y3 = x3 � x2: (4.4)

The di�erencing used in calculation of the RDP e�ectively decorrelates the pixels

x0�3. Note that only three di�erence coe�cients y1�3 plus the parent coe�cient y0 are

needed to represent the original pixels x0�3. Therefore, an image can be represented in

a RDP of the same number of \pixels". This iteration may be applied in a reversible

manner, starting at the base and moving up the truncated mean pyramid. It is easily

shown that, using the iteration below, the original pixels x0�3 can be recovered exactly
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in an e�cient stepwise fashion.

x1 = y0 +Q(
3y1 + 2y3 + y2

4
);

x3 = x1 � y1;

x2 = x3 � y3;

x0 = x2 � y2: (4.5)
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Figure 4.2: A Simple 2� 2 Image

The truncated mean pyramid can be thought of as a Gaussian pyramid created

using a 2� 2 rectangular mean �lter. However, the RDP di�ers signi�cantly from

the Laplacian pyramid, and therefore the MEP. This is due to the di�erent manner

in which the RDP is computed.

4.1.3 Paired Pyramid Coding

PP coding, another technique suitable for lossless image coding, was �rst proposed by

Torbey and Meadows (1989). The basic PP coding iteration is illustrated in Figure 4.3.

This iteration is applied to neighboring pixels in a row or column of the image to be

coded. For example, neighboring pixels x0 and x1 in an n bit, N�M dimensional

image may be coded as follows. One of the pixels, x0, is carried through the coding

iteration una�ected while the other, y0, is calculated as

y0 = (x1 � x0)%2
n; (4.6)

where \%" denotes the modulo operation. If this coding iteration is initially applied

to each pair of neighboring pixels in the image rows, two N� M
2

images are pro-

duced. The �rst subimage is a version of the original that has been subsampled by a
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factor of two horizontally and contains the x0 coe�cients, while the second subimage

contains the modulo di�erence coe�cients y0. The coding iteration is then applied to

pairs of neighboring pixels in the columns of the N� M
2

subimage of x0 coe�cients

to produce two N
2
� M

2
subimages and so forth. This alternating application of the

row and column iterations successively on the subimage of x0 coe�cients is continued

until at least one of the subimage dimensions is reduced to one. The decoding op-

x0

x1

x0

y0

Figure 4.3: Paired Pyramid Coding Iteration

eration proceeds in the reverse fashion from the smallest PP subimage and recovers

the original neighboring pixel pairs x0 and x1 as follows. x0 is carried through the

decoding iteration una�ected, while x1 is calculated as

x1 = (y0 + x0)%2
n: (4.7)

The modulo di�erencing operation has the e�ect of decorrelating the pixels in the

original image and leads to a concentration of y0 values around 0 and 2n � 1. This in

turn generally leads to a signi�cant reduction in the entropy of the original image and

allows e�cient lossless compression. The modulo operation also allows the di�erence

coe�cients to be represented in the same number of bits as the pixels in the original

image. Clearly, an image can be represented in the form of a paired pyramid of the

same number of pixels.

4.1.4 Simulations

MEP coding can be considered to be a lossless transformation that generally results in

a lower entropy representation of an image. Since the entropy of an image depends on

its pixel value distribution, it will be useful to examine the pixel value distributions of a

test image and its MEP equivalent representation. The image \Lenna" in Figure B.1

was used to generate a ten level MEP of the same number of pixels. The pixel
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value distributions of \Lenna" and the equivalent MEP are shown in Figure 4.4.

Clearly, the test image has a well distributed range of pixel values, while the MEP

0

0.02

0.04

0.06

0.08

0.1

0.12

0 50 100 150 200 250

P
ix

el
 P

ro
ba

bi
lit

y

Pixel Value

Lenna

0

0.02

0.04

0.06

0.08

0.1

0.12

0 50 100 150 200 250

P
ix

el
 P

ro
ba

bi
lit

y

Pixel Value

MEP( Lenna )

Figure 4.4: Pixel Value Distributions of Lenna and MEP Equivalent

has a \peaky" distribution with pixel values concentrated around 0 and 255. Note

that the concentration of pixel values around 255 results from the use of modulo

arithmetic in the MEP coding operation. These values would otherwise be negative,

and concentrated around 0.

In order to evaluate the performance of MEP coding in terms of compression ratios,

simulations were done in which a set of test images were compressed using both MEP

coding and a DPCM scheme. In the DPCM scheme, a given pixel was predicted using

the three known neighboring pixels, plus an added constant. Predictor coe�cients

were calculated based on the covariance matrix of the test image being compressed.

This DPCM scheme was chosen for the comparison since it is an alternative lossless

coding scheme that, like MEP coding, exploits two dimensional interpixel correlation

in order to achieve a good compression. DPCM is a well known and widely applied

technique (Gersho and Gray 1992).

In summary, both the MEP and the DPCM residual error image were generated

for a given test image, after which they were Hu�man coded for lossless compression.

The compression ratio was then calculated as the ratio of the test image �le size to the

Hu�man coded �le size. The compression ratios did not include the bits needed to send

the Hu�man code table or predictor coe�cients, but this does not signi�cantly e�ect

the results presented. Test images are shown in Figure B.1. Lennad was obtained by

�rst �ltering Lenna with a 32 tap QMF (Jayant and Noll 1984), and then subsampling

by a factor of two horizontally and vertically. The results of these simulations are
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summarized in Table 4.1.

Table 4.1: Compression Ratio Performance of Proposed MEP System

Image Entropy Compression Ratio
Name Width Height MEP DPCM MEP DPCM

Boat 512 512 4.663 4.444 1.71 1.79
Lenna 512 512 4.595 4.526 1.73 1.75
Lennad 256 256 4.948 4.822 1.61 1.65
Mandrill 512 512 6.379 6.208 1.25 1.28
Peppers 512 512 5.056 5.215 1.58 1.52

It can be seen that MEP coding has comparable performance to the DPCM

scheme. In simulations performed using a much larger set of test images, DPCM

was found to give a marginal average performance improvement in compression ratio

of 1:8%. However, in a real application, the computational cost involved in the two

coding schemes would be an important consideration. MEP coding requires only inte-

ger operations, while DPCM requires many costly 
oating point operations, including

multiplications. DPCM also requires an additional image prescan to calculate predic-

tor coe�cients. In the case where predictor coe�cients are not calculated separately

for each image being coded, it is expected that the performance of the DPCM scheme

will become inferior that of the MEP scheme. It is also possible to apply the DPCM

scheme to the MEP subimages separately. With DPCM coding of only the largest

MEP subimage, or base of the pyramid, a 0:25% marginal average performance im-

provement of MEP over DPCM coding was observed for the same set of test images.

However, in this case, the computational advantage of MEP coding is lost.

For natural images in general, the entropy of the MEP is high enough that Hu�man

coding can achieve a good e�ciency, resulting in a rate, in bits per pixel, close to the

entropy lower bound. However, for a MEP with a signi�cantly lower entropy, resulting

from an image with higher interpixel correlation, Hu�man coding becomes ine�cient

due to the fact that codeword lengths are constrained to be integers greater than zero.

In this case, an alternative lossless coding technique could be used after MEP coding,

for example arithmetic coding (Bell, Cleary, and Witten 1990).

The MEP coding results represent signi�cant improvements over similar lossless

compression results for 8 bpp originals. Table 4.2 summarizes the results of related
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research in comparison to MEP coding.

Table 4.2: Relative Performance of Proposed MEP System

Research Method Image Entropy
Result MEP

Wang and Goldberg (1989a) pyramid coding and Boat 5.862 4.663
vector quantization

Furlan (1991) optimal model based Lennad 5.100 4.948
arithmetic coding

Ho and Gersho (1989a) transform coding Lenna 5.067 4.595
vector quantization Boat 5.262 4.663

Wang and Goldberg (1989b) reduced di�erence Lenna 5.084 4.595
pyramid coding Boat 4.955 4.663

Torbey and Meadows (1989) paired pyramid Lenna 5.040 4.595
coding Boat 4.992 4.663

4.2 Lossy Coding

In e�cient lossy coding, the objective is to achieve the highest possible image quality

at a given rate. Since there is no requirement for perfect reconstruction of the original

image, coding can take advantage of statistical as well as perceptual redundancy

generally present in natural images. Lossy coding therefore typically achieves higher

compression ratios than lossless coding.

Lossy pyramid coding of images consists of the following steps. Firstly, a pyramid

is generated from the image. Next, bits must be allocated to each of the subimages

in the pyramid. Quantizers may then be designed based on these bit allocations, and

each subimage quantized. Finally, the quantized subimages may be entropy coded to

produce a pyramid representation suitable for storage or transmission.

4.2.1 Pyramid Generation

Either of the schemes outlined in Figures 3.3 or 3.4 can be used for pyramid gener-

ation. As mentioned in Section 3.6.3, the former scheme does not use quantization

feedback, while the latter does. Quantization feedback is desirable from the point

of view that it allows more control of the distortion introduced indirectly into the
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reconstructed image through quantization of the pyramid subimages. The pyramid

generation scheme outlined in Figure 3.4 was therefore chosen for lossy pyramid cod-

ing. The decimation and interpolation �lters may be chosen from the developed class

of pyramid �lters (see Section 3.5.1) through the speci�cation of �d and �i respectively.

For a given natural image, there generally exists a unique optimal pyramid �lter pair

that can be used to generate a pyramid best suited to e�cient lossy coding. Some

of the considerations involved in the choice of decimation and interpolation �lters for

generation of pyramids suitable for lossy coding will now be discussed.

A value �d that is too low speci�es a decimation �lter that is too lowpass and does

not allow su�cient information from the original image to propagate through the dec-

imation process to the pyramid top. More information from the original image must

therefore be represented in the larger pyramid base. This leads to a higher variance

pyramid base, resulting in ine�cient coding. On the other hand, a value of �d that is

too high speci�es a decimation �lter that is not su�ciently lowpass and therefore does

not adequately attenuate the high spatial frequencies in the original image prior to

subsampling. This leads to signi�cant aliasing in the decimation process, causing an

increase in variance for both the pyramid base and top with no corresponding increase

in the quality of the reconstructed image, and therefore results in ine�cient coding.

Similarly, a value of �i that is too low speci�es an interpolation �lter that is too

lowpass and therefore does not allow su�cient information to propagate back from

the pyramid top to the interpolated image in the interpolation process feedback loop.

This results in a higher variance for the larger pyramid base and therefore ine�cient

coding. On the other hand, a value of �i that is too high speci�es an interpolation

�lter that is not su�ciently lowpass and does not adequately attenuate the unwanted

\interpolation image", an undesirable byproduct of the upsampling operation. This

leads to \false" information being propagated to the interpolated image, causing an

increase in the variance of the pyramid base and ine�cient coding.

Bit allocation must be done to determine the rate of each subimage, allowing the

design of the corresponding optimal uniform quantizers as described in Section 3.6.2.

After quantization, the subimages may be entropy coded for storage or transmission

(see Section 3.7).
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4.2.2 Bit Allocation

If each subimage is regarded as a source of image information contributing to the

quality of the overall reconstructed image, either the BFOS or the Greedy algorithm

can be used for bit allocation (see Section 2.3.2). In order to reconstruct the best

possible approximation to the original image from the quantized pyramid subimages,

it is desirable to allocate more bits (a higher rate) to the more perceptually important

subimages. In this research, the MSE (A.10) has been used to evaluate the overall

distortion of a given reconstructed image, when compared to the original image from

which the pyramid was generated. Some di�culties exist in the implementation of

these bit allocation schemes in a lossy pyramid coding application. To avoid these

complications, it is possible to do an exhaustive search for the optimal allocation at a

given rate. Given a pyramid, this would be done by trying every possible bit allocation,

quantizing the subimages accordingly for each allocation, reconstructing the image

from the quantized pyramid, and measuring the overall rate and distortion. The

allocation with an overall rate less than or equal to the target rate that results in the

lowest overall distortion would then be chosen as optimal. However, this approach is

extremely computationally expensive and becomes impractical for all but the smallest

images and sets of possible bit allocations. At least two alternative, more practical

solutions to this problem exist.

In the �rst approach, an approximate optimal bit allocation for a pyramid with

a given overall rate can be found experimentally, given a set of test images that

are a representative subset of the images to be coded later using lossy pyramids.

Alternatively, some modi�cations to the BFOS or Greedy algorithms can be made to

facilitate their use in bit allocation for lossy pyramid coding. These modi�cations will

now be discussed brie
y.

BFOS Bit Allocation

In the BFOS algorithm (Riskin 1991), the overall rate R for N sources is calculated

as

R =
N�1X
i=0

pi ri; (4.8)
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where pi and ri represent the probability and rate of source i respectively. Similarly,

the overall distortion D is calculated as

D =
N�1X
i=0

pi di; (4.9)

where di represents the MSE distortion resulting from quantization of source i with

an ri bit quantizer. The BFOS algorithm determines the optimal bit allocation

fri : i = 0; � � � ; N � 1g with an overall rate less than or equal to some target rate.

