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Abstract 

Telelearning is a collection of strategies and techniques for 

instruction at a distance. With the relatively recent success of the 

Internet and its almost universal accessibility, the web has become a 

very attractive vehicle for the delivery of courses. Depending on the 

course content and the amount of synchronous interaction between 

students, the amount of network traffic can vary tremendously – and this 

can have a huge impact on the quality of service (QoS) experienced by 

the system users. Thus, in planning to deliver courses, network 

administrators and course designers need answers to the following 

questions: 

•� What is the “capacity” for a given system configuration and QoS 

criteria? 

•� What is the effect of changing the course content on the QoS? 

•� How do the critical resources in the system affect the overall QoS? 

•� What is the most effective systems architecture? 

•� What system resources need to be present to offer a course. 

The answer to each of these questions can be quite complicated, 

since systems have many parameters and each user will interact with the 

environment in unique and often complicated ways .  

This thesis describes our efforts to answer these questions with the 

OPNET computer simulation package. We have studied the 

configurations and usage of the experimental Virtual-U,  and have built 

computer models of the following main system components: the network, 

the server system, and the user model for interacting with the system in 

the  specific courses. In simulations,  parameters such as the server 
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processing rate, the intensity of background traffic and the course 

content are varied to see the effect of these changes and predict the 

system capacity.  

From the simulation results, we discovered that the system 

bottleneck in the current Virtual-U system is in the server. From the 

network bandwidth perspective, the server’s subnet is most likely to 

suffer bandwidth starvation. The user’s activity and the  course material 

content all have effects on the system performance. Adding more 

multimedia content in a course will increase the load to the system, but 

if we control it at a reasonable level under the system capacity, the 

degradation of QoS is not dramatic. Although some results need 

additional work for improved accuracy, these results show that our 

method of carrying out QoS research through computer simulation is 

valid and that the simulation tool we have built is able to aid the 

development and application of telelearning systems such as Virtual-U. 
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Chapter I 
Introduction  

Telelearning is a collection of  methods and technologies of using 

networked computer environment and tools for education and training. It 

will provide “virtual universities” on the network and enable students to 

access learning resources beyond the “border” of conventional 

classrooms. The Telelearning Network of Centers of Excellence (TL-NCE) 

is conducting the research and development of telelearning systems to 

make them able to  "support the development of a knowledge economy 

and learning society in Canada" [Telelearning Web]. In order to make a 

better design of telelearning systems, and also a better usage of 

telelearning systems  to deliver courses, system designers and educators 

need answers to the following questions: 

•� What is the capacity of a system for a given system configuration 

and QoS criteria? 

•� What is the effect of changing the course content on the QoS? 

•� How do the critical resources in the system affect overall QoS? 

•� What is the most effective system architecture? 

•� What system resources are required to offer a course? 

The answer to each of these questions can be quite complicated, 

since systems have many parameters and each user will interact with the 

environment in unique and often complicated ways (which may interact 

with metrics such as the QoS). Nevertheless, it is possible to have a 

better understanding of  the systems and their key factors by studying 

the behaviors of an experimental telelearning system in some “typical” 

conditions. Our research started by studying Virtual-U (VU), an 
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experimental  Internet-based course delivery environment developed by 

researchers in Simon Fraser University.  

Virtual-U [VU Web]  is a web-based software system which allows 

universities or organizations to offer post-secondary level courses online. 

It includes tools for course design and facilitation, class discussion and 

presentation, course resource managing, class management and 

evaluation, and system administration. The basic Virtual-U components 

are: 

1) VGroup Conferencing System (VG):  “VGroup” supports group 

communication and collaboration in a secure newsgroup-style. 

Instructors can set up collaborative groups and define structures, 

tasks and objectives. Any user can learn to moderate conferences and 

to create sub-conferences. Users can easily sort messages in different 

ways to follow conversational threads, and view as a list of message 

titles or view the whole message.  

2) Course Structuring Tool:  This tool enables instructors to organize the 

resources of an on-line course.  

3) Assignment Submission Tool: This tool enables instructors to request, 

receive and comment on course activity and assignment files which 

are submitted by students (to the course server) in a Virtual-U course.  

4) Grade-book tool: This tool manages the database of students grades 

for each course delivered with Virtual-U.  

5) System Administration Tool:  This tool assists the system 

administrators in installing and maintaining Virtual-U.  

Virtual-U is a learning environment based on the World-Wide-Web 

(WWW). This design makes Virtual-U easy to access and ready to 

integrate multimedia content. The “Web” [Tanenbaum, 1996], is an 
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architectural frame-work for accessing linked documents stored  on the 

Internet. The  richness of HTML, the language of the web, makes it 

relatively easy to add  multimedia content to  a web page. In addition, 

commonly available web browsers support multimedia content such as 

images, rich-text, and audio/video through third-party applications. By 

being centered in the Web, Virtual-U has inherited all of these strong 

points and is using them to build a “virtual university”. 

Virtual-U’s 1997 design uses Common Gateway Interface (CGI) 

programs [Schwartz, 1993] because CGI is widely used in the 

development of Web servers and has a large amount of libraries 

available.  The pages viewed by the user are not pre-made static Web 

pages, but generated dynamically by the responding CGI program 

according to the user’s request. Inside each page there are some icons 

representing the choices available for the user, any choice made will 

invoke another CGI program to generate a new page. The communication 

protocols that Virtual-U based on are the TCP/IP [Miller, 1992] 

communication protocols. TCP/IP  is very popular in today’s network 

environments and widely supported by vendors and products. TCP/IP’s 

popularity provides high accessibility to the applications based on them 

(such as VU),  but it does not distinguish  traffic according to its QoS 

requirements and do not provide QoS guarantees, thus it is difficult to 

support high quality multimedia services. 

As of 1997, the version our work is based on, Virtual-U courses 

were based on an ascii-text conference model (using the VGroup 

conferencing system), where each course contains numerous conference 

threads in which students can post contributions or read what others 

have written. When taking a course offered by VU, a student mostly 
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interacts with the “VGroup” system. As the first step, a student logins 

into the system to view the “VGroup welcome page”. He or she then has 

several choices, such as  reading course introduction material and listing 

the available conferences. If the student  wants to see the conference list  

they simply click on the appropriate icon and list will be displayed.  After 

the student  finds the conference he or she  is most interested in, he or 

she  can then list all the unread messages. After that, what the student 

can do is similar to that in a regular Email system; i.e. the student  can 

read a message or put his or her comments on a new message and post 

it .  In each of the steps above, the student is able to move backwards 

and make other choices. 

Virtual-U is evolving and improving. In order to provide a better 

learning environment, future versions of the system will include options 

for multimedia technologies such as “Video on Demand” (VOD) streaming 

applications, where the students can  view a lecture stored  on the  

server by playing with a “virtual VCR”; and video conferencing  where a 

student can interact with the teacher and other students through their  

computers. These technologies are already available in the market, and 

there may be more  compelling possibilities in the near future. In our 

research, we studied two types of courses: VU conference based courses 

(referred as VU course) and “VOD” courses that allow streaming video. 

More possibilities will be added to the simulation system in the future. 

 As we mentioned earlier, Virtual-U utilizes the popular TCP/IP 

based network to achieve high accessibility. However, the current (as 

opposed to next generation) TCP/IP protocols were designed for data-

oriented services  that do not have QoS constraints other than reliable 

delivery. These are “best effort” protocols in the sense that they do not 
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distinguish traffic according to their QoS requirements and do not 

provide QoS guarantees. For the a telelearning system that may have a 

lot of multimedia  content, this kind of protocol is  problematic,  since 

multimedia services  have strict QoS requirements, such as  delay and 

delay jitter, that really need to be guaranteed. For multimedia services, 

“best effort” networks should be used with care. Good estimates of the 

expected traffic and available bandwidth are required so that the whole 

system can be run at a “safe” load and so that QoS degradation due to 

resource starvation will rarely happen. In the future, this problem will 

likely be solved through the usage of network protocols that support 

multiple QoS classes and provide QoS guarantees. Many protocols and 

proposals of this type are underway  , such as IEEE 802.12 [Watson, 

1995],  Ethernet++ [Edwarts, 1995], IP version 6 [Huitema, 1998] et 

cetera. Some of them will be discussed in this thesis. 

Quality of service (QoS) is one of the main interests of our research 

and in our context, it refers to performance measures such as delay, 

delay jitter, packet-loss rate, and distortion, as seen by the users and 

applications. Distortion is the reduction in the quality of the information 

perceived by the user because of quantization, compression, and loss et 

cetera. that may be necessary because of the limited bandwidth available 

on the channel. In telelearning systems such as Virtual-U, different types 

of applications and courses are  run and they may have different QoS 

requirements. For example, delay and/or delay jitter must be upper-

bounded to ensure  in-time delivery. Loss and distortion must also be 

bounded to ensure a  reasonable subjective quality.  For interactive 

applications such as video conferencing, a long time delay will make the 

interaction difficult.  On the other hand, for the VOD courses using 
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streaming video, delay jitter is even more harmful then the delay itself. In 

order to smooth the delay jitter caused by the network’s traffic 

fluctuation, there is a play buffer in the viewer’s play station. When the 

incoming (from the source) traffic rate is higher than the play station’s 

displaying rate, the amount of data in the buffer increases; if the 

incoming traffic rate is lower than the displaying rate, the amount of data 

in the buffer decreases. Since the buffer has a limited volume, it can only 

handle fluctuations in the arrival rate that are  within a certain level.  

Above this level, play buffer overflow or underflow will happen, and the  

perceived quality will  degrade due to the loss of a video frame or the 

repetition of an old one. Compared courses rich in multimedia content, 

text based courses can tolerate much more delay; i.e.,  students will 

generally not complain about waiting for 3~5 seconds while retrieving a 

message from the server (but 30 seconds is definitely a problem).  The 

wide range of requirements, from those with relaxed to stringent QoS 

parameters, suggests that it would be highly advantageous for 

applications to have control over the QoS provided to them.  

Before any mechanisms are implemented to control the QoS of 

telelearning applications, it is very important to define appropriate QoS 

measures (or benchmarks) that can capture the essence of the 

impairments. At this stage, there are two considerations in selecting the 

QoS measures. Firstly, as we are mostly interested in the overall system 

capacity and QoS, the measures should be able to take into account the 

(QoS) contributions from all the sub-systems  and reflect the “end to end” 

performance. Secondly, we should use both statistical and subjective 

measures. The statistical characteristics such as “maximum value”, 

“minimum value”, “mean” and “standard deviation” are widely used in 
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QoS analysis, but they  do not always reflect the subjective quality of 

service. We should find ways to directly reflect the user’s subjective QoS. 

As we know, QoS requirements are different for different types of 

services. Even for the same type of service, different users may have 

different QoS requirements. Therefore, we should define several QoS 

levels based on the “satisfactory levels” and study the percentage of 

services that fit into each of these QoS levels. As a reasonable starting 

point, three QoS levels are used in this thesis: 

 

“Good”:   Very good quality. 

“Not good”:   The quality is not good, but will be  
   acceptable to most users. 

“Bad”:  Bad and not acceptable. 

 

The QoS measures and parameters are chosen based on the above 

considerations. For example, for the Virtual-U conference based courses, 

we will measure the request response time (T), which is defined as the 

time from when a user sends out the request until the requested 

information is received. The parameters for the three QoS levels are set 

as: T<5s, 5s<=T<20s, T>20s respectively. These QoS measures will be 

used for system performance evaluation. 

Our approach in carrying out research on the QoS of telelearning 

systems and to answer the above questions consists of computer 

simulations using a  commercial package called OPNET1. We have 

                                       

1 For information about OPNET, please refer to Appendix A. 
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studied the configurations and usage of the experimental Virtual-U 

system,  and have built computer models of the following main system 

components: the network, the server system, and the user’s that interact 

with the system in the  specific courses. In the simulations,  parameters 

such as the server processing rate, the intensity of background traffic 

and the course content are varied to see the effect of these changes and 

to predict the system capacity.  