It should be noted however that this allocation is optimal only in the sense that it

is guaranteed to lie on the convex hull of the rate-distortion function, and therefore

result in the lowest distortion D at that rate R. In some cases, it may be possible to

allocate more bits without exceeding the target rate using an alternative allocation

scheme. In pyramid coding, where for the purpose of bit allocation each subimage

is considered to be a source, there are some complications in implementation of the

BFOS algorithm in this form. These will be discussed below, along with proposals

for modi�cation of the BFOS algorithm that enable it to cope with the peculiarities

of bit allocation in pyramid coding.

A similar linear combination of subimage rates to that in (4.1) can be used for

calculation of the overall rate R of an N level pyramid. In this case, the weighting

coe�cients are determined from the ratio in sizes of the pyramid subimages and the

original image. Clearly, these coe�cients do not sum up to one, and cannot be equated

to source probabilities as in (4.8). To overcome this problem, the probabilities pi can

be set to some arbitrary value, and the subimage rates ri preweighted before use in

the BFOS algorithm. Let pi =
1
N
for all i. The preweighted ri, denoted r0i, may then

be calculated as

pi r
0

i =
1

22i
ri;

r0i =
N

22i
ri; (4.10)

allowing calculation of the overall rate R of the pyramid as in (4.8), with r0i substituted

for ri. Note that i = 0 for the pyramid base.

The overall distortion in lossy pyramid coding is calculated as the MSE of the

image reconstructed from the quantized subimages, when compared to the original

image. Calculation of the overall distortion as a simple linear combination of the dis-

tortions in each pyramid subimage poses two di�culties. Firstly, quantization noise
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in all subimages other than the base of the pyramid gets interpolated during image re-

construction. The e�ect of the upsampling and interpolation �ltering operations must

therefore be incorporated into calculation of the overall distortion. Secondly, in the

case of a pyramid generated with quantization feedback, quantization noise in these

subimages is �rst interpolated and then requantized. Since quantization is a nonlin-

ear problem, the estimation of overall distortion in the reconstructed image from the

quantization noise in each subimage becomes a complicated problem. However, with

some simplifying assumptions, it is possible to estimate the overall distortion as a

linear combination of the separate subimage distortions. Based on the assumption

that interpolated quantization noise has signi�cantly lower energy than the subimage

to which it is being added, its e�ect on the quantization noise at that level of the pyra-

mid may be ignored. The e�ect of quantization feedback in the pyramid generation

process is thereby ignored. On the other hand, the e�ect of the interpolation process

may be incorporated into calculation of each of the subimage distortion weighting

coe�cients. A derivation will now be presented for calculation of these distortion

weighting coe�cients.

To simplify this derivation, consider a one dimensional white noise vector Nin

with variance �2in. This noise is passed through the interpolation process as shown in

Figure 4.5 where G(z) is the lowpass interpolation �lter. We strive to �nd �2out, the

variance of the interpolated noise Nout. This leads to the factor � by which the noise

variance changes through the interpolation process, where

Nin Nout

Interpolation

2 G(z)

Figure 4.5: Interpolation of Noise

� =
�2out
�2in

: (4.11)

In the context of subband coding, Woods and Naveen (1992) have shown that � may

be calculated as

� =
1

2

1X
�1

jg(n)j2; (4.12)
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where g(n) is the impulse response of the one dimensional interpolation �lter (3.3)

de�ned by �i and (3.16). For a two dimensional separable interpolation �lter with

identical horizontal and vertical component �lters, � is squared. Therefore, the overall

distortion D for an N level pyramid would calculated as

D =
N�1X
i=0

�2i di; (4.13)

where � is calculated as in (4.12) and di is the MSE distortion resulting from quan-

tization of subimage i. A strategy similar to that de�ned in (4.10) can then be used

for calculation of the preweighted distortion coe�cients d0i as

d0i = N �2i di; (4.14)

allowing the overall distortion D to be estimated as in 4.9, with d0i substituted for di.

Given the probabilities pi = 1
N
and the preweighted rates r0i and distortions d0i, the

BFOS algorithm may be used to allocate bits to each subimage i of the pyramid.

To evaluate BFOS bit allocation in lossy pyramid coding, a simulation was done in

which the BFOS allocations were compared against all possible allocations. The im-

age for this simulation was created by decimating \Boat" (see Figure B.1) three times

using a decimation �lter created with �d = 0:0. This image was then used to generate

an N = 3 level pyramid. All possible allocations f0 � ri � 8 : i = 0; � � � ; N � 1g were
made in turn to the subimages of the pyramid. For a given allocation, the subimages

were quantized, starting at the pyramid top. After quantization of a given subim-

age, the quantization error was fed back to the next lower level of the pyramid prior

to design of the next quantizer, and so forth (see Figure 3.4). For each allocation

fri : i = 0; � � � ; N � 1g, the overall rate R was calculated as in 4.1, while the overall

distortion D was measured as the MSE distortion (A.10) of the image reconstructed

from the quantized pyramid, when compared to the original image. The input data to

the BFOS algorithm was calculated as previously discussed, and the allocations gener-

ated for a given target rate. Table 4.3 shows the set of optimal allocations calculated

using the BFOS algorithm, where R̂, R, D̂ and D represent the allocated and target

rate, and estimated and actual distortion respectively. As can be seen, the estimated

overall distortion D̂ is close to the actual overall distortion D, except at low allocated

rates R̂, where the assumption that subimage quantization noise is white becomes

inaccurate and the e�ects of requantization signi�cant. It is also interesting to note
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Table 4.3: Optimal BFOS Bit Allocations for Boat ( 64� 64 )

Allocation Rate (bpp) MSE

r0 r1 r2 R̂ R D̂ D

1 1 2 1.375 2.000 159.546 218.052
2 2 3 2.688 3.000 59.097 54.706
3 3 4 4.000 4.000 18.021 14.968
4 3 4 5.000 5.000 7.019 4.186
4 4 5 5.312 6.000 5.082 4.334
5 5 6 6.625 7.000 1.428 1.200
6 6 7 7.938 8.000 0.384 0.336

that D is generally less than D̂. This is attributed to the use of quantization feedback

in the pyramid codec. Figure 4.6 shows the rate-distortion performance for all possi-

ble allocations against the optimal allocations calculated using the BFOS algorithm.

Note the logarithmic decrease in distortion with increasing rate, measured in bits.

The horizontal tails of rate-distortion points result from inappropriate allocation of

bits to subimages, resulting in an increase in the overall rate of the pyramid, with no

corresponding decrease in overall distortion. Ideally, the allocated points should give

the lowest distortion for a given rate. While the performance of the BFOS algorithm

is reasonable at low rates, it is far from optimal at higher rates. This suboptimal

performance was observed in similar simulations on various other test images, and is

attributed to inaccuracies in D̂, the estimated overall distortion.

Alternatively, the Greedy algorithm may be used for bit allocation to the subim-

ages of the pyramid.

Greedy Bit Allocation

In the Greedy algorithm for bit allocation (Gersho and Gray 1992), bits are allocated

to a set of sources according to their demand. Variations of the Greedy algorithm

exist, based on how the demand is calculated. In applying Greedy bit allocation to

pyramid coding, each subimage is again considered to be a source. A proposal will

now be made for a Greedy bit allocation scheme suited to lossy pyramid coding. The

basic algorithm for an N level pyramid is broken down as follows.

1. Initialize subimage allocations fri = 0 : i = 0; � � � ; N � 1g.
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Figure 4.6: BFOS Rate-Distortion Performance for Boat 64� 64

2. Find the source i with the maximum demand �i.

3. Increment the bit allocation ri for the source i with the maximum demand.

4. If the overall rate R̂ is not su�ciently close to the target rate R, repeat from 2,

otherwise stop.

The demand �i of source i is de�ned as the drop in overall distortion D when one

more bit is allocated to source i. Here, D is again measured as the MSE (A.10) of

the image reconstructed from the quantized pyramid, when compared to the original

image. The overall rate R may be calculated as in (4.1). In summary, for a given

stage in the Greedy allocation, the current overall distortion is initially measured by

quantizing the subimages based on the current allocation, reconstructing the image,

and measuring D. The bit allocation ri for each subimage i is then incremented in

turn. For each increment, the overall distortion Di is again measured as above. The

demand for that subimage is then calculated as �i = D �Di. The allocation for the

subimage with the maximum demand is then incremented, and a check made to see if

the overall pyramid rate R is su�ciently close to the target rate. If not, the procedure

is repeated.
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The performance of the Greedy algorithm is suboptimal in that it may not always

select the allocation fri : i = 0; � � � ; N � 1g with the lowest overall distortion D at a

given rate R. However, in practice its performance has proven to be su�ciently close

to optimal for most lossy pyramid coding applications.

To evaluate the performance of the proposed Greedy bit allocation scheme in pyra-

mid coding, some simulations were done in which the rate-distortion performance of

the Greedy allocations were compared to all possible allocations for a given pyra-

mid. An N = 3 level pyramid was initially generated from a 64� 64 version of the

standard test image \Boat" (see Figure B.1), as in the previous simulation done to

evaluate the performance of the BFOS bit allocation scheme. For all possible allo-

cations f0 � ri � 8 : i = 0; � � � ; N � 1g, the subimages were quantized. In each case,

the image was reconstructed from the quantized pyramid, and the overall rate R and

distortion D measured as previously described. Bit allocations were then made using

the Greedy bit allocation scheme previously de�ned. The allocations ri are shown for

the three level pyramid in Table 4.4, where i = 0 for the pyramid base. R̂, R and D

represent the overall measured rate, the overall target rate, and the overall measured

distortion respectively. Note that for a bit allocation ri = 0 for subimage i, all pixels

Table 4.4: Greedy Bit Allocations for Boat ( 64� 64 )

Allocation Rate (bpp) MSE

r0 r1 r2 R̂ R D

0 1 0 0.250 1.000 683.813
1 1 0 1.250 2.000 302.732
2 1 0 2.250 3.000 85.303
3 1 0 3.250 4.000 24.708
4 1 0 4.250 5.000 6.376
5 1 0 5.250 6.000 1.566
6 1 0 6.250 7.000 0.433
7 1 0 7.250 8.000 0.111

in subimage i are quantized to the subimage mean.

The bit allocations in Table 4.4 are plotted against the full set of possible rate-

distortion points for comparison in Figure 4.7. For all rates, the Greedy algorithm

gives optimal or near optimal performance. Furthermore, with a slight modi�cation,
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Figure 4.7: Greedy Rate-Distortion Performance for Boat 64� 64

the Greedy algorithm de�ned above can be improved. As discussed, the Greedy al-

gorithm allocates a bit in each iteration to the subimage with the greatest demand.

When it cannot allocate a bit to the subimage with the greatest demand without ex-

ceeding the overall target rate R, bit allocation stops. For some target rates, although

it is not possible to allocate more bits to the subimage with the greatest demand, it

may be possible to allocate more bits to a subimage with less demand. This would

allow additional bits to be allocated near the end of the Greedy allocation algorithm,

further reducing the overall distortion D while remaining below the target rate R.

In summary, the modi�ed Greedy algorithm proceeds, as previously de�ned, until it

cannot allocate a bit to the subimage with the greatest demand without exceeding R.

It then proceeds to make a further allocation to the subimage with the next greatest

demand that will not cause the overall rate R̂ to exceed the target rate R. Therefore,

modi�ed Greedy bit allocation continues until it is no longer possible to allocate bits

to any of the subimages without exceeding the target rate R. The simulation de�ned

above was run using the modi�ed Greedy algorithm for bit allocation. Table 4.5 shows

the bit allocations made with the modi�ed Greedy algorithm, where the symbols used

represent the same quantities as in Table 4.4. For each allocation, the overall mea-

sured rate R̂ matches the target rate R, and the maximum number of bits have been
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Table 4.5: Modi�ed Greedy Bit Allocations for Boat ( 64� 64 )

Allocation Rate MSE

r0 r1 r2 R̂ R D

0 4 0 1.000 1.000 228.617
1 4 0 2.000 2.000 126.638
2 4 0 3.000 3.000 47.995
3 4 0 4.000 4.000 14.830
4 4 0 5.000 5.000 4.351
5 4 0 6.000 6.000 1.279
6 4 0 7.000 7.000 0.342
7 4 0 8.000 8.000 0.093

allocated. Note the reduction in overall MSE distortion D, from Table 4.4, resulting

from the use of the modi�ed Greedy algorithm for bit allocation. The bit allocations

in Table 4.5 are plotted against the full set of possible rate-distortion points for com-

parison in Figure 4.8. Clearly, the modi�ed Greedy algorithm shows an improvement

only in the sense that it reduces the overall distortion D, while remaining below the

target rate R. In fact, from Figure 4.8, it can be seen that the modi�ed Greedy

algorithm is suboptimal at some rates, where it does not give the allocation resulting

in the lowest distortion D for a given rate R̂.