From the  simulation results, we have learned quite a lot about the 

system’s capacity and  were able to generate quantitative information on 

the effect of varying critical factors. For the system configuration of 1997, 

and with text-based courses, we have confirmed that the system 

bottleneck is not the network, but rather the server. The capacity of the 

system depends on the server’s processing ability, which is determined 

by both hardware power and software design. Also, from the network 

bandwidth perspective, the server’s subnet is most likely to suffer 

bandwidth starvation. The user’s activity and the course content  also 

effect  the system performance. Adding more multimedia content  to a 

course will increase the load on both the server and the network, but if 

we control the amount of traffic generated to be a reasonable amount 

below the network bandwidth limit, the degradation in the QoS is not 

dramatic. Although some results need additional work for  improved 

accuracy, these results show that our method of carrying out QoS 

research through computer simulation is valid and the simulation tool 

we have built is able to provide useful information about the expected 

performance of telelearning systems.  

In conclusion,  the contributions we made in this research are: 1) 

We analyzed the system structure of Virtual-U (1997 ) and the usage 
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pattern of test courses, and constructed simulation models. 2) We 

implemented the simulation models into computer code and built a 

simulation tool in OPNET. 3) We executed experiments with the 

simulation system and obtained results about  telelearning QoS issues. 

The remaining sections of this thesis are organized as follows. In 

Chapter 2,  we provide background information about computer 

networks and computer simulation. Chapter 3 describes our method of 

building a simulation system and presents a simulation system of 

Virtual-U as an example. Some experiment results  generated by our 

simulation system are then discussed in Chapter 4. Finally, we evaluate 

our simulation system and point out further improvements in Chapter 5. 
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Chapter II 
Computer Network and Computer Simulation 

2.1 Computer Network and Protocols 

A telelearning system is to provide a networked learning 

environment and  its success relies on the supporting network. Modern 

computer networks are designed in a highly structured way to reduce the 

design complexity. That is, the networks are organized as a series of 

layers, each layer is responsible for a certain group of functions. The 

layers are independent and communicate through interfaces. A popular 

reference model for the structure of computer networks is the ISO OSI 

(Open Systems Interconnection) Reference Model [Tanenbaum, 1996], 

which is developed by the International Standards Organization (ISO) as 

a step toward international standardization of various protocols. 

Standardized protocols have enabled many communications systems to 

respond to the demand for network interoperability. This is very 

important for telelearning systems that ideally need a network with no 

border. 

In the OSI model (refer to Figure 2.1) there are seven functional 

layers. The application layer defines the tasks performed from the user’s 

perspective. Examples include Email, file transfer and Web browsing. The 

Virtual-U course  environment belongs to this layer.  The  presentation 

layer handles any conversions required to prepare files for presentation 

to the user. The session layer  establishes sessions for users on different 

machines. One example of the session layer services is the “token 
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management” which makes sure that the two communication sides will 

not attempt the conflicting operations at the same time.  

 

 

                                      

 

 

 

 

 

 

 

 

Figure 2.1  The OSI Model2 [Freeman, 1995] 

 

                                       

2 This figure is drawn based on the Figure 5.20 “The OSI Model” of  [Freeman, 1995].   
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The transport layer is responsible for end-to-end file delivery.  This layer 

includes protocols for detecting and correcting errors that occur during 

file transfer. The popular Transmission Control Protocol (TCP) is an 

example of this layer. The network layer is responsible for delivering 

packets of information that will be assembled into files in the transport 

layer.  Routers, the equipment broadly used in today’s network to move 

traffic from node to node,  operate in the network layer to determine 

which path can be used to access the destination computer.  Routers can 

also  implement congestion control algorithms, which can improve overall 

system performance. The Internet Protocol (IP) in common use is a 

protocol of the network layer. The data-link layer defines the frames of 

data traveling through a network, as well as error-correction and 

retransmission schemes.  The frame format may include CRC checks and 

error-correction codes, which allow the link to appear virtually error-free 

to the user.  LAN protocols, such as Ethernet and Token Ring, belong to 

this layer.  Bridges,  which are used for connecting multiple LANs 

together, implement some of the data-link functions. The physical layer 

defines how unstructured binary digits (bits) travel over the physical 

media between machines.  Physical-layer protocols define pin 

configurations for cables and voltage levels.  

The OSI model is a conceptual model. In real networks, the 

functions are not always implemented according to the  seven layer 

definition. For example, the  web systems in the Internet do not have 

explicitly defined “presentation ” and “session” layers. The necessary 

functions are instead implemented in the “Application layer” for system 

simplicity and efficiency. The stack model of Virtual–U and its supporting 
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network environment include Ethernet, the TCP/IP protocol suite and 

the Virtual-U applications. 

The Ethernet is a bus-based local area network (LAN) technology 

whose operation is managed by a medium access control (MAC)3 

protocol,  which has been standardized by the Institution of Electrical 

and Electronic Engineers (IEEE) under the name 802.3 [Tanenbaum, 

1996]. The role of this MAC protocol is to provide efficient and fair 

sharing of the communication channel, which in our case is the 10Mbps 

bus connecting the stations of the LAN. The Ethernet MAC accepts data 

packets from a higher layer protocol (such as IP) and  transmits them at 

appropriate times to other stations on the bus.  Because the higher layer 

protocols can forward data at any time and the bus is a broadcast 

medium, collisions are unavoidable in the Ethernet protocol. Ethernet 

therefore attempts to provide efficient mechanisms for handling 

collisions, i.e. carrier sensing and collision detecting (CSMA/CD). When a 

station wants to transmit, it listens to the bus.  If the bus is busy, the 

station waits until it goes idle, otherwise it transmits immediately.  If two 

or more stations simultaneously begin transmitting on the “idle” bus,  

they will collide.  All colliding stations then terminate their transmission,  

wait a random time, and repeat the whole process all over again. In June 

1995, IEEE approved 802.3u (which is commonly called “Fast 

Ethernet”)[Johnson, 1996]. This protocol keeps the frame format of 802.3 

and the CSMA/CD, but makes it go faster-100Mbps. Technically, 802.3u 

is an addendum to the 802.3 rather than a new protocol.  

                                       

3 MAC is a sub-layer of the data link layer in the OSI model. 
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The Ethernet is widely used in today’s network because its 

algorithm is simple and stations can be installed without taking the 

network down. Furthermore, the delay at low load is practically  zero. 

Stations can transmit data as soon as the bus is free and do not have to 

wait for tokens as in other systems such as Token Ring [Tanenbaum, 

1996]. However, “802.3” is non-deterministic, which is often 

inappropriate for real time work  because it does not distinguish traffic 

with different priorities. At heavy load, collisions become  frequent, which 

has a serious impact on the throughput.  An overloaded Ethernet will 

collapse totally and the data throughput will go to zero. The utilization of 

the Ethernet depends on many factors, such as the number of stations, 

the frame size, the traffic load of each station et cetera. As a general rule, 

the actual capacity of an Ethernet system is approximately 80% of its 

stated maximum; i.e. on our subnets, the maximum throughput is about 

8Mbps.  

The Internet Protocol [Freeman, 1995] is a connectionless network 

layer protocol whose task is to interconnect multiple networks. It 

provides services to transport layer protocols (e.g. TCP and UDP) and 

relies on the services of data link layer protocols (e.g. Ethernet and Token 

Ring) to relay packets to other IP modules.  Within a single host or router 

in the network, IP may have several interfaces to different types of data 

link layer protocols. This property provides the ability to route packets 

between different types of networks. IP essentially works like a "glue" 

that binds the different networks together into one network. Packets that 

are created and forwarded by IP modules are called datagrams. IP 

datagrams carry headers that hold control information such as the 

source and destination addresses, type of service, identifier and so on. 
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Because IP connects different types of networks that may support 

different maximum packet lengths, datagrams may have to be broken 

into fragments, which are also considered datagrams. The various 

resulting fragments may travel independently through the network, 

following completely different routes and possibly arriving out of order at 

the destination. IP therefore has the task of reassembling the fragments 

before it can deliver data to the higher level protocols. This process is 

transparent to the upper layer for data services such as file transfer. But 

for multimedia services such as streaming video that require  sequential 

delivery, this fragmentation is problematic. Packets’ “arriving out of 

order” may cause delay and delay jitter which will seriously affect the 

perceived quality of service.  

The Transmission Control Protocol (TCP) [Freeman, 1995], typically 

used with IP, is a widely used connection-oriented transport layer 

protocol that provides reliable, ordered packet delivery over an unreliable 

network. TCP forms a communication channel between two higher layer 

entities, referred to as applications that operate across a network. 

Another popular transport layer protocol is the User Datagram Protocol 

(UDP) [Tanenbaum, 1996]. Unlike TCP, UDP is a connectionless protocol; 

i.e. it allows users to send messages without first establishing a 

connection. However, UDP does not provide  a guarantee of delivery and 

sequencing and can be viewed as simply a user interface to IP. 

In conclusion, today’s computer networks are organized in a 

structured manner. Different types of networks and systems 

communicate each other through standard protocols. Applications are 

provided with vehicles and routes from the network to reach destinations 

far away. Telelearning systems like Virtual-U use popular network 
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technologies (e.g. TCP/IP, Ethernet) to achieve their high accessibility 

and take advantages of the considerable operational experience. 

However,  these mature technologies do not distinguish traffic according 

to their QoS requirements and transmit them with “best efforts”.  They 

should be used with care when carrying multimedia services.  

2.2 Computer Simulation 

While making applications like Virtual-U more and more far 

reaching, today’s communication networks and computer systems are 

getting more and more complex. It is too difficult to analyze the system 

performance with only paper and a pencil, because the systems are  

mathematically intractable and simplistic models are not representative 

of the true complexity. Queuing theory based analytical models 

[Schwartz, 1987] are very useful for the performance analysis  of 

telephone networks,  where only the number and the duration of calls 

are interesting  from the traffic perspective. On the contrary, telelearning 

systems contain users, servers, and network components each of which 

is very complex by itself.  It is impossible to use a single analytic model 

to represent all of them.  Meanwhile, the behavior of the components  is 

not independent. For example, too many user requests to the server will 

cause long response times , since requests will get piled up in server’s 

waiting queue. The requests will be re-sent by the users or the 

application software if their waiting timers expire. This  re-sending will  

continue until either the requested data from the server arrives or a 

certain number of retries fail. This re-sending mechanism can cause 

congestion of the network connecting the user and the server, which will 

make it  harder for the server to finish its current work. This example 
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tells us that separately considering system components such  as the 

network and the server will not lead to a correct estimation of the 

performance. Thus, the approach of decomposing the whole system into 

separate analytic models will not  allow us to produce satisfactory 

results.  

Fortunately, computer simulation is at the stage where it can play  

becoming an important role in performance analysis. The type of 

simulation that we are interested in is called discrete-event system-level 

simulation [MacDougall, 1987].  Discrete-event systems change state at 

discrete points in time, as opposed to continuous systems which change 

state over time. Real systems can be  modeled at several levels of detail. 

Since we are interested in the overall system from a performance 

standpoint, we should  represent only those elements of the system 

pertinent to the performance issues.  

The  three basic components of the simulation are the input, the 

simulation system and the output. Simulation input data may either be 

generated probabilistically within the simulation program according to  

models obtained from the real system, or it may be generated externally. 

For example, in a trace-driven simulation, the input is obtained from a 

trace of real system execution. 

 In modeling a system, we need to describe both its structure and 

the way in which  it accomplishes work. Developing a model to represent 

the real system has two tasks: developing a representation of the system, 

and developing a representation of the work to be done by the system 

(this is also called workload characterization). The simulation outputs 

are the functions of the input to the simulation system. The analysis of 
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these functions leads to system understanding and performance 

evaluation.  

The modeling and analysis process is outlined in Figure 2.2. The 

first step is to describe the system operation from a performance 

viewpoint and then to abstract the description  into models which 

include both the represented facilities and their attributes according to 

the analysis objectives. In the next step, the appropriate analysis method 

is chosen, which includes the definition of a set of performance 

measures.  Thirdly, a model implementation is developed. This also 

includes the program debugging and verification. Verification insures 

that the simulation program is indeed an implementation of the model.  

The following step is to validate that the model (and of course the 

simulation system implemented in computer programs) is a reasonable 

representation of the real system. This can be done by executing some 

experiments and comparing the results with real systems. Finally, 

simulations are executed and results are analyzed. 
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block in a node model has its functionality defined by a process model 

which “combines the graphical power of a state-transition diagram with 

the flexibility of a standard programming language and a broad library of 

pre-defined modeling functions” [OPNET Web]. Our  simulation of the 

Virtual-U is implemented and executed in OPNET. 

2.3 Traffic Modeling  

A communications network is used to carry traffic. In telelearning 

systems and all other networked systems, the applications interact with 

the network and other components in the network (e.g. the server) 

through traffic. Users consume system resources through their generated 

traffic. Traffic is thus a key component throughout all network related 

issues and modeling is crucial in network performance research. In our 

simulation, two types of traffic models  are constructed; i.e. ,the model 

describing the traffic generated by the telelearning users model for 

background traffic, which is defined as the traffic on the system 

corresponding  to non-telelearning usage. Telelearning systems may  

provide a lot of multimedia services. Therefore, during the traffic 

modeling, not only the number of requests but also the statistical 

properties of the information transmitted for the requests  is important. 

Based on statistical empirical data on multimedia traffic, a number of 

models have been advanced to capture the statistical nature of 

multimedia traffic. Stochastic source models simulate the behavior of the 

traffic generated by a terminal (e.g. a computer terminal, a video-on-

demand server et cetera.), while more general models represent the 

multiplexed traffic of many sources.  The set of traffic models examined 

in the literature is rather large, but we can nevertheless make a broad 
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distinction between two categories, according to the purpose for which 

they are  usually used.  On the one hand, there is a search for models 

that capture the relevant statistical properties of a specific kind of traffic 

from a source as accurately as possible. A good traffic model will not only 

capture the first few moments of the statistics, but will render  higher 

order statistics as well. For example, there have been many proposals for 

modeling variable-bit-rate (VBR) video traffic, using first order auto-

regressive models [Maglaris, 1988] and Markov Modulated Poisson 

processes [Schwartz, 1996]. On the other hand, we also have models that 

are based solely on a few parameters extracted from the traffic 

characteristics.  These parameters (peak rate, burstiness, average rate, 

and some tolerances) are insufficient to fully describe a traffic stream; 

however, they can be used to generate upper bounds on loss and delay of 

traffic. These models are called “bounded traffic models.” [Michiel, 1997].  

Both stochastic models and bounded models are used in developing our 

simulation models.  

One popular traffic model is the Poisson model [Schwartz, 1987] 

[Frost, 1994]. This model has been used since the telephone era, where it 

was effective at modeling the times at which telephone calls arrived at a 

switch. A Poisson process is a memoryless, independent and identical 

(i.i.d) process. The interarrival times are exponentially distributed and 

the number of arrivals in disjoint intervals  are statistically independent. 

The exponential distribution is:  
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while the Poisson distribution is:  

 
λλ −= exf x

x

!)( ;   λσµ == 2 ,  
Where λ==is the rate parameter; µ and � represent the expectation 

and standard deviation respectively. 

One important property of Poisson process is that the 

superposition of independent Poisson processes results in a new  Poisson 

process whose rate is the sum of the  component rates. Also, the 

memoryless property of Poisson processes can greatly simplify queuing 

problems involving Poisson arrivals. Poisson processes are fairly common 

in models for traffic that are made up of a large number of independent 

traffic sources. “The theoretical basis for this phenomenon is known as 

Palm’s Theorem [Larson, 1979]. It roughly states that under suitable but 

mild conditions, such multiplexed streams, the statistics of the sum 

approaches a Poisson process as the number of streams grows.” [Frost, 

1994] Thus, traffic streams on main communications trunks are 

commonly believed to follow Poisson arrival statistics, as opposed to 

traffic on upstream links, which  is less likely to be Poisson. The Poisson 

model is simple and can be used with care for simulating the background 

traffic of a network, although there are problems with certain kinds of 

traffic. 

As  opposed to Poisson, recent studies have discovered that packet 

traffic appears to be statistically self-similar [Beranetal, 1992].  A self-

similar phenomenon exhibits structural similarities across all (or at least 

a wide range) time scales. In the case of packet traffic, self-similarity is 

manifested  by the absence of a natural length of a burst: at every time 

scale ranging form a few milliseconds to minutes and hours, similar-
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looking traffic bursts are evident.  In this case, self-similar models  are 

better at simulating the traffic generated by multimedia sources that 

Poisson models  because  they capture the traffic burstiness,  which 

directly affects the QoS of the  network. Poisson models assume that the 

traffic arrivals are independent on time, which is not the case for some 

types of traffic such as the VBR video. If traffic follows a Poisson arrival 

process, it would have a characteristic burst length which would tend to 

be smoothed by averaging over a long enough time scale. However, 

measurements of real VBR traffic indicate that significant traffic 

burstiness is present on a wide range of  time scale [Beran, 1995 ]. An 

example of the self-similar stochastic model is the fractional Gaussian 

noise [Mandelbrot,1968]. 

In the next chapter, we will present a simulation system for 

Virtual-U, a networked learning system. 
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Chapter III 
The Simulation System 

3.1 Overview 

The goals of our work are to build a simulation system that can 

represent a real telelearning environment and to carry out research on 

network-related performance issues.  In order to achieve  these goals, we 

followed a four-step procedure:  

Step 1:  We  studied the architecture, operation and functionality of the 

experimental Virtual-U  system  to determine the appropriate building 

blocks  for our simulation. At this point, we also identified the most 

important system parameters. 

Step 2:  We  studied the individual components of the test  system and 

built a simulation model for each of them. We also obtained values for 

each of the simulation parameters in this step. This process needs to 

be done for each distinct type of course that will be offered. For 

example, the models for conference based courses are based on the 

statistical data in the web-server log files from a “text-based” VU 

course (i.e. BUS362), while the models for Video on Demand (VOD) 

courses are based on the network traffic traces obtained when a 

student attended a  streaming video lecture from a Stanford 

University on-line course. 

Step 3: We implemented the simulation models on the computer 

simulation using the “industrial strength”  OPNET package 

environment. 
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Step 4: We then studied the capacity and performance issues using our 

simulation system. Specifically, we predicted the system capacity (in 

terms of the number of users the system will support with a 

reasonable QoS) and determined how varying various resource 

parameters affected this capacity.  

After analysis of the 1997 Virtual-U system design and the network 

environment (SFU CSSnet) it is  implemented on, we built a simulation 

system that includes a network model, a background traffic model, a 

server model, and a user model; this system is shown in Figure 3.1. 

While modeling all these components, we kept in mind three 

following principles: 

1) The models are derived from the current Virtual-U design, however, it 

must be possible to extend them in order to predict the capabilities 

and characteristics of future versions of Virtual-U – especially when 

the use of rich-text and multimedia becomes prevalent.  

2) The models should represent the generic and universal characteristics 

of networked multimedia systems, which will make our simulation 

system robust enough to be valid for telelearning systems other than 

Virtual-U. 

3) All the models should be simple and easy to implement in computer 

simulation. 

3.2 Simulation System Construction 

The simulation system includes a network model, a background 

traffic model, a server model, and a user model. These will now be 

discussed individually. 
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Figure 3.1 Simulation Model 

 

 

 

 

 

User Server Subnet Backbone  Subnet 

Request  

Response 

SERVER 
MODEL NETWORK MODEL

BACKGROUND TRAFFIC MODEL 

USER 

MODEL 

TRAFFIC 

Respons
Request 



 27

3.2.1 The Network Model 

In order to build a scaleable network model that can be 

straightforwardly adapted to different network environments, we used 

hierarchical building blocks (which can be easily implemented in 

OPNET), i.e. the network model consists of four levels: Network � subnet 

� station � process. The current network model is based on a simple 2-

layer network architecture that consists of a high-speed backbone 

(100Mbps) and 10base_T subnets (10Mbps). The backbone network is 

“organized” by an eight-port Multi-ports Intelligent Bridge, as  is used in 

the SFU CSSnet. Eight-port bridges are also common in most of today’s 

LAN environments and are thus appropriate for “general” telelearning 

environments. In our simulation model, all of the eight ports are used, 

seven ports are connected to the subnets and one port is connected to 

what we call the “internet-backbone”. Each subnet is a 10Base_T 

Ethernet subnet that can be populated with users (we mean user’s 

computers), servers, bridges, hubs, routers et cetera, all the network 

subscribers (i.e. users, servers) are called stations. There is currently a 

limit of 32 stations per subnet in the existing setup, so we chose the 32-

ports hub model (for the same reason as the bridge stated above). In this 

thesis, we have “user subnets” that only contain client workstations  and 

“server subnets”, which contain servers and clients in both types of 

subnet, we also provide choice to include workstations to generate 

background traffic, as required by the simulation.  

As mentioned earlier, the backbone network is also connected by a 

router to the “Internet backbone network”, which is in turn connected to 

another Ethernet subnet, which could contain other servers.  This 
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architecture can potentially simulate a student logging onto a remote 

server if this is a common activity in a course. 

3.2.2 The Server Model 

The Virtual-U server provides the web based course material to the 

client workstations when this material is requested. In order to facilitate 

the course offering, it maintains a course database that has all the 

related course material and administrative information (e.g. the students’ 

grade books); a user interface that receives user requests and returns 

required information; and of course a whole package of controlling 

programs that are responsible for processing the user requests and 

controlling the system resources.   In  the 1997 version of the system, 

the interface between user requests and the course database was 

implemented by Common Gateway Interface(CGI) programs.   When a 

user request is received, the corresponding CGI program (or set of 

programs) is executed to process the request and gather the information 

required.  The processing of the request may require database queries or 

updates, information comparisons or calculations.  After all the 

information is ready , a web-page is generated and sent back to the user.  

In the real server, the crucial resources include the CPU, memory, 

I/O bus, disks, et cetera. As our goal is to  simulate the system delays of 

the user requests contributed by the server,  we do not have to repeat all 

the components in building the server model, instead we need to build a 

model which can represent the server’s structure  and functionality from 

the  point of view of processing the user request. Therefore, we modeled 

the  server as an interface to the users, a queue, a processor and a  

database. (See Figure 3.2) 
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Figure 3.2 Server Model 
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amount of data required by the user request. Future work should 

address the improvements possible through more accurate server 

models. 

Another important factor is that the user requests are not always  

identical and thus different types of requests will consume different 

amounts of the server’s processing power.  In the Virtual-U system, each 

user request is processed by the corresponding CGI program. When a 

CGI program is being executed, it may invoke other programs and spawn 

several sub-tasks, all of which consume the server’s processing power 

and thus add to the total processing delay in the server. For example, a 

HTML request will spawn many processes to form the components of the 

page, all of which require processing. Another example is a  request that 

requires the comparison of  several pieces of database information.  

During the processing of this kind of request, the server will have to 

search the database  to obtain  the required information and then make 

the comparison.  Although the requested result itself may be very 

concise, the resources allocated to such a task may be large. Therefore 

the number of bytes in a users request does not always  directly 

represent the real processing load in a server. To account  for the factor 

of processing power consumption for different type of user request, we 

used  a parameter called “Number of  processing power units consumed”, 

which is denoted by “N”. In our simulations, this “property” is 

implemented as one parameter in the user’s request. In truth, this 

parameter depends both on the type of the request (what information 

and operation will be required in the sever) and on the current state of 

the system; however, for simplicity, we currently  assume that “N” can be 

modeled as a constant in each main application category; i.e., streaming 
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video, or web page downloads (which may contain images).  Future work 

should attempt to improve the model of the server and the user to make 

a more accurate representation of this factor.  

In conclusion, the processing delay associated with a server 

request is a function of the server’s processing power(P), the amount of  

data required by the request(L) and the type of request(N).  Until a more 

complex and accurate model is available, the processing delay (T) in the 

server is calculated with the following formula, based on the 

assumptions mentioned earlier, where the parameter “A” is chosen to fit 

the real system according to the experiments of the real system :  

 

 

Databases also play a very important role in the Virtual-U system 

(although the 1997 version used a simple “flat” file structure); however, 

the goal of our simulation at this stage can be achieved without a model 

of the internal database mechanisms. Our main interest is in the traffic 

rather than how the information is organized.  Nonetheless, the 

simulation system has the capability of modeling the database in detail  

should it be required in the future. 