4.2.3 Simulations

To analyze the performance of lossy pyramid coding, a �ve level pyramid was gener-

ated from \Lenna" (see Figure B.1), in this case using decimation and interpolation

�lters de�ned by (�d; �i) = (0:3; 0:3) (see Section 4.2.1). The results of this simula-

tion for the case of other pyramid �lter pairs will also be discussed later. For a given

target rate R, the modi�ed Greedy algorithm was then used to allocate bits to the

subimages of the pyramid, resulting in an overall rate R̂. After designing optimal

uniform quantizers (see Section 3.6.2) based on the bit allocation, the subimages were

quantized. Quantization error feedback was used during this procedure, so that the

quantization error from a given level of the pyramid was fed back to the next lower

level prior to the design of its quantizer, and so forth. The entropy(A.8) of each

pyramid subimage i was used in place of ri (4.1) to calculate the pyramid entropy E,
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Figure 4.8: Modi�ed Greedy Rate-Distortion Performance for Boat 64� 64

representing a lower bound on the overall rate of the pyramid after optimal codeword

assignment. This lead to calculation of the optimal compression ratio C (A.14), based

on the 8 bpp original image. Finally, images were reconstructed from the quantized

pyramids and the distortions D measured as the PSNR (A.13), when compared to

the original image. The results of this simulation are summarized in Table 4.6. For

Table 4.6: Lossy Pyramid Coding for Lenna ( 512� 512 )

Allocation Rate E C D

r0 r1 r2 r3 r4 R̂ R

0 0 1 2 1 0.098 0.100 0.096 83.33 24.183
0 2 0 0 0 0.500 0.500 0.485 16.49 25.854
0 4 0 0 0 1.000 1.000 0.968 8.26 30.855
1 4 0 0 0 2.000 2.000 1.968 4.07 33.283
3 4 0 0 0 4.000 4.000 2.949 2.71 40.684

each allocation, Figure 4.9 shows the images reconstructed from the corresponding

quantized pyramids. The original \Lenna" image is also shown for comparison.

High spatial frequency detail is reproduced relatively well in the images recon-

structed from the quantized pyramids, even at lower rates. However, in regions of
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83.33:1 24.18dB 16.49:1 25.854dB 8.26:1 30.855dB

4.07:1 33.283dB 2.71:1 40.684dB 1:1 1 dB

Figure 4.9: Lossy Images Created from Lenna 512� 512

smoothly varying surfaces, mild contouring is visible. It is interesting to note the

di�erences in the subjective quality of the �rst and second allocations, resulting in

overall rates of 0.098 and 0.500 bpp respectively. While the former allocation results

in a smooth varying perceptually pleasing image, the latter allocation gives an image

that contains annoying contouring e�ects. This is due to the fact that the e�ects of

quantization in the former allocation are more \smoothed" as a result of the larger

number of interpolations, subsequent to quantization, done in the image reconstruc-

tion. Consequently, although the latter allocation results in a reconstructed image

with a higher PSNR, it has a lower subjective quality. Although the mild contour-

ing e�ects present in the reconstructed images lead to a degradation in perceptual

quality, their e�ect is not as severe as, for example, the blocking distortion that is

characteristic of the DCT at low rates. Clearly, further work needs to be done to

improve the correlation between subjective and objective measures of image quality.
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This however, is beyond the scope of the present research. At higher rates, corre-

sponding to compression ratios lower than 4, distortion in the reconstructed image is

nearly invisible.

When the same simulation was repeated using di�erent pyramid �lters, similar

results were obtained. In fact, in most cases the allocations made by the modi�ed

Greedy algorithm were the same for a variety of di�erent pyramid �lter pairs. An

exception to this was observed where interpolation �lters with high �i were used. How-

ever, both the objective (PSNR) and subjective quality of the images reconstructed

from the quantized pyramids varied considerably with the choice of pyramid �lters.

In particular, for a very low choice of �d the reconstructed images were severely

blurred, since the decimation �lter was too lowpass and did not allow su�cient image

information to propagate to the smaller pyramid subimages. Contouring e�ects were

also more visible in this case. On the other hand, for a very high choice of �d, aliasing

noise was clearly visible for some of the reconstructions, particularly in regions of high

spatial frequency detail. For low overall rates, and severe quantization of the pyramid

subimages, a very low choice of �i lead to an improvement in perceptual quality of

the reconstructed images, since the severe contouring e�ects otherwise present were

less obvious. However, a very high choice of �i lead to reconstructed images that

contained severe noise, resulting from insu�cient attenuation of the \interpolation

image" distortion from the upsampling operation. These results correlated well with

expectations from the analysis early in Section 4.2. It should be noted here that the

MEP (see Section 4.1.1) loses much of its advantage in such a lossy pyramid coding

scheme since, with quantization feedback, zeros previously guaranteed in the MEP

representation may no longer be present. Consequently, lossless subsampling is no

longer possible.

When the same simulation was done, except with no quantization feedback in

the pyramid generation, inferior results were observed. Not only was the PSNR

of the image reconstructed from the quantized pyramid lower for a given rate, but

it generally contained grainy artifacts that were perceptually annoying, especially

in regions of smooth transition. This observation is clearly in alignment with the

analysis presented in Section 3.6.3. However, using the modi�ed Greedy algorithm, bit

allocation amongst the subimages in this case was observed to be much more uniform.

Lossy pyramid coding without quantization feedback is therefore more robust to such
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problems as the abovementioned contouring, resulting from insu�cient bit allocation

to the higher pyramid levels.

A comparison of the results in Table 4.6 with results achieved using JPEG lossy

coding is shown in Table 4.7. It is apparent that the performance of lossy pyramid

coding is inferior to that of JPEG. Similar results were observed for other test images.

However, it may be possible to further improve the rate-distortion performance of lossy

pyramid coding through at least two methods in order to make it more competitive

with other techniques, for example JPEG.

Table 4.7: Comparison of Lossy Pyramid Coding with JPEG : Lenna

Rate PSNR (dB)
(bpp) Pyramid JPEG

0.100 24.183 26.500
0.500 25.854 34.400
1.000 30.855 37.000
2.000 33.283 41.000
4.000 40.684 48.000

Firstly, more elaborate quantization schemes, for example vector quantization or

the DCT, could be used for the quantization of the pyramid subimages. In both of

these schemes, interpixel correlation may be exploited during quantization to achieve

a higher coding gain and thereby reduce the distortion at a given rate.

Secondly, Farvardin and Modestino (1984) have proposed an improved method for

the design of uniform quantizers, subject to an entropy constraint. In summary, the

proposed technique shows that, for various standard distributions, a signi�cant per-

formance improvement is realized at a given rate through the use of larger quantizers,

that have more quantization cells. Here, performance is measured by the variance

of the quantization noise, and rate as the entropy of the quantized source. In other

words, if a uniform quantizer of a given number of cells is used to quantize a source

and thereby achieve a certain rate, Farvardin and Modestino (1984) have shown that

a larger uniform quantizer, with a suitable load fraction, may be used to achieve

the same rate with a signi�cant reduction in the variance of the quantization noise.

This was found this to be true for a variety of standard distributions, for example, the

Gaussian, Laplacian, gamma and uniform distributions. However, as will be discussed
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later, this may not be the case for less \well behaved" distributions.

Figure 4.10 shows pixel distributions for both the pyramid base and top of a two

level Laplacian pyramid generated from \Lenna" (see Figure B.1) using pyramid �lters

corresponding to �d; �i = 0:3; 0:3. While the base subimage has a distribution that is

similar to a Laplacian standard distribution, the top subimage, a decimated version

of the original image, does not have such a well behaved distribution.
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Figure 4.10: Example Pixel Value Distributions for the Subimages of a Two Level
Laplacian Pyramid

The traces in Figure 4.11 show the rate-distortion performance of a 127 cell uni-

form quantizer. Note that any quantizer with a relatively large number of cells would

su�ce for the proposed technique. Here, rate is again measured as the entropy of

the quantized image, while distortion is measured as the variance of the quantization

noise. These traces were obtained by varying the load fraction � (2.1) of the 127 cell

quantizer for the respective subimages of the two level Laplacian pyramid. On the

other hand, the dots in Figure 4.11 represent the rate-distortion performance of the

quantizers of rates ri = 1; 2; :::; 7 bpp that were used in previous lossy coding simu-

lations. Recall that these previous quantizers were designed with load fractions that

minimized the quantization noise, irrespective of the entropy. For the base subimage,

which has a approximate Laplacian pixel distribution, a signi�cant reduction in the

quantization noise may be realized through the use of the technique proposed by Far-

vardin and Modestino (1984). However, for the pyramid top subimage, which has an

irregular pixel value distribution, the proposed technique does not lead to a signi�-

cant improvement. In fact, at low rates the proposed technique leads to a decrease

in performance. It should be noted here that, through the use of a larger midrise
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quantizer, with an even number of cells, exactly the same performance as in the case

of the previous quantizers could be achieved. However, from Figure 4.11 it is appar-

ent that little performance improvement can be realized from the new quantization

method for such a pixel value distribution. The same results were achieved for both

larger Laplacian pyramids and various other test images.
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Figure 4.11: Quantizer Rate-Distortion Performance for the Subimages of a Two Level
Laplacian Pyramid

Therefore, in the case of a Laplacian pyramid generated without quantization

feedback, the technique proposed by Farvardin and Modestino (1984) gives a perfor-

mance advantage when used on all but the top subimage of the Laplacian pyramid.

In addition, through prior use of, for example, DPCM coding (see Section 2.3.1), the

pyramid top subimage could be transformed into an alternative form suitable for the

application of the technique of Farvardin and Modestino (1984). However, in the case

of Laplacian pyramids generated with quantization feedback, this may not be the

case. To understand the e�ect of quantization feedback on the proposed technique,

consider the simple case where a two level Laplacian pyramid is generated from a

test image. If no bits are allocated to the pyramid top, all pixels in the pyramid top

will be quantized to the subimage mean, and a large amount of low spatial frequency

information will be passed, through quantization feedback, to the pyramid base. This

causes signi�cant distortion of the well behaved approximate Laplacian pixel value

distribution shown for the pyramid base in Figure 4.10. This in turn causes \bumps"

in the quantizer rate-distortion performance, similar to those observed for the pyra-

mid top in Figure 4.11, leading to an inferior performance for the proposed technique.

In the case where more bits are allocated to the pyramid top, quantization feedback is
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less signi�cant, and the performance of the proposed alternative technique improves.

For practical use of the technique proposed by Farvardin and Modestino (1984) in

lossy pyramid coding, it is therefore desirable to measure the rate-distortion perfor-

mance improvement achieved for each subimage. Clearly, if no performance improve-

ment is realized for a given subimage through the use of the alternative technique,

it should not be used in place of the previously discussed quantization techniques.

Using this approach, the performance of the new quantization technique was evalu-

ated for the 5 level Laplacian pyramid of \Lenna" (see Figure B.1), generated using

�d; �i = 0:3; 0:3. The results of this simulation are shown in Table 4.8 where they are

compared with previous results from Table 4.6. At some rates, a performance advan-

tage is achieved through the use of the alternative quantization technique. It should

be noted here that, ideally, this quantization technique would be integrated into the

bit allocation / quantization stage of the lossy pyramid coder. However, as previ-

ously explained, this approach is complicated by the use of quantization feedback,

and beyond the scope of this thesis.

Table 4.8: Modi�ed Lossy Pyramid Coding : Lenna

Rate PSNR (dB)
(bpp) Previous New

0.100 24.183 25.830
0.500 25.854 25.854
1.000 30.855 30.855
2.000 33.283 37.024
4.000 40.684 42.031

4.3 Coding for Progressive Transmission

The conventional method employed to send an image over a channel is to encode the

image line-by-line in raster fashion, from the top left of the image. However, when

images must be transmitted over low bandwidth channels, this approach becomes im-

practical since the entire image must arrive at the receiver before it can be viewed.

This may involve an unacceptable delay for slow transmission rates. In some appli-

cations, it is desirable to reconstruct full size, early approximations to the original
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image from subsets of information in the image representation. This allows some

early interpretation of the image being sent, a feature that is particularly useful, for

example, in searching image databases.

Since the pyramid is a hierarchical representation of image information, it is well

suited to progressive transmission. The sensitivity of the HVS is known approxi-

mately to be a decreasing function of the spatial frequency of the information being

viewed. The perceptual importance of information in the pyramid subimages there-

fore decreases with increasing size. Figure 4.12 illustrates progressive transmission in

pyramid coding. After generation of the pyramid at the coder, the subimages are sent

Approx 1

Approx 2

Approx 3

Original

Progressive SequenceImage Pyramid

Figure 4.12: Pyramid Coding in Progressive Transmission

in order of increasing size. Upon receipt of a subimage, the decoder reconstructs the

pyramid up to that level. The reconstruction may then be interpolated to full size

for an early lowpass approximation to the original image. The �rst approximation,

created by interpolation of the smallest pyramid subimage to full size, is a lowpass

version of the original image. With the subsequent arrival of the larger subimages,

higher spatial frequency information is added to the initial approximation until �nally,

after arrival of the largest subimage, the original image can be reconstructed exactly.

In such a transmission strategy, it is desirable to achieve the highest possible image

quality as early as possible in the transmission. E�ective realization of such a strategy

demands an accurate knowledge of the characteristics of the image being coded and

appropriate choice of �lters in both the pyramid codec and interpolation process (used
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during progressive transmission to reconstruct the full size early approximations).

Pyramid coding for the progressive transmission of natural images will now be

discussed in more detail to illustrate some of the considerations in the design of an

appropriate codec. In this example, three objectives are set for the pyramid codec.