In estimating the server’s processing power, we based our analysis  

on the hardware specification. Since our applications are I/O intensive 

tasks, we assumed the bottleneck in the sever is in the I/O bus. It is 

10Mbps for a Sun Ultra1 work station which is the hardware of the VU 

sever in 1997. If we use the average message length (800 Bytes) as the 

length of a standard job, we get the number of  1500 jobs/sec.  This 

        N ×� L �A ×      T =
    P



 32

estimate   does not take into account the fact that software factors which 

may  also play important roles in determining this parameter. The overall 

“effective” processing power also depends on software factors which we 

use “N” to represent. Although our most interests are in the overall 

“effective” processing power, in reality the improvement of software and 

hardware are usually though separate processes. We will experiment 

with the various numbers for “N” and use the “combination” to represent 

the “effective” processing power. 

3.2.3 The Background Traffic  

The background traffic is the basic traffic (as opposed to the 

telelearning traffic under study) on the local subnets and the backbones. 

The amount of background traffic will significantly affect the amount of 

the congestion and will thus contribute to the delay experienced by 

telelearning users. Background traffic will typically be generated by 

applications such as Telnet, FTP, HTTP, NNTP, and SMTP, which have 

historically accounted for a high percentage of the traffic on real network, 

however, newer multimedia applications such as video and audio are 

expected to take up  a quickly growing share of the network bandwidth 

[Crovella, 1996], [Paxon, 1994]. As discussed in Chapter 2, the Poisson 

model is a simple and popular model in modeling network traffic.  Recent 

studies have shown that some traffic, such as user initiated TCP session 

arrivals, can be well modeled as Poisson process but that other types of 

traffic deviate considerably from Poisson statistics [Paxon, 1995]; what 

model  is best depends on what type of traffic is running on the network. 

Initially, we develop a  model that is simple and “reasonable” accurate. 

The model chosen in the first step is the Poisson model. Although it is 
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not perfect, it does to some extent reflect the characteristics of the traffic 

running on the CSSNet4.  

3.2.4 The User Model  

Our simulation uses a computer model to represent telelearning 

users generating requests to the server.  This model must be simple 

enough to be implemented in our simulation, but it must also be flexible 

enough to capture the essence of the "typical" user's behavior, which may 

depend on such variables as the course content, the user's knowledge 

about the course material, the user's thinking habit and the design of the 

system.  As many of these factors and interactions are not well 

understood, it is very hard to build a deterministic model , or to hope to 

be able capture the users behavior exactly. However, it is possible to  

build a user model with stochastic process and try to reflect the "large 

scale" interaction in such a way as to have predictive power for 

estimating things like the quality of service. To model the network 

activity when  users attend  specific courses, we only need to know the 

possible actions and the likelihood of them being undertaken. Because  

these actions are usually limited by the technological reasons as well as 

the system design (e.g.  in a web based system  the choices at any given 

time are limited by the icons currently available) and/or human thinking 

patterns (e.g. people usually read  posted messages before posting 

replies),  we are also able to obtain the probabilities for each choice using 

                                       

4 We are presently lacking  the data for the  traffic running on the network. Until 
February 1998, there is no formal report on the CSSNet traffic analysis. The 
understanding of the traffic on CSSnet is based on the discussion with the network 
administrators. 
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statistical analysis of the server log-files for different users.  In this way, 

we treat the user “activities”  as states and obtain a  Markov chain model 

(as shown in the Figure 3.3)  that can stochastically represent the  

average behavior of the users.    

Thus, to achieve our goal of building a user model that represents 

the real telelearning users generating requests and the resulting traffic  

produced by the server, our strategy is to first quantify the typical user's 

behavior for a specific kind of course content by examining the server log 

files for specific courses and then to build up a Markov chain model that 

consists of several "states". Each model state represents the user’s “main 

activity” when taking a certain course and is associated with probability 

density functions for the file sizes (traffic) requested and the time 

between requests. We are not modeling the dependencies of the 

intrastate file sizes in the models being built to reflect the “large scale” 

interaction (as we mentioned earlier). If the user’s activities are too 

complex , we may also decrease the grain by analyzing the log files to 

identify patterns of "meta" activities. The model cycles between these 

states according to transition probabilities in the way that users 

“typically” work with the real system . Also, users in the various states 

will wait  different amounts of time between requests, which we term the 

states “request inter-arrival time”. 
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Figure 3.3 : An Example of Markov Chain Model 
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The above model will help us to study the effect of changing the 

course content on the system performance. If the change is not to the 

design of the course itself, the task may be as simple as changing the 

probability density functions associated with each state; however, if the 

design of the course is substantially changed, then the whole model 

must be reworked in a reasonable way.  

In order to increase the system flexibility, we propose classifying 

courses into several different categories, which can then be used as 

models for new courses. For example, one category may be the Web 

based conference courses offered by Virtual-U (VU course), another 

category may have lectures based on streaming video content (Video On 

Demand course).  These possibilities will now be discussed in more 

detail. 

VU Conference-Based Courses 

As we mentioned earlier, the VU conference-based course is 

organized  like a news group. Students read and  post messages 

according to specific topics raised in the course. Each topic leads to a 

“conference”, a student can join any “conference”  they have permission 

to. When students take such a course,  they first login to the system and 

choose the course/conferences that they are interested in; they then read 

newly posted messages and post their own. Handouts and assignments 

are also  available though the messaging system.   

To get a user model for the students taking VU courses through 

Virtual-U, we need to analyze and obtain the usage pattern of students 

who are taking the test courses. Fortunately, the usage of the VU system 

are (at least partially) recorded in the server’s log files. The log files of the 
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VU server contain the information about user request to the server. Each 

user request will generate a record. In such a  record, there is 

information as the user’s IP address, the user’s login ID, the date and 

time of the request, the CGI program called (and the arguments), the size 

of data transferred and the result of the request (i.e. success or failure).  

Analyzing these log files and building a user model was done in 

collaboration with the researchers in Virtual-U Research Laboratory. 

Some of our work is based on their research results on the typical usage 

patterns, and our traffic modeling  was achieved using the log files they 

provided. According to the analysis of log files for the test courses, 

several typical user’s usage pattern were discovered [Zaiane , 1998]. For 

example, new users like to try various options, while experienced users 

are more focused. There is a strong usage pattern of “start V-Group”, “list 

conferences”, “list unread messages”, “display a message” and “ 

preview/add a message” for all users. This pattern is understandable 

because it is the result of both “natural” human behavior as well as the 

system design. For our study, it makes more sense to use the pattern of 

users already experienced with the VU  system to build the simulation 

model. Based on this discovery from analyzing log data of the testing 

course BUS362, , we have built a five-state model for the VU conference 

based courses. 

State 1: "Start V_Group" represents the state in which a user logs into to 

Virtual-U and views the VU welcome page.  

State 2: "List Conferences" represents the situation where users list the 

conferences that they have joined. 

State 3: "List Unread Messages" represents the situation where users 

list all the unread messages. 
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State 4: "Display a message"  is the state for displaying and reading 

messages. 

State 5: "Preview/Add a message" is the state in which a user previews 

and posts  composed messages. 

 In order to get models for the traffic of each of the states and to 

form the state transition probability matrix, the raw server log files were 

then processed to remove erroneous records and unrelated domains and 

the records sorted by course. We then used the following analysis 

procedure on the data corresponding to our chosen date-range: 

1. Sort the records by user. In the log files, the original records are 

ordered by time, here we sort them by user-ID. 

2. Parse the records into sessions. A session here refers to the period 

of time during which a student is actively using the VU system. It 

starts from the time when a user logins into VU and ends when 

they log out. There is no “logout” record in the log file; however, if a 

user has no communication with the VU server for more than 30 

minutes, then they are treated as “logged out”.  The 30 minute 

parameter comes from observation (VU Research Lab) that very few 

sessions last more than 30. The records are parsed according to 

the “user_ID” and  time stamps. 

3. Label the records according to the states. The state number (as we 

defined] is labeled for each record. The state in the model 

represents a student’s usage of a specific function provided by the 

VU system. A state can be  “recognized” by the CGI program being 

called by the user request, which  is available in one of the 

domains in the records. 
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4. Calculate the transition probability matrix. The transition 

probability is calculated state-by-state using the state label of each 

record. For each state, the calculations are done for each student 

separately and then the results are averaged for all students. 

Please note that the transition between states across a session 

(defined in step 2) is regarded as an invalid transition and is not 

counted. 

5. Calculate and obtain the histogram of the traffic attached to the 

request in  each state. The quantity of “data transferred” in the log 

file is used as the traffic size of the request.   

6. Calculate and obtain the histogram of the “request inter-arrival 

time” for each state. The “request inter-arrival time” is not included 

in the log file as  a domain, but it can be obtained by determining 

the time between two consecutive (within one session) requests.   

7.  Find the statistical models for the traffic size and the request 

inter-arrival time of each state. With the completion of this step, we 

have a model that can be used to represent the user’s request and 

the traffic incurred; this model is then used in the OPNET 

simulations. 

Using the procedure described above, we analyzed a log file 

containing 24 hours of data for the 48-student course BUS 362. Since 

the log file was obtained in the second half of the semester, most of the 

students will be experienced with the VU System. 

The parameters of the user model such as the “request inter-

arrival time” should only reflect the user’s behavior, but the information 

obtained from the log file also contains “noise” which depends on the 

conditions of the testing system. The system dependency should be 
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filtered out from the user model. If the system is not congested, the 

“noise” is only in the forms of system “processing delay” or “transmission 

delay” which are relatively small compared to users’ thinking and 

reading. However,  if the system is congested, this effect will not be small 

any more. Unfortunately, the congestion status of the system is not 

recorded by the log file, it is difficult to filter the system dependency with 

current log data. At this stage, we assume the error caused by the 

system dependency is not severe and the user model obtained from the 

log data can reasonably approximate the user’s behavior. Efforts on 

building the  model with no system dependency should be made in the 

future. 

The accuracy of the statistical model depends on the number of 

samples being processed and the complexity of the model to be 

implemented into the simulation. However, at this stage of the project, 

our goal is to obtain “reasonable” approximation of the behaviors of a 

“typical” user. More accurate models that better catch the interaction 

between the system and the users need to be developed, but this is a 

matter for future work.  With simplicity in mind, we used two approaches 

to obtain the “first cut” approximation. The first approach  was to fit the 

histogram of real data with a well-known distribution by “eyeballing”, 

while the second approach, used when a simple statistical distribution 

could not be found,  was to represent the data using a “pessimistic” 

constant  that was worse than 90% of the samples. Since we are doing 

research about QoS/capacity issues, under-estimation of the traffic is 

more harmful than over-estimation. This approximation leads us to a 

conservative prediction of the system capacity and QoS.  The “pessimistic 

level” (e.g. the 90% above) will determine the traffic of the model. The 
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more “pessimistic” of the model, the more conservative an capacity 

estimation will be make. It is always a trade off between the number of 

users in the system and the QoS can be guaranteed all the users. This 

judgement is beyond the scope of our study. We will do some 

experiments to see how changing the “pessimistic level” affects the 

results. 

When the work in a state is done, a state transition will happen 

according to the transition probability matrix. The transition probability 

matrix that we obtained from the BUS 362 course is given in the 

following table. 
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Table 3.1:Transition Probability For the VU Conference Based Course  

 

 state 1 state 2 state 3 state 4 state 5 

state 1 2.5% 96.5% 1% 0 0 

state 2 21.5% 5.6% 63.3% 1.7% 7.9% 

state 3 15.3% 0.4% 24.5% 54.2% 5.6% 

state 4 17.3% 0.4% 24.2% 54.4% 5.6% 

state 5 15.3% 0 27.1% 18.6% 39.0% 

 

Details of  traffic observed in each of the 5 states are as follows: 

State 1: "Start V_Group" The traffic in this state is modeled as a  

constant 6094 bytes, because the login process and the information to 

the user (i.e. the information in the welcome page) are determined by 

the design of system interface and will not vary from user to user. 

State 2:  "List Conferences"  The traffic in this state shows some humps 

in the histogram curve (Figure 3.4), since users may join different 

numbers of conferences. We could not fit this histogram it with any 

well-known simple distribution. Until a more accurate model can be 

found, we used the “pessimistic” constant  approach as mentioned 

earlier and simply model this traffic by a constant 10kB (90% of the 

traffic in this state is less than 10kB according to the analysis of the 

log file). 

State 3: "List Unread Messages"  It is very difficult to model how many 

unread messages are there since the user last login.  Like State 2, the 

histogram of traffic in this state could not be fit with any simple 

distribution. So until a more accurate model can be found, the traffic 
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associated with this state is modeled as a constant 35kB (90% of the 

traffic in this state is less than 35kB according to the analysis of the 

log file). 

State 4,5 :  “Display a message"  &  “Preview/Add a message" These states 

represent a user reading or writing a message. If we look at a course  

for the whole time it is running, the messages a user can read are the 

messages other users have written and posted.  The distribution of 

message size in these two states should be approximately the same 

(we assume the error caused by  the fact that “a message can only be 

viewed after it is posted” is minimum), although most messages will 

be read many times. Figure 3.5 shows the histogram of the message 

sizes5. The curve’s bell-shape makes us think about making an 

approximation with  a truncated Normal distribution. By eyeballing, 

we found that a Normal distribution with µ=300Bytes and σ=450Bytes 

fits this histogram fairly well  (see Figure 3.6). However, this model 

under-estimates the right tail of the histogram. As we stated earlier, at 

this stage, we would like to choose a simple model with a conservative 

estimate. So until a more accurate model can be found, the message 

size is modeled as a constant 2.5kB (90% of the message size is less 

than 2.5kB according to the analysis of the log file). Please note that it 

does not mean we can not have a more accurate model in the future 

based on the Normal distribution. On the contrary, we think that it 

                                       

5 The data for this figured is not the one-day log file used for other states, we were able 
to use the file from the VU research Laboratory which contains the information of the 
messages in this course (BUS362) during a period of 3 months. 
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may be  possible to model it by an Normal distribution with a large 

variance if more data in the future can prove that the “tail problem” is 

not severe. Otherwise, some “adjusted” Normal distribution (e.g. a 

combination of a Normal distribution and another type of distribution 

to handle the tail) will be the  approaches for an accurate model. The 

interesting thing is that when we looked at another VU course, the 

histogram of message size also showed a bell shape. We suspect that 

the law of large numbers [Hogg, 1997] is at work here.  

 

 

 

Figure 3.4 Histogram of the Traffic in State 2 
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Figure 3.5 Histogram of the  Traffic in State 4 & 5. 
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Figure 3.6 Normal Approximation of the  Traffic in State 4 & 5. 
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 Regarding the request inter-arrival times in states 1-3, the users 

always take a quick look and go to another state. So, if we use a 

“pessimistic” single number, which is higher than 90% of the data 

samples, to model the request inter-arrival time in these states, the 

numbers that we get are 5 seconds, 5 seconds, and 10 seconds 

respectively for the above 3 states. 

The request inter-arrival time for a user reading the messages of a 

course, state 4, is mainly determined by the course content and the 

student’s reading/thinking habits. A long message by itself will take a 

long time to read; a message full of hard questions will also take a long 

time to read. All these types of messages will make for a long request 

interarrival time. A student who wish to read and think through the 

messages one by one will have a different interarrival time model than 

the student who likes to read  many related messages first and then 

make a thorough thinking  about them. For these reasons, an accurate 

and representative model for the interarrival times is not easy to obtain 

and we make the simplifying assumption of defining this behavior for a 

“typical” user. In the future, improvements may be possible by dividing 

the users into several groups according to the expected distribution of 

“thinking habits”.  

The histogram of the interarrival time for  course BUS 362 is 

shown in Figure 3.7. Through “eyeballing”, we approximated the 

histogram by an exponential distribution with µ=σ=168s.  
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Figure 3.7 Request Interarrival Time of  State 4. 
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Conference based courses with image loading 

Today’s technologies are able to provide  ever increasing amounts 

of multimedia content, such as images, rich-text and audio/video  over 

the Internet. We believe that multimedia adds educational value in many 

situations and that future telelearning systems must support these types 

of applications. In order to examine the effect of having additional 

multimedia content in a course, we built a new traffic model, which is 

based on the basic model above, and new "invented" state, State 6: 

“Loading an image”, to represent  what happens when users request 

multimedia information such as images or large rich-text files, such as 

WORD documents; other types of information such as video will be 

considered later in this section.  For simplicity, everything downloaded in 

this state is referred to as an “image”. 

The key attributes of the State 6 are the frequency of requests for 

images  size of the image being loaded. The projected usage manner of 

loading the image is to download an image referred by the course 

material, so we will model the loading frequency by the percentage of 

messages that refers to an image, i.e. the transition probability from 

state 5 to state 6, P(5,6). The size of the image (i.e. image file) depends on 

many technical factors such as the data format (e.g. JPEG, MPEG, GIF et 

cetera.), image displaying size, resolution and the content.  An accurate 

model of the image file size will thus be quite course dependent and a 

thus course data is needed to produce a truly accurate model. 

Unfortunately, the current version of Virtual-U (for which test data is 

available) runs essentially text-based courses and there is no data 

available for multimedia rich cases. However, in order to come up with a 
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generic situation, we decided that it would be reasonable to assume that 

the file sizes random with a truncated Normal  distribution.  Our 

projected behavior  pattern is as follows: after a student reads a message, 

he or she  loads an image referred by that message, then after loading 

and viewing the image, the student may read another message or load 

another image if there is a series of them. If we assume there is a 25% 

chance a user will load an image after reading a message, and after 

viewing the image, a 60% chance the student will view another message 

while a 40% chance the student will load another image. After analyzing 

14 “typical” images [GIF and JPEG)  on a computer (we picked the 

scanned pictures rather than the computer icons), we developed a few 

different test models. For a course that demands many high-quality 

images as a core component of its content, such as an art history course, 

we set µ=128KB and σ=40KB; for the next rung of courses with moderate 

image demands, such as geography and biology ,we set , µ=64KB and 

σ=20KB. For both of these types of courses, we set the nominal image 

loading frequency to be 25% of all requests; i.e.,  P(5,6) = 25%. For 

different categories of courses the frequency of loading images and the 

mean size of loaded image may vary. We vary these parameters in the 

simulations and examine  how adding this type of multimedia content  

affects the system QoS. 

The new set of transition probabilities after inserting this state is 

shown in Table 3.2. 
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TABLE 3.2: Transition Probabilities for VU Course6 

 

 state 1 state 2 state 3 state 4 state 5 state 6 

state 1 2.5% 96.5% 0.9% 0 0 0 

state 2 21.5% 5.6% 63.3% 1.7% 7.9% 0 

state 3 15.3% 0.4% 24.5% 54.2% 5.6% 0 

state 4 17.3% 0.4% 24.2% 39.4% 5.6% 25% 

state 5 15.3% 0 27.1% 18.6% 39% 0 

state 6 0 0 0 60% 0 40% 

 

Video On Demand Course 

In the future, it is expected that most telelearning courses will 

include increasing amounts of multimedia content. In addition to the 

downloading of images and rich-text files, another  possibility is  the 

inclusion of streaming-video (Video On Demand, or VOD) lectures on the 

server that can be viewed over the Internet using applications such as 

Microsoft’s NetShow  [NetShow Web]. A VOD session can be a type of 

course by itself, or it can be integrated into a VU conference course as 

part of the course material (as an additional state).  In our simulation, we 

make it separate from the VU courses. However, from the perspective of 

analyzing the system QoS, the two usage modes of VOD sessions do no 

have significant difference,  because the system performance is affected 

                                       

6 As we stated above, we would vary the transition probability for state 6 in the 
simulation, the values in this table about state 6 are just an example. 
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by the traffic and, as far as a VOD session goes it will impose the same 

amount of traffic on the system no matter what the usage mode. 

The NetShow product was formerly called “Vxtreme” (Microsoft 

acquired Vxteme  in 1997). We used NetShow for VOD course analysis 

because NetShow has already had examples of usage for education 

purposes and provided sample VOD courses for evaluation. In the 

NetShow application, students  typically log into the server and select 

specific lectures from a list;  viewing begins by clicking on the “play” 

button on the screen. Students can pause the lecture when desired, or 

rewind/fast forward to quickly move around in the lecture. Using 

streaming video lectures, students can “attend” a lecture while also 

having the freedom to appreciate the lecture content at  their own pace. 

We believe that this kind of application provides a very good learning 

environment and that is very attractive for many telelearning courses. 

For this reason,  we built a streaming video “VOD” course model into our 

simulation. Alternative video delivery mechanisms such as “multicast” 

are also possible; however, they don’t fit well into the “any time, any 

place” paradigm of telelearning. 

It is possible to use TCP or UTP to setup VOD sessions  (NetShow 

provides both options). As we discussed in Section 2.1, TCP guarantees 

delivery while UTP does not. For VOD sessions, there is not really  real 

tine interaction, TCP can make sure the viewer misses nothing due to 

temporary (as opposed to a severe  problem cause the network goes down 

for a log time) network congestion. 

 Based on the interface of NetShow  and our knowledge of the way 

a VOD course is supposed to be, we created a three state Markov chain 

model. 
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State 1: " Play "  In this state, a student views the lecture at the normal 

speed. The VOD server delivers data to the viewer’s computer to  play 

the lecture in real time.    

State 2: " Fast Forward/Rewind "  In this state, students fast-rewind or 

fast-forward the lecture to the part that they  want to view.   Students  

are able to view what happens at a lower resolution for navigational 

purposes. The server delivers data to the viewer’s computer at a lower 

traffic rate due to the lower resolution and dropping of the audio 

signal.  From the traffic perspective, there is no significant difference 

between the fast forwarding and rewinding. The same amount of 

information is transferred (low resolution video and no audio),  it does 

not matter if the mode is backwards or forwards.  The results of 

experiments  test traffic  traces agreed this reasoning.  The simple 

experiments we did are as follows: for a given VOD lecture, we chose a 

certain part (starting from A  and ending at B). We fast-forwarded 

from point A to point B and then rewind  from point B to pint A. Then 

compared the traffic histograms of the two traces. The results showed 

very little differences. 

State 3: " Pause "  This state models,  a student stopping the lecture and 

taking the time to think about the course material, or to look 

something up. The server stops delivering data to the viewer’s 

computer.     

In order to examine the traffic involved in such a VOD lecture, we 

captured and analyzed the traffic from the viewer’s side (the traffic 

information from the  source end is not available) when a tester was 

viewing a VOD  sample lecture. The sample lecture was one lecture of the 

VOD course CSS244a offered by Stanford University. This course was 
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prepared with Microsoft NetShow ( it was called Vxtreme at that time) 

and accessible though the Vxtreme’s  home page (It is not available 

anymore after the acquisition ). The traffic trace was collected by a 

LANalyzer, which is a tool provided by Novell to monitor the traffic of a 

station in a Ethernet. In the trace files there are such information as the 

source address, destination address, packet length, time stamp for all 

the packets received. With this information, we are able to calculate the 

traffic (rate) for a VOD session from the viewer’s side. The obtained data 

rate may have variability due to network reasons (as the packets traverse 

the network to reach the viewer’s site). We assume this is not big enough 

to have a significant impact. More accurate models (ideally from 

information on the source end) should be built for higher quality formats. 

At present, we assume that the VOD sessions are separate from the VU 

course. Models should be obtained for the situation when a VOD session 

is part of a VU conference based course and stored together with other 

VU course materials; however, we leave this for future work. 

 We captured separate traces (about 15 minutes each) “playing” 

and rewinding/fast-forwarding the lecture; then calculated the traffic (in 

bits/s) and approximated them with statistical models.  By eyeballing, we 

found that the traffic histograms of the two traces can be “reasonably” 

fitted by Normal distributions. We now discuss the traffic in each of the 

three states: 

State 1: "Play" - The measured traffic is shown in Figure 3.8. By 

eyeballing, we found the histogram curve has a bell shape and that 

the characteristic is close to a Normal distribution  with µ=56 kbits/s 

and  σ= 5 kbits/s. When we looked at several other VOD traces 
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prepared by NetShow, we found that their traffic distribution  also 

had bell shapes.  

State 2: "Fast Forward/Backward" - Similarly to state 2, we approximate 

the traffic shown in Figure 3.9  with a Normal distribution; however, 

this time the parameters are µ=18 kbits/s and  σ= 5kbits/s. 