Firstly, the rate-distortion performance of the progressive transmission codec should

be optimized, where rate refers to the cumulative rate of the pyramid subimages dur-

ing progressive transmission, and distortion refers to the quality of the full size early

approximations when compared to the original image. Secondly, the �nal reconstruc-

tion of the image at the decoder should be lossless. Thirdly, the total rate of the

pyramid should be minimized, in turn minimizing the total progressive transmission

time. These objectives point to the use of MEP coding (see Section 4.1.1).

To analyze progressive transmission of the MEP, consider a two level pyramid. The

top of the MEP, a subsampled version of the original image, is transmitted �rst. To

construct an intermediate approximation, it is necessary to interpolate this subimage

to full size. The interpolation �lter used has an important e�ect on the quality of the

approximation (Goldberg and Wang 1991). To �nd a suitable interpolation �lter, it

is useful to examine the subsampling, upsampling and interpolation processes in one

dimension. In this case, the combined operations of subsampling and upsampling are

equivalent to multiplying the time domain signal by the alternating sequence

x[n] =
1

2
(1 + cos(�n)); (4.15)

which is equivalent to multiplying in turn by

x1[n] =
1

2
and x2[n] =

1

2
cos(�n); (4.16)

and adding the results. The same operation may be carried out in the frequency

domain by �rst convolving the spectrum of the original sequence with impulses at the

digital frequencies w = 0 and w = �, and then adding these component spectra to get

the resulting spectrum. This is illustrated in Figure 4.13. Clearly, the best possible

approximation to the original signal contains as much of the undistorted spectrum

of the original signal as possible. Ideally, the interpolation �lter would pass, with a

gain of two, all of the unaliased low spatial frequency information, and stop all of

the aliased and \interpolation image" information. However, in practice these ideal

passband and stopband �lter characteristics cannot both be realized by a single �lter.
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Figure 4.13: Frequency Domain Analysis of Subsampling and then Upsampling a One
Dimensional Signal

A tradeo� is therefore required between the passband and stopband performances of

the interpolation �lter. This tradeo� is conveniently made with �i in the class of �lters

speci�ed by (3.16). The extent of the aliasing, shown in Figure 4.13, depends on the

frequency content of the original signal. Signals with mainly lowpass information will

show aliasing at higher frequencies than signals with signi�cant highpass information.

Therefore, an interpolation �lter with a higher �i will be more suitable for a signal

with mainly low spatial frequency information and vice versa. A similar approach

can be applied in the case of two dimensional signals, where the interpolation �lter is

separable and has a rectangular region of support. This concept is easily extended to

pyramids with more than two levels. It should be emphasized that the choice of these
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interpolation �lters has no e�ect on the �nal reconstructed image, which is lossless.

The purpose of these �lters is merely to improve the quality of the intermediate

approximations.

4.3.1 Simulations

After generation of the MEP, the subimages can be sent in order of increasing size to

the receiver. MEP decoding can then be done at the receiver up to the level of the

last received subimage. This intermediate image can in turn be interpolated to give

a full size early approximation of the original image (see Figure 4.12). As previously

discussed, the type of interpolation �lter used has a signi�cant in
uence on the quality

of the reconstructed approximation. To investigate this e�ect, �lters from the class

speci�ed by (3.16) were used to interpolate early approximations of the test images

\Lenna" and \Mandrill" in Figure B.1 during a simulated progressive transmission.

The quality of an approximation was measured as its PSNR (A.13) when compared

to the original test image.

Figure 4.14 shows the relationship between the PSNR and �i for three di�erent

approximation levels and 2 images (\Lenna" and \Mandrill"). The PSNR drops

for low values of �i due to the fact that the interpolation �lters are too lowpass

and severely attenuate useful low spatial frequencies. At high values of �i, a drop

in PSNR is also generally apparent because the �lter does not adequately attenuate

unwanted frequencies resulting from aliasing and interpolation. The best interpolation

�lters, in terms of maximizing the PSNR of the intermediate approximations, are

indicated by arrows in Figure 4.14. As expected, the \optimal" �i is dependent on the

spatial frequency content of the original. These results are reinforced by the analysis

previously presented. The sequence of images corresponding to the optimal tradeo�

points described above are shown in Figure 4.15. Good quality approximations to the

8 bpp test images are obtained at rates of only 0.12 bpp. It should be noted that the

PSNR is not necessarily the best measure of the subjective image quality; however,

in these simulations, the two measures do correlate well.

From a practical point of view, optimal interpolation �lters could be pre-calculated

during the image coding operation and sent to the receiver preceding the image data.
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Figure 4.14: PSNR versus Interpolation Filter Type of Early Approximations of Test
Images

Since the curves of PSNR versus interpolation �lter type are generally smooth, nu-

merical solution techniques could be e�ciently applied to locate the optimal tradeo�

points more rapidly. In the case of the MEP interpolation �lter (�i = 0:5), the �lter-

ing operation can be carried out with only integer operations at a substantial saving

in computational cost. However, other interpolation �lters require the use of 
oat-

ing point operations and are therefore more computationally expensive to implement.

This is not generally a problem though, since progressive transmission is commonly

used with slow channels, allowing the receiver more time to generate the intermediate

approximation images during transmission. Good progressive transmission perfor-

mance has also been observed for a much wider range of test images. However, due to

the fact that no anti-aliasing �ltering is done in the MEP coding operation prior to

image subsampling, progressive transmission performance will drop for images with

signi�cant high spatial frequency content.
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0.11 bpp 23.98 dB 0.39 bpp 27.98 dB 1.34 bpp 33.48 dB

Mandrill

0.12 bpp 18.96 dB 0.44 bpp 19.94 dB 1.71 bpp 22.72 dB

Figure 4.15: MEP Progressive Transmission Rate Distortion Performance



Chapter 5

Pyramid Coding Of Video

In this section, the use of pyramid coding in video applications will be investigated.

After a brief discussion of the characteristics of video signals, a current video source

coding technique, called motion compensation (MC), will be presented. Methods for

recovering the motion information, or motion �eld (MF), required for MC will then be

discussed. This will be followed by an overview of previous research and a motivation

for using pyramids for more e�cient MF recovery from the video sequence. A proposal

for a hierarchical, pyramid based, MF recovery scheme will then be made. Finally, the

proposed technique will be evaluated to determine its performance relative to both

the optimal, and other suboptimal MF recovery techniques, as well as its robustness

in the presence of noise.

5.1 Motion Compensation

As described in Section 1.1, a progressive video signal (see Figure 1.1) consists of

a sequence of frames 
i displayed in rapid succession at regularly spaced time in-

tervals. Each frame generally contains both statistical and perceptual redundancies

that, as in the case of still images, may be exploited using various intraframe or spa-

tial coding techniques. As well as this, neighboring frames in the video sequence are

typically highly correlated, leading to a large amount of temporal statistical redun-

dancy. Temporal perceptual redundancies also exist in the video sequence as a result

of the temporal lowpass �ltering characteristic of the HVS, and its consequent inabil-

ity to see rapid interframe changes for example. MC is often used to exploit temporal

72
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redundancy in the compression of video signals. The principles of MC will now be

discussed in more detail.

The objective of MC (Hsing 1987), (Sezan and Lagendijk 1993) is to minimize

the temporal correlation in the frames of a video sequence (see Section 1.3). This

is achieved through prediction of a given (target) frame from neighboring (source)

frames in the video sequence. The most common implementation of MC is causal,

and involves estimation of the target frame from the single source frame immediately

preceding it. This is the form of MC that has been implemented in this research.

To perform this estimation, a MF can be calculated, describing the way in which the

target di�ers from the source, thereby allowing the target to be interpolated from

the source. The interpolation error, or DFD, can then be used together with the MF

to perfectly reconstruct the target frame from the source frame. For certain kinds

of motion, and su�ciently accurate MF calculation, this interpolation will closely

represent the target frame, leading to a low energy DFD and correspondingly high

coding gain. After reconstruction, the target frame is used as the source frame for

the next interpolation and so forth.

In real implementations, channel errors may be introduced into either the MF or

DFD component of the MC signal. To limit the propagation of these errors, MC typ-

ically incorporates some form of signal replenishment. For example, every nth frame

may be sent without MC, perhaps with some form of spatial coding. Alternatively,

a more even video rate can be achieved by sending a di�erent portion of each frame

spatially coded. For example, a column or row may be sent spatially coded with each

MC coded frame to replenish the video signal in a sweeping fashion. Similar replen-

ishment techniques are used in, for example, MPEG to allow random access to the

video sequence.

In an e�cient MC scheme, the MF may be calculated accurately at relatively low

computational cost, and both the MF and DFD may be e�ciently coded for a high

compression. To implement an e�cient MC scheme, a number of assumptions are

made. Firstly, it is assumed that the same point on an object in di�erent frames of

the video sequence will have the same intensity. This assumption generally holds true

to a close approximation in practice, but fails with scene lighting changes, re
ections

or shadows for example. Secondly, the rigid body assumption requires that an object

maintain the same shape from frame to frame so that the motion of points in the same
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object can be closely approximated using a single motion vector. This also requires

that any apparent motion in the video sequence is translational. Rotational and zoom

motion for example are exceptions to this, but may be approximated as translational

motion with su�ciently small block sizes, and a �ner MF. MC coders also assume that

neighboring frames are highly correlated, allowing a given frame to be interpolated

from its predecessor. This is generally true in practice, but will not hold during scene

changes in a video sequence. During such events, the entropy of both the MF and

DFD increase, leading to a drop in the coding gain.

Figure 5.1 shows MC coding of a video frame. In order to exploit temporal cor-

relation between the neighboring frames 
n�1, or source frame, and 
n, or target

frame, the latter can be represented as an interpolation of the former. For this inter-

polation, a MF must be calculated that describes how 
n di�ers from 
n�1. After

subdividing 
n into a uniform �eld of blocks, a search is done for each block in 
n to

�nd the best match block in 
n�1, where the closeness of a match between two blocks

is measured by some correlation measure. In this research, a sum of squared error

(SSE) correlation measure (A.9) was used. In an exhaustive implementation of MF

recovery, correlation measures for all possible motion vectors in a given search area

are computed before the best match is determined. This technique is optimal in the

sense that it always �nds the best match in the de�ned search area. However, it gen-

erally involves high computational expense that may otherwise be avoided with the

use of suboptimal guided search techniques. These techniques use information from

previously calculated correlation measures to guide the search for the �nal motion

vector, and thereby avoid the computational expense involved with the calculation of

many unnecessary correlation measures. Methods for suboptimal MF recovery will

be the subject of later discussion. The optimal motion vector, indicating the best

match, is then stored in the MF used to interpolate each block in 
n. After complete

recovery of the MF, consisting of the best match motion vector for each block in 
n,

the target frame can be interpolated from the source frame 
n�1. The interpolation

error, or DFD, and MF therefore completely represent 
n and can usually be coded

at a much lower rate than the original frame.

The interframe displacement of each motion block is described by a single two

dimensional vector, referred to as the motion vector. To achieve a good coding gain

through MC coding, a motion vector must accurately represent the apparent motion of
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Figure 5.1: Motion Compensation

the complete interior of the motion block. Clearly, \moving" objects in practical video

sequences are not always rectangular in shape, and may be smaller than the motion

block size. This leads to a drop in performance, in terms of coding gain, for the MC

coder. However, through appropriate choice of motion block size, and indirectly the

resolution of the MF, the MC scheme can closely approximate the apparent motion

in practical video sequences, and thereby achieve a good coding gain. Some of the

issues involved in choice of the motion block size will now be discussed.

Later, in Section 5.3.4, it will be shown that the computational cost of implement-

ing an MC scheme is independent of the motion block size. However, the coding gain

achieved by the MC coder depends on the motion block size for a number of reasons.

On the one hand, a smaller motion block size leads to a �ner MF that requires more

bits to encode as overhead information. Smaller blocks are also more easily matched

(Bierling 1988) and therefore lead to more local minima in the SSE correlation sur-

face, obtained while searching for an optimal motion vector for a given block. These

local minima have no e�ect on an exhaustive MF recovery scheme, that is guaranteed

to always �nd the global minima in the correlation surface, but they may confuse

suboptimal guided-search MF recovery schemes. This causes a decrease in the quality
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of the MF recovered by the the guided-search techniques, increasing the entropy of

both the MF and DFD. However, a �ner MF can approximate the interframe mo-

tion more closely and thereby improve the interpolation of a given target frame from

the source frame preceding it (see Figure 5.1). This in turn leads to a lower energy

DFD. Note that in the extreme where the block size is reduced to a single pixel, the

MC scheme is referred to as \pixel-based MC". MF recovery in pixel-based MC is

very similar to the calculation of optical 
ow �elds (Singh 1991), where each pixel

is assigned a motion vector. On the other hand, larger blocks lead to a coarser MF

that requires less overhead to represent. Although they may not represent complex

motion as well as smaller block sizes, they have better behaved correlation surfaces,

leading to less false matches. Clearly, there exists a tradeo� in block size that is

optimal in terms of reducing the overall bit rate. However, this optimal block size

is source dependent, and may vary according to the types of motion dominant in a

video sequence. For practical video sequences, a block size of 8 � 8 has been found to

lead to good performance. This is also the block size used in most hardware available

for the implementation of MC. 8 � 8 blocks will therefore be used in this research.

Akansu, Chien, and Kadur (1989) have shown that, for this block size, the losslessly

encoded MF typically requires 10% � 15% of the overall MC codec bit rate.

The majority of the computation involved in the implementation of an MC coder is

involved with recovery of the MF.While an exhaustive search is optimal, as previously

discussed, it demands high computational expense. There exist many alternative

suboptimal search techniques that make various performance versus computational

cost tradeo�s. Some of these schemes will now be discussed in the form of a brief

overview. This foundation will lead to the development of a new suboptimal MF

recovery technique, based on pyramid coding.

5.2 Existing Schemes for Pyramid Based Motion

Recovery

Pyramid coding has been used in a variety of video source coding applications both

indirectly, in the e�cient calculation of motion information, and directly in the coding

of image frames or MC residuals. A brief overview of some of this previous research
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will now be given.

5.2.1 Machine Vision

Many schemes have been proposed to exploit the pyramid hierarchy in e�cient al-

gorithms for various image analysis and processing tasks, particularly in the �eld of

computer vision for applications such as image registration, motion detection and

stereo vision. For example, Glazer, Reynolds, and Anandan (1983) investigated the

use of both lowpass and bandpass pyramids in hierarchical scene matching for var-

ious machine vision applications. Dengler (1986) proposed a method for e�ciently

calculating image \correspondence" from three level Gaussian pyramids, where the

correlation measure used in the hierarchical scheme was calculated based on the sign

of the Laplacian operator, when used on the pyramid subimages. Bergen and Adelson

(1987) proposed a hierarchical, pyramid based, technique for recovering optical 
ow

information from a video sequence.

Schemes based on pyramids have also been proposed for the recovery of more

complex motion information, such as the motion of transparent objects, from image

pairs. For example, Bergen and Burt (1990) proposed a technique, based on the

Gaussian pyramid, for e�cient recovery of complex optical 
ow information. A further

re�nement of this concept was made by Burt, Hingorani, and Kolczynski (1991), who

presented a similar technique based on the Laplacian pyramid.

Pyramids have also been proposed for the recovery of motion information to be

used for example in scene segmentation and the interpretation of three dimensional

structure from image sequences. For example, Anandan (1987) analyzed methods

for determining apparent motion, between image pairs, for use in computer vision

applications. A hierarchical MF recovery technique, based on the Burt and Adelson

(1983) Laplacian pyramid, was proposed. The Laplacian pyramid was chosen for this

scheme based on the �ndings of Burt, Yen, and Xu (1982) that some improvement

is realized through the estimation of correlation between images that have �rst been

�ltered by a Laplacian operator. However, Burt, Yen, and Xu (1982) also showed

that such correlation measures were sensitive to noise in the image pair.
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5.2.2 MF Recovery for Video Coding

Bierling (1988) proposed an alternative hierarchical motion �eld recovery technique

that is related to schemes based on the Gaussian pyramid in the sense that it uses

lowpass �ltering followed subsampling of the pixel �eld to reduce computational cost.

This technique estimates the motion vectors in a three stage hierarchical manner,

each stage using a motion block, or \window", of a di�erent size. The �rst stage

uses a large window, which generally has a correlation surface with less local minima,

to get a coarse estimate of the motion vector. Subsequently, the estimate is re�ned

using smaller windows, but searching is constrained to be su�ciently localized so that

the probability of a false match is minimal. To reduce the computational cost of the

technique for the coarse estimates, the source and target frames are decimated by

�rst lowpass �ltering, using either a 3� 3 or a 5� 5 rectangular or mean �lter, and

then subsampling by a factor of two both horizontally and vertically.

Dufaux and Kunt (1992) have suggested a multigrid block matching motion esti-

mation technique, where motion estimation is based on the original source and target

frames, but on a set of grids with di�erent resolutions. Motion information initially

estimated based on the coarser grid is subsequently re�ned on the �ner grids to calcu-

late the MF in a hierarchical manner. In addition, this research suggests a quadtree

decomposition of the MF into blocks of di�erent sizes according to the complexity of

the motion in a given area. This approach assigns larger blocks to areas of uniform

translational motion, and smaller blocks to regions of MF discontinuity for example

at object boundaries. Dufaux and Kunt (1992) showed that such an approach to

MF decomposition leads to a signi�cant reduction in the energy of the DFD, without

increasing the number of motion vectors per frame to be encoded.

Chun and Ra (1992) suggested a hierarchical MF recovery technique based on

mean pyramids. Their technique is centered on successive re�nement of the block

matching criterion. This approach di�ers from those centered on guided-search motion

vector re�nement, for example (Bierling 1988), in that it �rst calculates a subset of

possible best match motion vectors using a full search, but with an approximated

matching criterion. Subsequently, the subset is re�ned down to a single motion vector

using a progressively more accurate matching criterion.
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5.2.3 Pyramids Applied in Video Coding

At least three di�erent schemes have been proposed for the integration of pyramid

coding into the video codec. Stiller and Lappe (1991) presented a technique for lossy

pyramid coding of the DFD for each MC coded frame. Uz, Vetterli, and LeGall (1991)

proposed a scheme for integrating pyramid coding into video compression, where both

Gaussian and Laplacian pyramids were used for hierarchicalmotion estimation and the

spatial coding of frames respectively. More recently, Gandhi, Wang, Panchanathan,

and Goldberg (1993) proposed a Laplacian pyramid based scheme for the source

coding of video, both in the spatial and temporal dimensions.

5.2.4 Summary

From this foundation of research into the application of pyramid coding for both the

recovery of motion information, and spatial or temporal source coding, it is clear that

pyramids have desirable characteristics for video source coding. While the previous

research proposes various methods for exploiting the hierarchy and spatial frequency

separation of the pyramid, little attention is paid to the choice of �lters to be used

in pyramid generation. These �lters have previously been shown to have a signi�cant

e�ect on the characteristics of the pyramid. Furthermore, although schemes based on

both the Gaussian and Laplacian pyramid have been proposed, a thorough compar-

ison of the relative performance of these two types of pyramid has not, to the best

knowledge of the author, been done. These issues will be discussed in more detail in

the next section, followed by a motivation for further research into the use of pyramid

coding for e�cient MF recovery.

5.3 Hierarchical MF Recovery Using Pyramids

5.3.1 Motivation

Two important advantages of the pyramid are that it is a hierarchical representation

of image information, and that it can be tailored to suit a particular objective through

appropriate choice of generation �lters. InterframeMF recovery in MC coding of video

is an application in which both of these advantages can be exploited to achieve near
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optimal performance at a small fraction of the computational cost required by the

exhaustive search.

As will be shown in Section 5.3.4, the computational cost of the exhaustive MF

recovery scheme outlined in Section 5.1 increases exponentially with the maximum

interframe block displacement. It should be noted here that the actual maximum in-

terframe displacements that objects are likely to move in a video sequence are bounded

by constraints in preserving continuity of apparent motion and will probably remain

constant with future video system implementations. However, the resolution in future

video systems is likely to increase. Therefore the maximum interframe displacement

that an object is likely to undergo, in terms of pixels, will probably increase. Fu-

ture MF recovery schemes will therefore have to deal with larger displacements, and

computational e�ciency will become an even more serious issue. To present, the

signi�cance of this high computational cost has been reduced by the fact that most

coding applications are currently broadcast in nature and highly asymmetrical in

computational cost. However, with future trends of more direct user-to-user com-

munications, this asymmetry will be intolerable in most applications involving cheap

user hardware with low computational power. This is an important motivation for

the use of hierarchical MF recovery schemes in future video systems.

Where the exhaustive search is impractical due to its high computational cost,

other suboptimal techniques exist for the recovery of the MF. Instead of taking the

\brute force" approach of computing the correlation measure for all possible motion

vectors in the de�ned search area, these suboptimal techniques use information about

previously computed correlations to guide the search for the �nal motion vector. In

the case of well behaved correlation surfaces that have a clearly de�ned global and no

local extrema, these suboptimal techniques perform as well as the optimal technique.

However, in practice, correlation surfaces are generally not well behaved and have

local minima that may confuse suboptimal schemes and lead to an increase in the

entropy of both the MF and DFD, resulting in less e�cient MC coding. For example,

Figure 5.2 shows an SSE correlation surface, obtained for an 8� 8 block size in

an exhaustive search for a motion vector during MC coding of two frames of the

\Ping Pong" sequence (see Figure B.2). Clearly, to achieve the best coding gain,

it is desirable to minimize the number of false matches in the MF recovered by a

suboptimal technique. Here, a false match is de�ned to be a motion vector that
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Figure 5.2: Example SSE Correlation Surface from \Ping Pong" Video Sequence

di�ers from the motion vector recovered by the optimal exhaustive technique.

5.3.2 An Illustration of Hierarchical MF Recovery

To understand the principle behind hierarchical MF recovery, it is useful to consider

image information in the frequency domain. Figure 5.3 shows a one dimensional

continuous sine wave. Clearly, for such a signal, the �rst false match occurs at a

distance of one wavelength � from the true match. While it is desirable to maximize

the distance to the �rst false match, it is also desirable to maximize the accuracy

of the resolved true match. For low frequency signals, � is large, and the �rst false

match occurs relatively far from the true match. However, for such a signal, the
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position of the true match cannot be resolved accurately. Note that in the extreme

case of a zero frequency signal, no match can be resolved at all. On the other hand, a

high frequency signal can resolve the position of the true match to a higher accuracy,

but has �rst false matches much closer to the true match. To avoid this dilemma of

con
icting objectives, it is possible to �rst compute a rough estimate of the true match

based on the low frequency information in a signal, and subsequently re�ne the match

based on the higher frequency information. This analysis can easily be extended to

two dimensional signals, and although idealistic in the assumption of pure sinusoidal

content, it illustrates the principle behind hierarchical techniques for MF recovery.

true

match

first

false

match λ

signal

Figure 5.3: True and First False Match for a One Dimensional Sine Wave

5.3.3 Summary

In the next section, a hierarchical MF recovery scheme based on pyramid coding will

be proposed for implementation in a MC coder. This will be followed by an evalua-

tion of the performance of the proposed technique, when compared to both optimal

exhaustive MF recovery and another similar suboptimal MF recovery technique, re-

cently proposed by Zaccarin and Liu (1992). Here, performance will be evaluated

in terms of both lossless MC coding gain, and computational cost. The robustness

of the proposed hierarchical technique to noise will also be evaluated. Finally, the
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overall performance of the proposed scheme, in an example of a practical codec, will

be evaluated.

5.3.4 Hierarchical MF Recovery Using Pyramids

MC coding has proven to be a valuable tool in the compression of video signals. How-

ever, the success of MC depends critically on accurate MF calculation. The optimal

MF recovery scheme, in terms of �nding the motion vector corresponding to the best

match for each block, is the exhaustive search method. However, this is also the most

computationally expensive technique and it is impractical for large interframe block

displacements or image frame dimensions (see Section 5.3.4). In practice, suboptimal

MF recovery schemes are often implemented, for example the three-step search (Koga,

Iinuma, Hirano, and Iijima 1981) or the decimated search (Zaccarin and Liu 1992).

In this section, an alternative hierarchical MF recovery scheme, based on pyramid

coding, will be presented. In the development of this technique, such issues as the

pyramid type (Gaussian or Laplacian), number of pyramid levels, pyramid �lters and

computational cost will be considered in optimizing its performance. It will be shown

that the computational cost of this scheme is far lower than that of both the exhaus-

tive search method, as well as several existing \fast" suboptimal techniques, making

it more practical for real time applications.

Gaussian pyramids (see Section 3.2) have been more widely applied than Lapla-

cian pyramids (see Section 3.3) in hierarchical techniques for the calculation of optical


ow (see Section 5.2). They have the advantage that they are cheaper, in a compu-

tational sense, to generate (see Section 3.2) and do not contain the extra distortion

introduced by the interpolation �ltering operation, in the form of both the unwanted

\interpolation image" and computational noise. However, arguments have been pre-

sented suggesting that the Laplacian pyramid may be better suited to a hierarchical

search of this form. For example, Anandan (1987) suggested that Laplacian pyra-

mids are more suitable for hierarchical motion estimation because they o�er greater

separation of the spatial frequencies in the images being processed. As well as this,

the Laplacian pyramid was so named, as described in Section 3.3.1, due to similar-

ity of the Laplacian pyramid generation iteration and the Laplacian operator, widely

used for edge detection in computer vision. Edges and other high spatial frequency
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information, that are enhanced by the Laplacian operator, represent image features

that lead to the unambiguous recovery of best match motion vectors. However, the

Laplacian operator attenuates low spatial frequencies that help to de�ne the best

match at larger displacements. Therefore, it is even more important in the case of

the Laplacian pyramid to constrain the maximum block displacement to small values

during the intermediate stages of the hierarchical search.

In Figure 5.4, the proposed hierarchical MF recovery scheme for a three level pyra-

mid is shown diagrammatically. Either Gaussian or Laplacian pyramids are initially

generated from each of the two neighboring frames 
n�1 and 
n as in Figures 3.2 and

3.3 respectively. �j
i denotes the MF for the ith frame, at the jth level of the pyramid.

R and " 2 denote the MF re�nement and MF interpolation operations respectively.