State 3: "Pause" -  This state is an idle state and involves no traffic. 

By analyzing the data, we found that  our sample user “plays” the 

video for around 10 minutes , “rewinds/fast-forwards” for 1 minutes to 

the target; and the “pause” time is 5-10 minutes.  So we set the duration 

time7 of the State1, 2, and 3 as 10 minutes, 1 minute and 10 minutes 

respectively. When a state reaches its duration time, a state transition 

happens according to the state transition probability matrix. The 

transition probabilities  were estimated by analyzing the same tester 

taking the same course (CSS244a). The results are presented in Table 

3.3 below. 

                                       

7 Please do not get confused by the missing of “state duration time” in the VU model. 
The definition of the states in  the  VU model is  based on the user’s action, i.e. one 
state has one action. So in fact,  the “state duration time” is the same as the “request  
interarrival time”. 
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Figure 3.8 The Traffic of State 1 in VOD 
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The Histogram of Traffic in State 2 and Normal 
Approximation
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 59Figure 3.9  The Traffic of State 2 in VOD 
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Table 3.3: Transition Probability For VOD 8 

 

 state 1 state 2 state 3 

state 1 40% 20% 40% 

state 2 30% 20% 50% 

state 3 10% 5% 85% 

  

The Simulations 

The models discussed above were implemented in OPNET. In the 

OPNET package, there are many standard network components and 

functions built that we and use; while for the applications, OPNET 

provides some examples to show how the lower layer models can be 

used.  In our network model, all that we are using are standard network 

equipment (e.g. bridges, hubs) and network  protocols. We can choose  

the existing models and configure the parameters according to our 

requirements. But for the application (as opposed to the network) 

implementations, e.g. our user models,  we have to construct our own 

models. In the  OPNET example models, there is one called “GNA” that  

simulates basic network applications such as Email , FTP et cetera. We 

chose to build our models based the “GNA” model because it uses the 

same client-server mechanism as what we are using and some basic 

functions can also be used in our programs. Meanwhile we do not have 

                                       

8 The data here is based on the analysis of one tested user; it may not be valid for all 
other users and for all the VOD courses. 
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to redesign the application-network interfaces. All these can  speed up  

the development of our system. 

In the “GNA” model, a control program “app-mgr” calls the  

program “gna” to generate different application processes and control 

them. The program “gna” has 2 states, one is “burst”, which simulates 

traffic generation , and  the other is “idle”, where no traffic is generated. 

Inside the “burst” state, traffic is generated according to the “packet size” 

and “packet interarrival time” parameters, which are defined according to 

the type of application.  The states are switched according to the 

predefined time of each state according to the type of application.  

In our programs, the “app-mgr” is modified to distinguish 

applications and call the  appropriate programs, i.e. “vugna” for VU 

conference based courses, “cygna” for VOD streaming video, and “odgna” 

for the applications defined in the original “GNA” models. The program 

“vugna” is developed to implement the 6-state model of a student taking 

VU courses.  The program “cygna” is developed to implement the 3-state 

model of a student viewing the VOD lectures. The program “odgna” is a 

modified version of the “gna” which can work well with other programs 

we developed. 

In each of the states, traffic is generated according to the models 

we defined: the main parameters we use are the “packet size” and 

“packet interarrival time”. A set of  state-leaving conditions are defined 

and the decision making mechanism for state transition are also 

developed. In our programs, the states switch according to the defined 

“states transition probabilities”. To achieve this, we add a random 

number generation mechanism and the transition decision is made 

based on this random number. Some new functions are also developed to 
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facilitate the model construction, such as a new traffic sending function 

that allows each state to determine the traffic size it will send and also 

the responding traffic size.  In the streaming video “VOD” program 

(“cygna”), a user play buffer is implemented so that we can use play 

buffer’s overflow and underflow as a measure of  video QoS.  

As our server model is not complicated at this stage of the 

simulation development, we simply adopt the provided “GNA” model. 

Along with the model development , a set of “Probes” are defined to  

collect data during simulations, such as the VOD buffer’s over and 

underflow, the VU courses’ response time and the throuput of each 

network segment et cetera. 

The models discussed in the above sections were used in the 

following way to create our simulations.  Ideally,   each student would be 

simulated by running the user model appropriate to the course being 

tested on a “user station”, as defined when we discussed the network 

model. Unfortunately, however, we cannot always afford to have separate 

user station for each synthetic student. Each user station has a lot of 

components which  require computing resources such as the memory 

and simulation running time. We do not have unlimited memory and 

simulation time to run the simulations with arbitrary numbers of 

components.  To resolve this situation,  we can simulate multiple (n) 

users  with one station by making the requests generated at n times the 

frequency as a single user (i.e. shorten the average interarrival time by a 

factor of n). As we discussed earlier in the section 2.3, the superposition 

of independent Poisson processes results in a new Poisson process whose 

rate is the sum of the competent rates. Since we use a stochastic process 

to generate user requests in our user model and each request is 



 64

generated independently, the “lumping” approach is able to simulate 

multiple independent users  by having a single station interact with the 

Virtual-U  system.  The error caused by “lumping” depends on the 

“lumping rate” (i.e. the number of users lumped in one station) and the 

number of individual stations. As long as there are sufficient number of 

individual stations defined, the error caused by “lumping” should be 

minimum. Mostly, the number of simulated users in our experiments is 

not more than 300 and there are 150 stations defined, so there are 

sufficient number of stations in our simulations. A spot-checking test 

was executed to  compare the results of 150 “lumped” VU users (by 

lumping to 50 individual user-stations) with 150 individual VU users. All 

the tests configurations (details refer to Section 4.2)  and measurement 

methods are identical for the two cases.  From the results shown in Table 

3.4, we can find that the difference is not significant. The “lumping error” 

in our simulations should not be worse than that in this spot-checking 

test, because our lumping rate is lower (2 compared to 3)and there are 

more individual stations (150 compared to 50) there. 

 

Table 3.4:  ‘Lumping’ Effect 

 

Request Response Time (s) QoS Parameters 

# of VU users Max. 

 

Min. 

 

Mean 

 

Standard 

Deviation 

"Not 

good" 

"Bad" 

150 21.9 0.0158 0.492 5.09 14.7% 4.2% 

150 (lumped) 21.1 0.0158 0.483 5.02 13.6% 4.5% 
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It should also be noted that the VOD traffic models come from the 

traces captured from the network, which naturally include network 

overhead. When information such as the data of a VOD frame is being 

transmitted across the network, it is put into  special formats form 

according to the network protocols. The information is split and 

encapsulated into the “protocol data unit”, which is defined according to 

a standard format and is recognizable by all the network entities. Besides 

this payload information, a protocol data unit also has a header 

containing such data as the address and control information, which will 

be used for delivering the payload information. At the receiver end, all the 

overheads are striped off and the original information is reformed to what 

was in the sender and then forwarded to the end user. So before we can 

use the “network captured” traffic model to generate  traffic at the 

application layer, the network overhead should be taken off. However, 

since we can not accurately estimate how much it accounts for, it is  

safer to leave it on and be conservative. 

3.3 QoS  Measurements 

In the  previous sections, we described the construction of the 

simulation system. We are now able to execute  the simulation and study 

the system capacity and performance. To make  sense of these results, 

the QoS measures  must be properly defined.  

As mentioned earlier, when we evaluate the system performance, 

both statistical and subjective QoS measurements should be used. As we 

discussed in Chapter 1, we set 3 levels of subjective quality levels and 

they are defined as:  

��“Good”: Very good quality. 
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��“Not good”:  The quality is not good, but may be acceptable in some 

cases. 

��“Bad”: The quality is bad and is unacceptable. 

For the VU conference based courses, the request response time, 

T, which is defined as the time from when  a user sends out the request 

until the requested information is received, reflects the quality directly 

experienced by the users.  Unlike other measures such as the number of 

requests processed by the server, the packet error rate in the network 

connecting the server and the user, the throuput of the user’s station in 

the LAN segment, this measure takes in to account the impacts from 

almost all of the components in the system. We are thus interested 

various statistical parameters based upon T, such as its “maximum 

value”, “minimum value”, “mean” and “standard deviation”.  The three 

subjective QoS levels for T itself are thus intuitively set  as: 

 

“Good” T< 5 sec. 

“Not Good” 5 sec. ≤ T < 20 sec. 

“Bad” T ≥ 20 sec. 

 

For the VOD course, the actual delay is not critical because there 

is not much interaction which is very sensitive to the delay.  On the other 

hand, “delay jitter” is  important, since too much jitter will cause the play 

buffer at the client station to overflow and underflow, which will greatly 

degrade the video quality through frame loss. We use the rate of play-

buffer’s underflow/overflow, R, as the QoS measurement for VOD course. 

Note that R is also dependent upon the size of the play-buffer, a bigger 
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buffer can smooth larger delay variation and make a smaller R; on the 

other hand a bigger buffer need longer time to fill during the initialization 

(pre-fill the buffer at the beginning) which means longer initialization 

delay. It is a trade off between the delay jitter soothing capability and the 

initialization delay while the size of play buffer is determined.  Since our 

video source transmitted at an average rate of 56kb/s, we assumed a 

play-buffer size of 128kbits, corresponding to 2-seconds of video. The 

three quality levels  were then defined based on R as is shown below, 

with the actual values being heuristically chosen.  

 

“Good” R< 1.0 times/min. 

“Not Good” 1.0 times/min. ≤ R < 1.5 times/min. 

“Bad” R>1.5 times/min 

3.4 Summary 

In this chapter we described  the method used to analyze  a real 

telelearning system and to construct a simulation model of it. We also 

presented our simulation system for the Virtual-U system (based on its 

1997 design) as an example. The simulation models developed  were a 

network model, a background traffic model, a server model and a user 

model. These  models were derived from the analysis of the real system 

structure and usage records (e.g. log files) obtained from real telelearning 

courses. In each of  the models, we also defined several parameters  that 

can be changed according to the resources available to the system,  the 

course content and user’s usage pattern. All these models  were 

implemented using OPNET. The simulation system is able to simulate 
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students taking conference based courses and/or “Video On Demand”  

streaming video courses.  We also defined a set of QoS measurements 

that represent the system performance both objectively and subjectively. 

With this simulation system, we are able to carry out research on system 

capacity and performance issues for telelearning applications. In next 

chapter, we will give some examples about how we used the simulation 

system to predict the system capacity and analyze  the effects of the key 

factors. Some of the interesting results we  have obtained will also be 

discussed. 
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Chapter IV 
Experiments and Results 

4.1 General Description 

In this chapter, we describe how to use the simulation system to 

analyze the performance and capacity of telelearning applications using 

Virtual-U and “streaming video” examples. We  also present a series of 

results in order to demonstrate the power of our approach.  The following 

questions are examined: 

1) What is the capacity of Virtual-U in offering conference based courses 

and how many  streaming video sessions can be added in the same 

system? 

2) How will the factors such as the server’s processing power, the 

average course file-size, the frequency of image downloads and the 

background traffic level in the network affect the system performance 

and capacity? 

3) When multiple types (categories) of courses are offered on the same 

system, how do they affect each other? 

The system configurations are based on the models we described 

in Chapter 3, which include a network model, a user model, a server 

model and a background traffic model.  

The network model that we will use in the simulation is the “SFU-

like” two-layered network model as described in Chapter 3 (a 100Mbps 

high-speed backbone with seven 10Mbps 10Base_T subnets connected to 

it). A server is located in one of the seven subnets. 150 individual 
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stations are evenly distributed in the other six subnets; however, we are 

able to simulate more than 150 users in the system  using the technique 

described in Section 3.2.4. 

The user model used in the simulation is the 6-state model as 

described in Section 3.2.4. For Virtual-U conference based courses (VU), 

without streaming video, we vary the following parameters in the 

simulations: 

1) The number of server processing units consumed by each user 

request, N. As mentioned in Chapter 3,  we approximate the “N” by a 

single constant for each type of courses, i.e. the value of “N” is the 

same for all states of the model for a course. 

2) The  frequency of loading images, F. This is the probability that a 

“plain message” event will be followed by a transition  to state 6. 

3) The mean and standard deviation, (µ, σ), of the Normal distribution 

that models the sizes of the “images” down-loaded  to the users. 