In order to evaluate the optimal performance of the proposed hierarchical scheme,

no quantization of the subimages lji is done prior to MF recovery. The subimages of

the pyramids therefore generally consist of pixels with a wide range of 
oating point

values. Note, however, that the e�ect on the proposed scheme of quantization noise

in the pyramid will be evaluated in subsequent simulations.
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Figure 5.4: Proposed Scheme for Hierarchical Motion Field Recovery
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MF re�nement consists of an exhaustive search within a small area centered on

the initial motion vector. The motion vectors corresponding to the new best matches

are stored in the re�ned MF.

MF interpolation, shown in Figure 5.5 consists of upsampling a MF by a factor of

two, interpolating \missing" vectors using a nearest neighbor approach, and �nally

scaling all the vectors by a factor of two. It is possible that this interpolation could

be done di�erently with some improvement in performance using upsampling and

lowpass �ltering; however, the proposed MF interpolation has the advantage that it is

computationally inexpensive, a central issue in the proposed scheme. In fact, motion

vectors consist of integer components, and since the scaling in the interpolation process

is by a factor of two, bit shift operations may be used instead of more costly 
oating

point multiplies. The maximum overall displacement DN that can be computed by

the hierarchical MF recovery scheme, using N level pyramids, is given by

DN = (2N � 1)dh; (5.1)

where dh is the maximum block displacement used in the intermediate MF re�ne-

ments in the proposed scheme. After generation of the pyramids, a MF is computed

k
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Figure 5.5: Motion Field Interpolation

hierarchically using the subimages of the pyramids. In the initial MF, �i
n, the vectors
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are set to either zero or some estimate. �i
n is fed into the �rst MF re�nement stage

where the smallest subimages l2i are used to get a coarse initial estimate �2
n of the

MF. �2
n is then interpolated and further re�ned using the subimages l1i of the pyramid

to produce �1
n. Finally, �1

n is interpolated and re�ned using the largest subimages

l0i to give the �nal estimated MF �0
n. �0

n and 
n�1 can be used to interpolate 
n.

The di�erence between 
n and the interpolation, or DFD, can then be encoded along

with �0
n as su�cient information to completely reconstruct 
n from 
n�1.

It is desirable to limit the maximum displacement, searched at each level of the

hierarchy since, due to the lowpass �ltering, as well as the aliasing and computational

noise introduced in the decimation process, the reliability of coarse motion vector

estimates decreases with the size of the pyramid subimages on which they are based.

Therefore, the probability of bad1 matches at higher levels of the pyramid is greater,

particularly at larger displacements. A bad match that occurs early in the hierarchical

search is undesirable since it \steers" the estimator away from the desired optimal

motion vector. To minimize the probability of bad matches, the maximum intermedi-

ate block displacements should be limited to de�ne only a small search area in which

the best match is likely to be found.

In the next section, it will be shown that the �lters used in the pyramid generation

have a signi�cant e�ect on the success of the proposed technique, when based on either

the Gaussian or Laplacian pyramids. Pyramid �lters well suited to hierarchical MF

recovery will then be presented.

Pyramid Filters

It is desirable to �nd the pyramid �lters (see Section 3.5.1) that are best suited to

the hierarchical MF recovery scheme proposed in Section 5.3.4, for the case of both

the Gaussian and Laplacian pyramids. The optimal exhaustive MF recovery scheme

will be used to provide a bound on the best performance achievable by the proposed

scheme.

For various pyramid �lters from the classes de�ned by equations 3.10 and 3.16, a

simulation was done on the standard video sequence \Miss America" (see Figure B.2)

to evaluate the performance of the proposed scheme. For each pair of neighboring

1A bad match refers to a match that leads the hierarchical estimator away from the optimal

match that would result from the use of the exhaustive search technique.
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frames in the sequence, the MF was recovered with the proposed hierarchical scheme,

using three level pyramids, a maximum intermediate block displacement dh of two

pixels and a zeroed initial MF �i
n (see Figure 5.4). The optimal MF was then re-

covered with the exhaustive scheme, using a maximum interframe block displacement

DN (5.1). From each MF, the corresponding DFD for the target frame was calculated.

The combined entropy Etotal of the MF and corresponding DFD was then calculated

for both cases as

Etotal = Edfd +
Nmv

Np
Emf ; (5.2)

where Nmv and Np are the number of motion vectors in the MF and the number of

pixels in each frame of the video sequence respectively. Edfd and Emf are the entropies

of the DFD and MF for the target frame, calculated as straightforward extensions of

equation A.8. Finally, the di�erence in Etotal for the hierarchical and exhaustive MF

recovery schemes was calculated.

This di�erence was averaged over the \Miss America" video sequence (see Fig-

ure B.2) and is plotted in the case of the Gaussian and Laplacian pyramids in Fig-

ures 5.6 and 5.7 respectively, as a function of the pyramid �lters. Similar results were

observed for the same simulation on the \Ping Pong" video sequence. The entropy dif-

ference in these �gures indicates the penalty in performance, measured as the average

rate in bits per pixel, for using the hierarchical MF recovery schemes, when compared

to the corresponding optimal exhaustive MF recovery scheme. Note that the pyramid

�lters in
uence the success of the proposed scheme. A drop in performance can be

seen for large �d in both types of pyramid, indicating that the proposed technique is

sensitive to aliasing noise introduced by the subsampling operation in the decimation

process. Note that, for this reason, the MEP (see Section 4.1.1) is unsuitable for use

in such a pyramid based MF recovery scheme. A similar drop can be seen in the

case of the Laplacian pyramid for large �i, indicating that the technique is also sen-

sitive to \interpolation image" noise resulting from the upsampling operation in the

interpolation process. Optimal performance of the hierarchical MF recovery scheme

corresponded to a decimation �lter choice of �d = 0:0 for both types of pyramid,

and an interpolation �lter choice of �i = 0:0 for the Laplacian pyramid. These are

the pyramid �lters that have the best stopband performance (see Section 3.5.1), and

therefore minimize the two types of noise in the pyramids.
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Figure 5.6: Hierarchical MF Recovery from 3 Level Gaussian Pyramids (dh = 2)

The optimal average combined entropy, based on exhaustive MF recovery, was

computed to be 3:337. For the Gaussian pyramid, the best performance of the hi-

erarchical scheme, using the decimation �lter discussed above, was computed to be

3:379, representing a performance penalty of only 1:25%. On the other hand, for the

Laplacian pyramid, the best performance of the hierarchical scheme, using the pyra-

mid �lter discussed above, was computed to be 3:474, this represents a performance

penalty of approximately 4:1%. Similar results were observed for other video test

sequences. In the next section, it will be shown that this near optimal performance is

attained at a small fraction of the computational expense required by the exhaustive

MF recovery scheme.

Calculation of the SSE correlation measure (A.9) involves summation of the squared

error over the block area. This has a lowpass �ltering e�ect that becomes more sig-

ni�cant with larger block sizes, and tends to desensitize the e�ect of the pyramid

�lters on the overall performance. For example, when the simulation described above

was run with a smaller block size of 4� 4 pixels, the e�ect of the pyramid �lters on



CHAPTER 5. PYRAMID CODING OF VIDEO 89

σd

σ i

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0.6
0.65

0.0

0.5

1.0 0.0

0.5

1.0

E
nt

ro
py

Miss America

minimum

Figure 5.7: Hierarchical MF Recovery from 3 Level Laplacian Pyramids (dh = 2)

the performance of the hierarchical MF recovery was found to be more signi�cant.

However, for both choices of block size, the optimal �lters were found to be the same.

Furthermore, the best performance achieved using the 8� 8 block size was found to

be superior to that achieved when using the 4� 4 block size, as expected from the

discussion of the e�ect of block size presented in Section 5.1.

Hierarchical MF recovery methods based on mean pyramids have been proposed

by, for example, Bierling (1988). Therefore, for the sake of comparison, it is of interest

to compute the performance measure used for the previous simulation for the case

where the decimation �lter is the rectangular 5� 5 mean �lter used by Bierling

(1988). Using the same simulation parameters as for the Gaussian pyramid discussed

above, the simulation was again run on the \Miss America" sequence to determine the

performance of the rectangular �lter. The results of this simulation revealed that, for

this video sequence, the rectangular �lter had the equivalent performance, in terms

of combined entropy (5.2), as the �lter corresponding to �d = 0:85. From Figure 5.6

it is clear that this is not the best �lter to use, in the proposed scheme, in terms of

the chosen performance measure. Similar results were observed for the \Ping Pong"

sequence. However, the rectangular mean �lter does have the advantage that it may
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be implemented at a lower computational cost using only additions. Note that the

above simulation does not attempt to make a direct comparison of the technique

proposed above with that proposed by (Bierling 1988). It does, however, indicate

that the mean �lter is clearly not the best choice, in terms of the chosen performance

measure, for use in the scheme proposed above. It is likely that this is a result of

the bad stopband performance of the mean �lter, when compared to that of the ideal

decimation �lter (see Section 3.4).

A relatively large drop in performance can be seen, in the case of both pyramids, for

impulse decimation �lters (4.2) corresponding to �d = 1:0. Note that the decimation

process in this case consists only of subsampling. Many existing suboptimal search

techniques, for example see Section 5.3.5, perform subsampling without pre�ltering,

and hence su�er signi�cant aliasing. This may be the reason, at least in part, for their

performance penalty, when compared to the optimal exhaustive search.

Computational Complexity

The computational cost involved in the implementation of a MF recovery scheme

may be measured in 
oating point operations (Flops). One Flop is de�ned here to

be either an addition or a multiplication. Note that subtractions and divisions are

treated as additions and multiplications respectively. The three computational costs

CHg of the hierarchical Gaussian scheme, CHl
of the hierarchical Laplacian scheme,

and CX of the optimal exhaustive scheme will be derived for comparison in this

section. In this derivation, the video sequence consists of W �H dimensional frames


n. The �lters used in the pyramid generation have dimension f � f . In each the

MF recovery schemes, the block dimensions are b� b. For the hierarchical scheme,

the maximum interframe block displacement used for the block search at each level of

the pyramid is denoted dh, while for the exhaustive scheme, the maximum interframe

block displacement is denoted dx. For comparison of the two schemes, dx is set to the

maximumdisplacementDN (5.1) that can be calculated from the hierarchical scheme.

To facilitate a fair comparison, the computational costs CHg and CHl
of the Gaus-

sian and Laplacian hierarchical schemes will include both the costs Cg
Hg

and Cg
Hl

of

pyramid generation, and the costs Cm
Hg

and Cm
Hl

of MF recovery respectively, while

the cost CX of the optimal exhaustive scheme will include only the cost Cm
X of MF
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recovery as follows

CHg
= Cg

Hg
+ Cm

Hg
; (5.3)

CHl
= Cg

Hl
+ Cm

Hl
; (5.4)

CX = Cm
X : (5.5)

The Gaussian pyramid generation iteration consists of simply decimating the orig-

inal image (see Section 3.2). On the other hand the Laplacian pyramid generation

iteration consists of �rst decimating the original image, followed by interpolation of

the decimated image and subtraction of the interpolated image from the original im-

age (see Section 3.3). In the calculation of the computational costs of the pyramid

generation iterations, the subsampling and upsampling operations are insigni�cant

and therefore ignored. Consequently, the computational costs are solely derived from

the �ltering operations, plus the subtraction operation in the case of the Laplacian

pyramid. In the �ltering operations, a given pixel in the �ltered image ~
n is calculated

as in (A.3). Each �ltered pixel calculated as in equation A.3 requires f2 multiplies and

f2 adds. For an W �H image ~
n, the total cost of a �ltering operation is therefore

2f2WH Flops. Clearly the cost of subtracting two images (A.2), both of dimension

W �H, is WH Flops. The cost of applying a single generation iteration to a W �H

dimensional image in the case of the Gaussian and Laplacian pyramids is therefore

2f2WH and (4f2 + 1)WH Flops respectively. In the generation of a N level pyra-

mid, this iteration is applied N � 1 times, �rst to the W �H original image, and

then to the W
2 � H

2 decimated image, and so forth. The total costs CHg and CHl
for

generating an N level Gaussian and Laplacian pyramid are therefore given by

Cg
Hg

=
4

3
(1� 2�2(N�1))2f2WH Flops; (5.6)

and

Cg
Hl

=
4

3
(1� 2�2(N�1))(4f2 + 1)WH Flops; (5.7)

(see equation 4.1).

In the motion recovery schemes, the SSE (A.9) correlation measure S is used to

measure the similarity between a pair of blocks Bn�1 and Bn in adjacent frames
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of the video sequence. This involves b2 subtracts, b2 multiplies and b2 additions,

resulting in a total of 3b2 Flops per correlation measure. For each motion block,

with a maximum interframe displacement d, this correlation measure is computed

(2d + 1)2 times, totaling 3b2(2d + 1)2 Flops per motion vector. Since one motion

vector is calculated for each motion block and there are WH
b2

blocks in a W �H

dimensional frame, the total cost of computing a MF is 3(2d + 1)2WH Flops.

For the hierarchical schemes, MF calculation is done for each of the N subim-

ages, for total costs Cm
Hg

and Cm
Hl

of 4(1 � 2�2N )(2dh + 1)2WH Flops each (see equa-

tion 4.1). Note that the cost of interpolating the MF's at various stages of the hier-

archical calculation are negligible and therefore ignored in this calculation. The total

costs CHg
and CHl

for pyramid generation and hierarchical MF recovery are therefore

CHg = (
4

3
(1� 2�2(N�1))(2f2) + 4(1 � 2�2N )(2dh + 1)2)WH Flops; (5.8)

and

CHl
= (

4

3
(1� 2�2(N�1))(4f2 + 1) + 4(1 � 2�2N )(2dh + 1)2)WH Flops: (5.9)

These costs may be compared to the the total computational cost, CX, for the

equivalent exhaustive scheme, given by

CX = 3(2(2N � 1)dh + 1)2WH Flops; (5.10)

where dx has been de�ned in terms of N and dh (5.1).

It is of interest to compute the displacements dh for the \break-even" points at

which CHg = CX and CHl
= CX, since there would be no computational gain in

applying the hierarchical MF recovery schemes below the breakeven point. For f = 5,

as in the case of the pyramids �lters (3.2), the computational cost ratios CX : CHg and

CX : CHl
computed from (5.8), (5.9) and (5.10) are plotted in Figure 5.8 for various

N and dh. At the \break-even" point, the ratios are unity.

For N = 3 level pyramids, the break-even points occur at dh = 0:28 for the Gaus-

sian pyramid, and dh = 0:42 for the Laplacian pyramid. These points correspond

through (4.1) to overall maximum block displacements dx of 1:95 and 2:91 pixels re-

spectively. On the other hand, for N = 4 level pyramids, the break-even points occur

at dh = 0:13 for the Gaussian pyramid, and dh = 0:19 for the Laplacian pyramid.

These correspond again to dx = 1:95 and dx = 2:92 pixels respectively. In fact, the
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Figure 5.8: Relative Computational Cost Comparison

break-even point is practically independent of N . Therefore, for any video sequence in

which the maximum interframe displacement dx is expected to exceed one pixel, the

proposed hierarchical scheme, when based on the Gaussian pyramid, will be less com-

putationally expensive to implement than the exhaustive scheme. Similarly, for any

video sequence in which the maximum block displacement is expected to exceed two

pixels, the hierarchical scheme, when based on either the Gaussian or Laplacian pyra-

mid, will be less computationally expensive to implement than the optimal exhaustive

scheme. In practice, this encompasses the vast majority of video sequences.

5.3.5 Simulations

To investigate the performance of the proposed hierarchical MF recovery technique

further, the simulation discussed in Section 5.3.4 was run using the \Ping Pong" video

sequence (see Figure B.2). The results of the simulation show the e�ect of the pyramid

type (Gaussian or Laplacian), the number of pyramid levels N , and the intermediate

block displacement dh on the performance of the proposed scheme.
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Table 5.1: Hierarchical MF Recovery Scheme Performance Evaluation on \Ping Pong"
Video Sequence

EnfEtotalg % Penalty Comp Cost (MFlops)
W H N dh dx Hg Hl X Hg Hl CHg CHl

CX

352 224 3 1 7 4.408 4.438 4.282 2.94 3.64 7.72 12.75 53.22
352 224 3 2 14 4.330 4.360 4.280 1.17 1.87 12.69 17.72 198.93
352 224 3 3 21 4.320 4.363 4.278 0.98 1.99 20.14 25.17 437.37
320 192 4 1 15 4.624 4.627 4.418 4.66 4.73 8.00 13.28 227.32

Note that, for the simulation with N = 4 pyramid levels, the video frames had

to be cropped to ensure that the pyramid subimages had dimensions divisible by 8,

the block size. The results for N = 4 are therefore not suitable for direct comparison

with those for N = 3. However, it can be seen from the results that increasing the

number of levels beyond N = 3 causes a drop in performance, in terms of percentage

penalty, for the proposed scheme, whether using Gaussian or Laplacian pyramids. For

the Laplacian pyramid, increasing the maximum block displacement beyond dh = 2

pixels causes a drop in performance due to the unpredictable nature of the SSE

correlation surface at large displacements, when based on di�erence subimages. These

observations con�rm expectations discussed in Section 5.3.1.

For all con�gurations, the Gaussian pyramid shows a slight performance improve-

ment over the Laplacian pyramid in the proposed scheme. The con�guration using a

Gaussian pyramid with N = 3 pyramid levels, and a maximum block displacement of

dh = 3 pixels shows the best performance, with a penalty in combined entropy of only

0:98% when compared to the optimal exhaustive scheme. However, this performance

is only marginally better than the 1:17% achieved by the same con�guration with

dh = 2 pixels, at a signi�cantly lower computational cost. Similar results were ob-

served for the \Miss America" video sequence, where the same con�guration achieved

a performance penalty in combined entropy of only 1:25%. Therefore, it is proposed

that the hierarchical scheme is best suited to an implementation with a N = 3 level

Gaussian pyramid, using an intermediate block displacement of dh = 2 pixels. This

pyramid is best generated using a decimation �lter corresponding to �d = 0:0.

Figure 5.9 shows the combined entropy Etotal as a function of the frame index

for the simulations presented in Table 5.1 with N = 3 pyramid levels. Each of the
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Figure 5.9: Performance of Hierarchical MF Recovery Schemes for \Ping Pong" Video
Sequence

hierarchical schemes shows a close to optimal performance at all frames in the \Ping

Pong" video sequence. This indicates some degree of robustness of the proposed

scheme to varying types of motion in the video sequence. The N = 3 level Gaussian

pyramid, with dh = 3, again shows the best performance, although only marginally

above that achieved by the same con�guration with dh = 2. The same performance

was observed over other video sequences.

An Alternative Suboptimal MF Recovery Scheme in Comparison

The technique proposed in Section 5.3.4 is suboptimal in that it may not always

�nd the best match motion vector for all blocks in the MF. There also exist many

other suboptimal techniques that make various performance versus computational
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cost tradeo�s. One such suboptimal MF recovery technique, of similar computa-

tional complexity to the proposed scheme, was recently presented by Zaccarin and

Liu (1992). This alternative MF recovery scheme will be investigated in order to

evaluate the performance of the proposed hierarchical MF recovery technique.

Zaccarin and Liu (1992) use two strategies to reduce the computational expense

of MF recovery. In the �rst strategy, called \Pixel Decimation", the SSE correlation

measures (A.9) are calculated using only a quarter of the pixels in the blocks. Zac-

carin and Liu (1992) used the mean absolute di�erence (MAD) correlation measure;

however, to facilitate a fair comparison, the SSE was used for the simulation of their

technique in this research. The MAD and SSE have a very similar performance in

practice. To minimize the e�ect of the subsampling, the four alternating decimation

patterns shown in Figure 5.10 are used at di�erent positions in each search for a mo-

tion vector, as shown in Figure 5.11. Initially, a best match motion vector is computed

A B C D

Motion Block Pixels

Figure 5.10: Pixel Decimation Patterns

for each decimation pattern A, B, C and D. The SSE is then recomputed, without

any pixel decimation, for each of these four best match motion vectors. The motion

vector amongst these four that has the lowest SSE is then chosen as the overall best

match motion vector for that search.

The second strategy proposed to reduce the computational complexity of the full

search, is called \Sub-block Motion Field Estimation". This initially involves compu-

tation of a quarter of the motion vectors in the subsampled MF, followed by interpola-

tion of the full MF. Given that the optimal exhaustive search MF recovery technique

subdivides the video frames into b � b motion blocks, this technique does a further

subdivision into b
2 � b

2 motion blocks, as shown in Figure 5.12. The optimal motion
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Figure 5.11: Application of the Pixel Decimation Patterns

vectors for each shaded b
2
� b

2
sub-block, denoted by 1 in Figure 5.12, are initially

calculated using the pixel decimation scheme previously outlined. The motion vectors

for the remaining sub-blocks, denoted by 2, 3 and 4, are then interpolated as follows.

Sub-blocks 2 are assigned the motion vector of either the sub-block above or below

that results in the lowest SSE match. Similarly, sub-blocks 3 are assigned the motion

vector of either the sub-block to the left or right that results in the lowest SSE match.

Finally, sub-blocks 4 are assigned the motion vector of the diagonally neighboring

sub-block that results in the lowest SSE match. The interpolated MF can then be

used by the MC encoder as described in Section 5.1. The interpolation assignments

for sub-blocks 2, 3 and 4 can be speci�ed by 1, 1 and 2 bits respectively, resulting

in a total bit overhead of 4 bits per b � b block. For most practical block sizes this

overhead is small relative the the overall rate, and the full MF can be more e�ciently

coded as the subsampled MF and bit overhead for interpolation. The decoder can

then perform the MF interpolation prior to implementation of MC decoding. The

computational cost of this alternative MF recovery technique will now be developed.

Each each pixel used in the computation of the SSE correlation measure (A.9)

requires 3 Flops, where a Flop is again de�ned as an addition or multiplication. With

pixel decimation, computation of the SSE for each b
2 � b

2 sub-block totals 3
16b

2 Flops.
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Figure 5.12: Sub-Block Motion Field Estimation

Over the search area de�ned by a maximum interframe block displacement d, com-

putation of the four motion vectors based on the decimation patterns in Figure 5.10

requires 3
16b

2(2d+ 1)2 Flops. For each of the four resulting best match motion vec-

tors, the SSE correlation must be recomputed without pixel decimation, adding a

further 3b2 Flops to the computational cost per sub-block motion vector. For frames

of dimension W � H pixels, WH
b2

best match motion vectors must be computed as

de�ned above. Interpolation of sub-blocks 2, 3 and 4 involves the computation of 2,

2 and 4 full SSE correlation measures respectively, for a total of 6b2 Flops per b � b

block. The total computational cost CS is therefore given by

CS = (9 +
3

16
(2d + 1)2)WH Flops: (5.11)

This is approximately the same as CHg (5.8), the computational cost required by the

proposed hierarchical MF recovery technique when implemented based on an N = 3

level Gaussian pyramid and maximum intermediate block displacement dh = 2 pixels.

These suboptimal techniques require approximately 1
16 the computational cost of the

full search technique CX (5.10). Simulations were done to evaluate the performance

of this alternative MF recovery scheme against that of both the proposed hierarchical

scheme, and the optimal exhaustive scheme.

To evaluate the performance of these various MF recovery techniques, simulations

were run on both the \Miss America" and \Ping Pong" sequences (see Figure B.2).
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In each of the MF recovery techniques, a block size of 8 � 8 pixels was used. This

corresponded to a sub-block size of 4 � 4 pixels in the scheme proposed by Zaccarin

and Liu (1992). The hierarchical scheme used N = 3 level Gaussian pyramids and

an intermediate maximum block displacement dh = 2 pixels. Equivalently, a maxi-

mum block displacement of 14 pixels was used in both the exhaustive scheme, and

the scheme proposed by Zaccarin and Liu (1992). Figures 5.13 and 5.14 show the

combined entropy Etotal (5.2) of the MF and DFD for each frame of each sequence,

resulting from the use of each of the MF recovery schemes. These results are also

summarized for comparison in Table 5.2. Note that the overhead information of 4

bits per 8 � 8 block required to interpolate the MF in the technique proposed by

Zaccarin and Liu (1992) is included in the combined entropy, in bits per pixel, shown

in the table.

Table 5.2: Summary of Performance Evaluation of MF Recovery Schemes

Video Sequence Cost (MFlops) EnfEtotalg (bpp) Penalty (%)
Name W H CS CHg CX S H X S H

Miss 352 288 16.29 16.32 255.77 3.65 3.38 3.34 -9.36 -1.20
America
Ping 352 224 12.67 12.69 198.93 4.62 4.33 4.28 -8.00 -1.17
Pong

Clearly, the proposed hierarchical scheme outperforms the alternative scheme by a

signi�cant margin for both sequences, while at approximately the same computational

cost.

The E�ect of Quantization Noise on Hierarchical MF Recovery

In a practical MC codec, the DFD would generally be quantized at the encoder. This

introduces distortion into the frames reconstructed by the MC decoder. Since the

objective in the design of the MC codec is to minimize the average distortion of the

target frames reconstructed by the MC decoder, the MC encoding should be based

on the source frame available at the decoder that contains the quantization noise.

Simulations were done to investigate the e�ect of quantization noise in the source

frame on the proposed hierarchical MF recovery scheme for the case of both the

Gaussian and Laplacian pyramids. Figure 5.15 outlines the data 
ow in one iteration
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Figure 5.13: Performance Comparison for MF Recovery Schemes on \Miss America"
Video Sequence

of the simulation, which was performed on each pair of neighboring source and target

frames in the \Ping Pong" and \Miss America" video sequences.

After quantization of the source frame, three level pyramids were generated from

the source and target frames. The MF was then recovered hierarchically from the

pyramids, using an 8 � 8 block size and intermediate maximum block displacement

dh = 2 pixels. The quantized source frame, target frame and MF were then used

by the MC encoder to generate the DFD. After calculating the entropies of both the

MF and DFD, the combined entropy (5.2) was calculated. Figure 5.16 shows the

combined entropy averaged over the frame sequences for the two types of pyramids

and various quantizer rates. For comparison, the average combined entropy achieved

by the optimal exhaustive scheme, based on an 8 � 8 block size and maximum dis-

placementDN of 14 pixels (see equation 5.1), is shown for comparison, both with and

without quantization of the source frame.