As we described in Section 3.2.4, some parameters of the user model are 

modeled by a “pessimistic” constant which is worse than 90% of the 

samples. Increasing the “pessimistic level” will lead to user model with 

heavier traffic , thus a more conservation prediction of the system 

capacity. Some experiments will be done with a “99% pessimistic level”, 

i.e. we replace the “pessimistic” constants in the former described  VU 

user model with new values which are worse than 99% of the data 

samples. The values got changed are:  

Traffic in State 2 “List conferences” = 17 KB; 

Traffic in State 3 “List  unread messages” = 61 KB; 

Traffic in State 4 “Read a message” = 13 KB; 

Traffic in State 5 “Put a messages” = 13 KB; 
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Since we think “90% pessimistic level” is reasonable to be used in 

building a user model, for most of our experiments, we use the model 

described in Section 3.2.4.(It is used as default if there is no specific 

note).  

The server model and background traffic models used in the 

simulation are as described in Chapter 3. The server processing power, 

P,  is set to a nominal 1500 jobs/sec.; however, recall that this parameter 

can be adjusted using the “N” parameter described above. The 

background traffic level, B,  is defined as the average percentage of the 

total bandwidth used by the non-telelearning applications.  It is set to  

zero when we study factors other than background traffic, but we vary 

this parameter to analyze how background traffic affect system 

performance. According to our analysis of VU courses, the mean message 

size is 2.5kB and the interarrival time is 168s on average; this makes the 

average traffic generated by a user in state 4  equal to 120bps. On the 

other hand, if an image is loaded, the traffic rate may tens of  kilobytes 

per second for a short period of time. (The real rate depends on many 

factors as the state of the network, the throuput of the server and the 

user’s access speed et cetera.) Therefore the traffic is bursty and the 

sustained level is low.  For this type of traffic pattern, it is difficult to 

predict the performance with a “paper and pencil” approach and the 

effect of multiplexing can only be evaluated by simulation. On the other 

hand, the traffic pattern of streaming video applications is less bursty 

and analytically tractable. The average rate of the VOD session we 

studied  is 56kbps9. Please note that the VOD rate is not limited to this 

                                       

9 We assume the user will only “play” the  video to make a conservative estimate  
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one. The rate of VOD sessions  depend on the required video quality and 

the available bandwidth, it could be 128bps, 256bps et cetera, or as high 

as 1Mbps.  

The simulation results will be discussed in the following sections. 

4.2 System Capacity for VU Courses 

A good estimate  of Virtual-U system’s capacity, which is defined as 

the number of users can be supported at the same time, is important for 

both the system designers and the educators who use VU to provide 

courses. In order to get this estimate, our approach is  to simulate a 

given system configuration and different number of users in the system. 

By examining the system’s performance with a given QoS criterion, we 

are able to find the maximum number of users that can be. In the 

following, we vary N, the available server processing power. 

System Configuration: 

 

Server’s processing power 

consumed by a user’s request (N) 

1, 10, 15, 20 

Average (loaded) image size and 

standard deviation (µ,σ) 

128kB, 40kB 

Loading image frequency (F) 25% 

Server processing power (P) 1500 jobs/s 

Background traffic level (B) 0 

The user model used  

As the parameters of “image loading”, we chose numbers 

appropriate to “heavy” image use  because we are most interested in 
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exercising the system to find where the performance breaks down and we 

also wish to get a conservative estimate of the system capacity. These 

numbers will, of course, need to be tuned for specific courses once this 

data is available.  

Simulation Results:  

In the following tables of the simulation results, the “QoS 

Parameters” (e.g. “Bad”) are as defined in Section 3.3.  The system is 

regarded from the users’ perspective  as “slightly congested” if the end to 

end response time shows a slow but observable increasing trend and the 

part in “bad” region is below 20%. The system is regarded from the users’ 

perspective  as “congested” if the end to end response time shows a quick 

increasing trend and the part in “bad” region is over 20%. 

The simulation results for “N=1, 10, 15, 20” are listed in Tables 

4.1-4.5, and the QoS measurements for “N=10” are shown in Figures 4.1-

4.4. 
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Table 4.1: VU Course Performance for Different Number of Users (N=1) 

 

Request Response Time (s) QoS Parameters  

# of users Max. 

 

Min. 

 

Mean 

 

Standard 

Deviation

"Not 

good" 

"Bad" 

 

Note 

150 21.9 0.0158 0.492 5.09 14.7% 4.2%  

300 22.1 0.0158 0.863 4.99 15.6% 3.9%  

450 28.5 0.0158 2.037 5.76 24.0% 5.2%  

600 62.7 0.0158 4.559 8.53 29.7% 11.6%  

675 126.3 0.0182 10.548 19.45 34.2% 16.1% SC 

750 153.4 0.0255 16.476 23.36 46.8% 25.8% C 
SC: Slightly congested. 

C: Congested. 
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Table 4.2: VU Course Performance for Different Number of Users (N=10) 

 

Request Response Time (s) QoS Parameters 

# of users Max. Min. Mean Standard 

Deviation

"Not 

good" 

"Bad" 

 

Note

10 10.074 0.0217 0.988 1.379 3.9% 0.0%  

20 10.744 0.0217 1.011 1.842 5.9% 0.0%  

30 23.085 0.0217 1.313 3.183 9.9% 1.2%  

40 33.047 0.0217 1.587 3.778 12.9% 2.6%  

50 54.162 0.0217 2.980 19.312 25.5% 7.9%  

55 123.470 0.0217 6.086 15.444 35.2% 16.2% SC 

60 179.388 0.0217 25.673 50.762 59.8% 46.3% C 

SC: Slightly congested. 
C: Congested. 
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Table 4.3: VU  Performance the “99% Pessimistic User Model” (N=10)   

 

Request Response Time (s) QoS Parameters 

# of users Max. Min. Mean Standard 

Deviation

"Not 

good" 

"Bad" 

 

Note

10 15.822 0.0283 2.122 2.936 16.9% 0.0%  

20 32.730 0.0286 3.457 5.746 31.4% 3.5%  

30 51.596 0.0282 5.665 8.225 41.2% 9.8%  

40 101.664 0.0281 10.304 16.743 53.7% 19.5% C 

50 167.768 0.0281 25.203 28.720 77.1% 49.4% SC 

SC: Slightly congested. 
C: Congested. 
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Figure 4.1 VU Response Time vs. # of Users (N=10) 
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Figure 4.2 VU Subjective QoS vs. # of Users (N=10) 
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Figure 4.3 VU Response Time(99% pessimistic, N=10) 
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Figure 4.4 VU Subjective QoS vs. # of Users (99% pessimistic, N=10)   

 

 

 

 

 

 

 

 

Table 4.4: VU Course Performance for Different Number of Users (N=15)   
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# of users Max.  Min. Mean Standard 

Deviation

"Not 

good" 

"Bad" Note

10 11.719 0.0231 1.318 1.887 7.4% 0.0%  

20 18.676 0.0174 1.809 3.346 12.8% 0.0%  

30 33.935 0.0227 2.095 4.874 17.4% 2.1%  

35 86.686 0.0227 4.970 12.929 36.4% 14.4%  

40 102.037 0.0227 7.241 16.463 42.6% 17.4% SC 

50 270.632 0.0227 33.712 48.351 67.4% 46.9% C 

SC: Slightly congested. 

C: Congested. 
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Table 4.5: VU Course Performance for Different Number of Users  (N=20) 

 

Request Response Time (s) QoS Parameters 

# of users Max. Min. Mean Standard 

Deviation

"Not 

good" 

"Bad" 

 

Note 

10 33.473 0.0238 2.143 4.075 10.5% 1.7%  

15 52.475 0.0241 2.759 6.208 26.8% 3.0%  

20 60.214 0.0238 4.175 10.782 34.1% 13.4%  

25 98.665 0.0238 5.964 14.825 39.7% 15.3%  

30 193.302 0.0238 16.672 35.895 47.6% 28.9% C 
C: Congested. 
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Observations: 

As the number of users increases, the overall quality of service 

degrades both objectively and subjectively. For the above system 

configuration with N=1, if the number of users is more than 675, the 

system starts to get congested (due to starvation of the server’s 

processing power); when there are over 750 users, the system starts to 

get heavily congested. If we use the “less than 10% of the service is bad” 

quality as  the criterion for  determining the system capacity, then we 

should keep the number of users below 600. But these kind of 

performance is not what we have seen from the real VU system which 

has a much less capacity. The reason is that we overestimated the 

server’s ability in processing users’ request. The “N=1” is not the case in 

the real VU. The VU is implemented with CGI scripts, as we mentioned 

earlier in Chapter 1, when a CGI task is executed, it may spawn many 

“sub-tasks” which will all consume the server’s processing resource. So 

in the real VU, the “N” is greater than 1 and the overall effective server’s 

processing  power is less than 1500 jobs/s. 

With the same system configuration, different values of “N” make 

the server’s “effective power” vary, which also changes the capacity;   

however, the shapes of the “Performance vs. the number of students” 

curves are similar. As the number of students increases within the 

system’s capacity, the quality of service degrades gradually; however, 

when system is near its capacity, the quality of service degrades 

dramatically in both objective and subjective measurements. The system 

capacities are estimated and listed in Table 4.6 for different values of “N”.  
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We also estimated the number of VU courses could be offered at 

the same time. Based on the observation that there are around 50 

students in the test courses, we assume each VU course will have 50 

students registered, among these, we assume that approximately  50% of 

the users are active during peak usage times. We are most interested in 

the quality under peak conditions, since it is the worst case that is most 

important.  

 

Table 4.6: Capacity of the System Offering VU Courses 

 

N # of users # of courses 

1 600 24 

10 50 2 

15 30 110 

20 20 111 

 

The observed performance of real Virtual-U system is very close to  

“N= 10” case in simulation. That is, the  “P=1500 jobs/s and N = 10” can 

represent the situation in the real system. However this performance is 

not very satisfactory. The capacity needs improvement. Our projection for 

a commercialized Virtual-U that is able to bring us an “on-line 

university” is a system capable of offering 20~50 (or even more) courses 

                                       

10 This is a rounded number. 

11 This is a  rounded number. 
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simultaneously with fairly good quality. This goal should be achievable in 

the near future, depending on the type of courses that the system must 

support. The improvement of VU  is expected come from using more 

powerful hardware (e.g. processor, memory, I/O equipment et cetera.) 

and  from improvements in the software implementation (such as 

replacing the CGI interface with a more efficient system and by making 

better use of databases). 

For the same system configurations, the QoS curves of the user 

model with “99% pessimistic”  are  similar to that of user model with 

“90% pessimistic”. However the number of VU users can be supported   

is only 30 compared to 50 in “90% pessimistic” case, if we use the save 

criterion “less than 10% of the service is bad”. A more pessimistic model 

leads to a more conservative prediction of the system capacity. 

4.3 How Server’s Processing Power affects QoS of VU courses 

When analyzing how the server’s processing power affects the QoS 

of VU service, we did experiments to derive two characteristics: 1) The 

capacity vs. the effective server processing power for a given QoS 

criterion. 2) The QoS vs. effective server processing power for a given 

number of users in the system. 

4.3.1 Capacity vs. the Effective Processing Power 

First, we define the “effective processing power” to be the number 

of user requests that can be processed by the server in one second.  This 

number can be obtained by dividing the server’s (absolute) processing 

power (jobs/s) by the factor “N”. Based on the results of Section 1, we  

estimated the system capacity for different values of the  “effective 



 86

server’s processing power” (Refer to Table 4.7). Note that we are using the 

same QoS criterion (“less than 10% of the service is in bad quality”) as in 

Section 1.  
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Table 4.7: System Capacity vs. the Effective Server Processing Power  

 

Effective server processing power # of users 

75 20 

100 30 

150 50 

1500 600 
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Observations: 

As the server’s effective processing power increases, the system 

capacity increases. The plot in Figure 4.5 shows  a linear relationship 

between the system capacity and the server’s effective processing. This 

result is due to our approximation of “N” as being a constant. We do not 

know exactly what will happen if we generalize N to be function of the 

system and request parameters, but we do know that the system 

capacity is determined by the server’s effective processing power, which 

accounts for the key factors of both hardware and software. 