Note that the exhaustive MF recovery technique, without quantization of the
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Figure 5.14: Performance Comparison for MF Recovery Schemes on \Ping Pong"
Video Sequence

source frame, achieves the best performance in terms of minimizing the average com-

bined entropy, as expected. The exhaustive MF recovery scheme, with quantization

of the source frame, achieves a similar performance at high quantizers rates, but its

performance drops at lower rates where quantization noise in the source frame has

a signi�cant e�ect on the MC coder, increasing the entropy of both the MF and

DFD. For all quantizer rates, hierarchical MF recovery, with either the Gaussian or

Laplacian pyramids, achieves a performance close to that of the optimal exhaustive

technique, with quantization of the source frame.

On average, hierarchical MF recovery performs slightly better when based on the

Gaussian pyramid, than when based on the Laplacian pyramid. This is probably due

to the fact that the SSE correlation surface, obtained while searching for a motion

vector at a given stage in the hierarchical MF recovery scheme, is better behaved

in the case of the Gaussian pyramid, and is therefore more robust to quantization

noise in the source frame for example. Thus, in the case of the Gaussian pyramid,

the hierarchically recovered MF will contain less bad matches, and will be closer to
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Figure 5.15: Simulation Data Flow Diagram

optimal than in the case of the Laplacian pyramid.

For some quantizer rates, the hierarchical Gaussian MF recovery scheme performs

marginally better than the exhaustive scheme, with quantization of the source frame.

It is proposed that this unusual result is due to the fact that the exhaustive scheme

is optimal only in the sense that it �nds the best match in terms of minimizing the

energy of the DFD. However, with quantization of the source frame the entropy of

the MF recovered by the exhaustive technique, and therefore the combined entropy,

may increase signi�cantly as a result of the decreasing quality of the block matches.

On the other hand, hierarchical MF recovery techniques lead to more accurate motion

�elds in the sense of the true motion (Dufaux and Kunt 1992), making them more

robust to such increases in the entropy of the recovered MF as a result of quantization

of the source frame.

Hierarchical MF Recovery In A Practical Codec

The hierarchical scheme for MF recovery outlined in Section 5.3.4 was evaluated both

in Sections 5.3.5 in terms of relative performance, and in Section 5.3.5 in terms of

robustness to quantization noise in the source frame. It is also useful to investigate
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Figure 5.16: Average Combined Entropy Simulation Results
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the performance of the proposed scheme in a real codec implementation.

Figure 5.17 shows a block diagram of an MC codec employing hierarchical MF

recovery. Q and Q�1 represent quantization and inverse quantization, respectively, of

the DFD. Similarly, E and E�1 represent entropy coding and decoding, respectively,

of the MF and DFD. Finally, D represents a single frame delay. It is desirable in the

codec to maximize the quality of the reconstructed target frame 
̂t output from the

decoder, when compared to the original target frame
t input to the coder. Note that,

in each iteration of the codec, the previously reconstructed target frame 
̂t is used as

the source frame 
̂s for the current MC coding operation (see Section 5.1). Therefore,

the source frame includes the e�ects of DFD quantization in the MC coder. Note that

in a real implementation, the initial source frame 
̂s would be encoded without MC, as

previously discussed. The hierarchical MF recovery was based on three level Gaussian

Ω
s
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t
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Figure 5.17: A Practical MC Codec Employing Hierarchical MF Recovery

pyramids created using a decimation �lter with �d = 0:0, an 8� 8 block size, and a

maximum intermediate displacement dh of two pixels.

The performance of the codec was evaluated using both the \Miss America" and

\Ping Pong" sequences (see Figure B.2). For each iteration of the codec, the PSNR

(A.13) of the reconstructed target frame 
̂t was measured, when compared to the

original target frame 
t. Similarly, the rate was measured for each reconstructed

target frame 
̂t as the combined entropy (5.2) of the MF and DFD. Figure 5.18

shows the average PSNR at di�erent average rates. Note that the di�erent rates were

achieved by varying the bits allocated to the DFD quantizer.

At low rates, the PSNR increases approximately linearly with increasing rate,

indicating a logarithmic decrease in the variance of the noise introduced through DFD

quantization. The average PSNR is higher at a given rate for the \Miss America"

sequence, since on average it contains less motion than in the \Ping Pong" sequence.
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This allows the MC coder to interpolate the target frame accurately, and leads to

a low energy DFD that may be e�ciently quantized at lower rates. In fact, for

higher rates in the \Miss America" simulation results, quantization of the DFD has

almost no e�ect, and the quality of the reconstructed sequence is nearly perfect.

Generally, the quality of the reconstructed video signal is reasonable at an average

PSNR of approximately 30:0dB. For the \Miss America" sequence, an average PSNR

of 36:9dB is achieved even with no bits allocated to the DFD quantizer, at a rate of

only 0:09 bpp, corresponding to a compression ratio (A.14) of 90:9. However, for the

higher motion \Ping Pong" sequence, a PSNR of 29:5dB is achieved only at a rate of

1:49 bpp, corresponding to a compression ratio of 5:4.

Note that these results could be improved with the use of more elaborate schemes

in the source coding of the MF and DFD, for example DPCM, subband coding or

pyramid coding. Furthermore, quantization schemes such as vector quantization or

the DCT could be used, to exploit remaining interpixel correlation in the DFD, to

achieve a higher coding gain.



Chapter 6

Conclusion

Pyramid coding is a technique used to reduce information redundancy in a source,

thereby improving storage or transmission e�ciency. Feedback in the pyramid gen-

eration process allows both 
exibility in the choice of generation �lters, and the use

of quantization feedback. This in turn allows pyramid coding to be optimized for a

particular application; for example, either directly in lossless or lossy compression, or

indirectly in the e�cient recovery of motion �elds from video sequences.

For applications that require perfect reconstruction of the original image, lossless

pyramid coding may be used. For example, legal speci�cations require that medi-

cal images maintain perfect quality through the source codec. Alternatively, higher

image compression ratios may be achieved using lossy pyramid coding, for example

in applications such as image databasing. The hierarchical structure of the image

pyramid makes it suitable for both the progressive transmission of images over slow

channels, for example in remote searching of image databases, as well as the e�cient

recovery of motion information from video sequences, for example in temporal video

source coding.

This thesis has outlined the principles of pyramid coding and explored new ways

in which to optimize its performance in various applications. In particular, a new

class of �lters that are well suited to pyramid coding have been developed. It has

also been demonstrated that the choice of these �lters has a signi�cant e�ect on the

performance of the pyramid codec in a broad range of applications. An evaluation

of this performance has been presented, both in relation to optimal methods, and

to other suboptimal techniques. Results show that lossless pyramid coding, or more

107
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speci�cally MEP coding, performs particularly well relative to other techniques, both

in terms of higher compression ratios and lower computational cost. Furthermore,

pyramid coding achieves very near optimal performance in the recovery of motion

�elds from video sequences, at only a fraction of the computational cost. On the other

hand, due to quantization feedback in the pyramid codec, the estimation of distortion

in the image reconstructed from the quantized pyramid is a highly nonlinear problem,

and complicates the task of bit allocation. Therefore, although the evaluation of lossy

pyramid coding presented in this thesis shows promising results, further research is

required to �nd more reliable bit allocation methods. Similarly, the subjective quality

of an image reconstructed from a quantized pyramid may di�er signi�cantly from the

objective quality, measured for example by the PSNR, due to various characteristics

of the HVS. A detailed study of these subjective properties of the HVS would lead to

better choices of �lters for lossy pyramid coding of a particular image. However, these

topics are beyond the scope of this thesis and are recommended for future research.
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Appendix A

Mathematical Formulae

Let an image 
 be referenced using a two dimensional Cartesian grid so that a given

pixel is speci�ed by its (i; j) coordinates, and denoted as 
ij . The top left pixel is

assigned the coordinates (0; 0) with i and j coordinates increasing to the right and

down the image respectively. The image width and height are represented by w and

h respectively.

A.1 General Image Operations

A.1.1 Addition

The summed image 
s is calculated by the pixel-wise addition of 
1 and 
2 as follows


s =
h�1X
j=0

w�1X
i=0


1
i;j + 
2

i;j: (A.1)

A.1.2 Subtraction

Similarly, the di�erence image 
d is calculated by the pixel-wise subtraction of 
1

and 
2 as follows


d =
h�1X
j=0

w�1X
i=0


1
i;j � 
2

i;j: (A.2)
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A.1.3 Filtering

A two dimensional f � f FIR �lter F , with its center coe�cient indexed at (0; 0),

may be used to �lter the image 
n to give ~
n as follows

~
n =
h�1X
j=0

w�1X
i=0

f=2X
k=�f=2

f=2X
l=�f=2

Fk;l 

n
i+k;j+l (A.3)

A.2 General Image Measures

A.2.1 Rate (R) [bits per pixel]

R =
1

w � h
hX

j=0

wX
i=0

rij (A.4)

Where

rij = bits allocated to represent pixel (i; j).

A.3 Image Statistics Measures

A.3.1 Mean (�)

� =
1

w � h
hX

j=0

wX
i=0


ij (A.5)

A.3.2 Variance (�2)

�2 =
1

w � h
hX

j=0

wX
i=0

(
ij � �)2 (A.6)

A.3.3 Standard Deviation (�)

� =
p
�2 (A.7)
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A.3.4 Entropy (H) [bits per symbol]

The zeroth order entropy H is calculated as

H =
X
a�A

pa log2
1

pa
(A.8)

Where

A = the complete set of image pixel values.

a = an element of the set A.

pa = the probability of a in A.

A.3.5 Sum of Squared Error (SSE) Correlation Measure

For a motion block Bn
k;l in frame n, referenced by its upper left pixel at coordinates

(k; l), the SSE correlation measure Si;j with a block in the previous frame, displaced

by the vector (i; j), is given by

Si;j =
bX

k=1

bX
l=1

(Bn�1
k+i;l+j �Bn

k;l)
2: (A.9)

where b represents the width and height of the blocks.

A.4 Image Quality Measures

Let the original image be denoted 
ij, and the reconstructed image (the original image

with added distortion) be denoted 
0ij.

A.4.1 Mean Squared Error (MSE)

MSE =
1

w � h
hX

j=0

wX
i=0

(
ij � 
0ij)
2 (A.10)

A.4.2 Normalized Mean Squared Error (NMSE)

NMSE =

Ph
j=0

Pw
i=0(
ij � 
0ij)

2

Ph
j=0

Pw
i=0(
ij)2

(A.11)
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A.4.3 Signal to Noise Ratio (SNR) [dB]

SNR = 10 log10
�2

MSE
(A.12)

A.4.4 Peak Signal to Noise Ratio (PSNR) [dB]

PSNR = 10 log10
22n

MSE
(A.13)

Where

n = bits per pixel in original image.

A.5 Compression Measures

A.5.1 Compression Ratio (C)

C =
R

Rc
(A.14)

Where

R = rate of the original image.

Rc = rate of the compressed image.



Appendix B

Standards

B.1 Source Coding Standards

The objective in source coding is to facilitate e�cient communication and storage of

data (see Chapter 1). However, there exist many diverse techniques for the compres-

sion of images and video. In order to facilitate the exchange of compressed images or

video, standards have been formulated. Since these standards e�ectively determine

the use of various source coding techniques, a brief outline will now be given. Pen-

nebaker and Mitchell (1993) provide a more detailed description of these standards.

B.1.1 CCITT

International Telegraph and Telephone Consultative Committee set two standards, G3

and G4, for binary image compression. These standards are, at present, used for fax

compression. However, they are likely to be replaced by the JBIG standard.

B.1.2 JBIG

Joint Bi-level Image Experts Group (JBIG) de�nes a new standard for lossless com-

pression of fax images.
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B.1.3 JPEG

Joint Photographic Experts Group (JPEG) is an international standard for color image

compression. The JPEG group formulated the standard under the supervision of three

major international standards organizations, namely the International Organization

for Standardization (ISO), the International Telegraph and Telephone Consultative

Committee (CCITT), and the International Electrotechnical Commission (IEC), in

order to facilitate the communication of compressed images. JPEG describes an

architecture incorporating a set of image source coding methods that make it a suitable

standard for a wide range of image compression applications. A form of Laplacian

pyramid coding (see Section 3) has been implemented in the JPEG \hierarchical

mode", where progressive transmission is facilitated.

B.1.4 H.261

This is a CCITT motion sequence compression standard for low bandwidth, real time

video compression. This standard is also known as P� 64 , since it is intended for

use, in teleconferencing applications, at rates that are multiples of 64 kBPS. The

H.261 standard is to be replaced by the newer MPEG standard.

B.1.5 MPEG

Moving Picture Experts Group (MPEG) de�nes a standard for the compression of

video sequences. This standard had two phases of development. The �rst phase,

named MPEG-1, was intended for resolutions of 320� 240 and bit rates of approx-

imately 1.5 MBPS, for both video and two audio channels. Subsequently, MPEG-2

was developed for higher resolutions and rates of approximately 4-10 MBPS.
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B.2 Standard Test Images

Boat 512�512 Lenna 512�512

Mandrill 512�512 Peppers 512�512
Figure B.1: Test Images (8 bpp)
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B.3 Standard Test Video Sequences

Miss America 360�288

Ping Pong 360�240
Figure B.2: Test Videos (8 bpp)