The linearity in the plot tells us that the performance bottleneck of 

the simulated system, and indeed Virtual-U, is in the server rather than 

the network because all of the variation in the server’s processing power  

is reflected  in the system capacity. If the network has a significant effect 

on the system, the curve will be “flat” after some certain point when the 

performance is throttled by the limited network bandwidth.  From a 

network’s perspective, it is no problem to support up to 600 students. 

The server’s limitation is reached before that of the network. 
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Figure 4.5 System Capacity vs. the Effective Server’s Processing Power 
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4.3.2 QoS vs. the Effective Server’s Processing Power  

In this experiment, we study how a server’s processing ability 

affects the system performance by varying the server’s processing power. 

We will try to determine both the minimum required  amount of server 

processing power for a  desired performance, and also the effective range 

of the server processing power. 

 

System Configuration: 

 

Server’s processing power consumed 

by a user’s request (N) 

1 

Number of students taking VU courses 300 

Average (loaded) image size and 

standard deviation (µ,σ) 

64kB, 20kB 

Loading image frequency (F) 25% 

Server processing power (P) 375~30000 jobs/s 

Background traffic level (B) 0 

 

We chose “N =1” to make the server have an  “effective power” the 

same as the “server processing power” (P), because that is what we 

projected for the “final” Virtual-U that can be fully used (as we discussed 

in Section 1). We assume that there  are 300 users in the system, 

because we want to investigate estimated a system that is generally half 

loaded. (The system capacity is 600 when we are at the nominal P of 

1500 job/s). 
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The “image loading” parameters were chosen to  match what we 

consider to be a “typical” course, as described in Chapter 3.  
 

Simulation Results: 

The results of the simulations based on the above parameters are shown 

in Table 4.8-4.9 and Figs. 4.6 - 4.9. 

 

Table 4.8: VU Request Response Time vs. Server’s Processing Power 

 

Request response Time (s) QoS ParametersServer’s 

processing 

power (Jobs/s) 

Max. Min. Mean Standard 

Deviation

"Not 

good" 

"Bad" 

Note

375 544.1 0.1071 122.300 108.50 96.1% 85.4% C 

750 242.3 0.0345 23.812 33.16 74.3% 36.0% C 

1000 123.1 0.0199 5.861 15.37 47.2% 15.1%  

1200 47.8 0.0158 1.874 7.28 31.1% 7.6%  

1500 22.1 0.0158 0.863 4.99 15.6% 3.9%  

7500 11.2 0.0092 0.198 1.18 3.5% 0.0%  

30000 9.4 0.0079 0.154 0.78 0.2% 0.0%  

C: Congested 
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Table 4.9: VU QoS  vs. Server’s Processing Power (99% pessimistic) 

 

Request response Time (s) QoS ParametersServer’s 

processing 

power (Jobs/s) 

Max. Min. Mean Standard 

Deviation

"Not 

good" 

"Bad" 

Note

750 851.4 0.0967 192.700 162.50 95.1% 86.2% C 

1200 250.5 0.0197 26.956 44.89 55.3% 29.3% C 

1500 103.3 0.0235 7.334 18.17 29.1% 16.5%  

1800 60.1 0.0177 3.103 10.33 18.5% 9.3%  

2000 32.1 0.0232 1.369 4.89 11.8% 2.6%  

3000 5.54 0.0235 0.224 0.617 4.5% 0.0%  

7500 7.71 0.0169 0.211 0.063 2.1% 0.0%  

C: Congested 
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Figure 4.6 VU Response Time vs. Server’s Processing Power  
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Figure 4.7 VU QoS vs. Server’s Processing Power  
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Figure 4.8 VU Response Time vs. Server’s Processing Power (99% 

pessimistic) 
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Figure 4.9 VU QoS vs. Server’s Processing Power  
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Observations:  

As shown in Table 4.8 and Figures 4.6-4.7, the overall system 

quality degrades when the server’s processing power decreases. When 

there are 300 students taking VU courses and if the server’s processing 

power is only 375 jobs/s, the whole system is congested. If we use  “less 

than 10% of the service is bad quality” as a criterion for estimating the 

system capacity, then we should use  a server  whose processing power 

better than 1200 jobs/s. On the other hand, for a system of this scale, a 

server more powerful than 7500 jobs/s will not gain much in quality of 

service.  The “knee” shapes of the curves in Figures 4.6~4.7 show that 

there exists a “critical” region (375,1500) for the server’s processing 

power in which varying the server’s processing power has a great impact 

on the whole system’s performance; and a “flat” region (7500, infinity) in 

which upgrading the server will gain little for the given QoS criterion. 

This suggests a method for evaluating the importance of upgrading the 

server. The shapes of the curves of QoS vs. server processing power are 

also valid for the servers with more or less processing powers. The main 

difference is that the “turning” point will vary. For the VU server (1997) 

which has “N=10” (the effective server processing power is less than the 

“absolute” processing power), the curve will looks like the above “N=1” 

curve shift to the left. 

For the experiments with the user model of “99% pessimistic”, as 

shown in  Table 4.9 and Figures 4.8-4.9. The QoS curves show the 

similar shape. The main differences is for the same configuration, the 

“99% pessimistic” model always have worse performance compare to the 

“905 pessimistic” model because  it generate more traffic. If we use  “less 
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than 10% of the service is bad quality” as a QoS criterion , then we 

should use  a server  whose processing power better than 1800 jobs/s. 

For the same condition “90% pessimistic” model requires 1200 jobs/s. 

The more conservative estimation of the user model leads to 

requirements of more powerful server for the same QoS criterion. 

4.4 How ‘Loading Image’ Affects QoS of VU Courses 

As we know, multimedia content such as images and rich-text will 

cause much more traffic than  simple  ASCII text. The “loading images” 

parameters  thus play an important role in determining the system 

performance. Better quality images (such as better resolution, more 

colors et cetera.) will cost more bits and make  for larger files, while using 

more images in a course  may make the course more “vivid” and easily 

understood.  It  is thus useful to  determine how the loaded image size 

and frequency will affect the system’s performance. In addition, we want 

to be able to estimate the largest image files (and loading frequency) that 

we can safely  use in a course for a given system configuration and QoS 

criterion. These parameters are important to course designers, who want 

their courses to “work”. 

4.4.1 The Loaded Image Size  

System Configuration: 

 

Server’s processing power consumed by 

a user’s request (N) 

1 
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Number of students taking VU courses 300 

Average (loaded) image size and 

standard deviation (µ,σ) 

µ=64kB - 1MB 

Loading image frequency (F) 50 % 

Server processing power (P) 1500 jobs/s 

Background traffic level (B) 0 

 

For the image size, we use a Normal distribution, as explained 

previously. The average image size (mean value) varies from 64kB to 1MB 

and for these initial experiments, we assume that the standard deviation 

is simply 1/3 of the mean value. This value was chosen for the variance, 

since it matched that of the  image testset used in the creation of the 

models ( see Section 3.2.4). We assume that this variance will generalize 

to different courses using different ranges of image size. In practice these 

distributions should be tailored to the course being modeled.  

Although our prediction for a “reasonable” frequency of image 

loads is 25%, we set the number to be 50% here. Because we want to 

exercise the worst case  and  produce a conservative estimate  for the 

maximum supportable image size. 

Simulation Results: 

The results of the simulations described above are given in Table 4.10. 

 

Table 4.10: VU Response Time vs. Loaded Image Size. 

 

Image Request Response Time (s) QoS Parameters Note 
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Size (kB) Max.  Min. Mean Standard 

Deviation

"Not 

good" 

"Bad"  

64 22.2 0.0158 0.354 4.93 12.5% 3.7%  

256 22.1 0.0158 0.863 4.99 15.6% 3.9%  

512 37.2 0.0159 3.148 6.96 25.2% 7.5%  

1024 471.7 0.0200 46.124 85.27 47.2% 25.4% C 

C: Congested 

Observations: 

As shown in Table 4.10, the overall system QoS degrades as the 

image size increases. For the current system, we should keep the image 

size at or below 512kB if we use the “less than 10% of the service is bad 

quality” as  the QoS criterion. As we know, most compressed images 

(MPEG, GIF et cetera.) are below this level; however, many WORD files 

and special application images (medical and geographical, for example) 

are larger.   

4.4.2 The Frequency of Loading Images  

System Configuration: 

 

Server’s processing power 

consumed by a user’s request (N) 

1 

Number of students taking VU 

courses 

300 

Average (loaded) image size and 256kB, 85kB 
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standard deviation (µ,σ) 

Loading image frequency (F) 25 %, 50%, 70% 

Server processing power (P) 1500 jobs/s 

Background traffic level (B) 0 

 

Although our prediction for the “reasonable” image size is below 

the level of 128kB, we set the number to be 256kB here. Because we 

want to  use the worst case  to produce a conservative estimate of the 

image loading frequency. 
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Simulation Results: 

The results of the experiments described above are presented below in 

Table 4.11 and Figure 4.10. 

 

Table 4.11: VU Response Time vs. Image-loading Frequency. 

 

Request Response Time (s) QoS Parameters Image 

Frequency Max. Min. Mean Standard 

Deviation

"Not 

good" 

"Bad" 

Note

25% 13.9 0.0145 0.636 2.69 7.9% 0.0%  

50% 22.1 0.0158 0.863 4.99 15.6% 3.9%  

70% 26.9 0.0158 1.207 3.36 14.7% 6.5%  

 



 103

 

 

Figure 4.10 QoS vs. VU Image Loading Frequency 
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Observations: 

As shown in Table 4.11 and Figure 4.10, the overall system QoS 

degrades with the increase of the image loading frequency. If we look at 

the percentage of time service is in the “bad” region, the performance 

degrades linearly, as shown in Figure 4.6. For the system configuration 

above, if we use the “less than 10% of the service is bad quality” as a QoS 

criterion, the quality is still acceptable even when the loading image 

frequency is  set to 70%. Therefore  “image downloads” are unlikely to 

cause serious problems to  VU courses, as long as  they are kept  to a 

reasonable level. 

4.5 Capacity for Adding VOD Sessions 

The effort in this section is to see how many streaming video, or 

VOD, sessions can be added if the system is half loaded  with other VU 

courses (300 users). The configuration of the system is based on our 

prediction for the “final” Virtual-U system rather than the 1997’s version. 

Because VU itself is evolving and we believe it makes more sense to 

provide VOD service when the system is “mature” in providing 

conference-based courses.   

At present, we do not have detailed information about the VOD 

server of the sample VOD lectures we captured; however, we do not have 

to use the same server in the telelearning environment, though we may 

provide the same type of video lectures. In our simulation, we assume 

the server has dedicated RAM, Disk arrays, I/O  et cetera for  video 

processing and that the software for  video processing is well designed. In 

a word, the  video processing is efficient at the server site and the server 
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has enough power to handle the traffic compared to the network. In some 

situations, it may be desirable to have a separate video server and this is 

a topic to be explored in future research. 

System Configuration:  

 

Server’s processing power consumed by a 

VU user’s request (N) 

1 

Number of students taking VU courses 300 

Average (loaded) image size and standard 

deviation (µ,σ) 

64kB, 20kB 

Loading image frequency (F) 25 % 

Server processing power (P) 1500 jobs/s 

Background traffic level (B) 0 

 

Simulation Results: 

For the VU course, we continue to use the “request response time” 

as the QoS measurement; however, for the streaming video session, we 

measured the rate of the play buffer’s under/over flow (times/minute) 

instead, since this is much more important from the viewers point of 

view.  The results are shown in Table 4.12 and in Figure 4.11. 
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Table 4.12: Service Quality When Adding VOD Users 

 

VU 

Request Response Time 

(s) 

QoS 

Parameters 

VOD Note# of VOD 

users 

Max. Mean Standard 

Deviation

"Not 

good"

"Bad" Buffer12 

O/U Flow 

 

0 1.487 0.104 0.17 0.0% 0.0% N/A  

30 1.517 0.104 0.16 0.0% 0.0% 0.706  

60 1.522 0.110 0.16 0.0% 0.0% 0.784  

90 2.348 0.156 0.24 0.0% 0.0% 0.841  

105 5.032 0.328 0.37 0.0% 0.1% 1.030  

120 9.793 0.596 0.85 12.3% 1.2% 1.416  

135 35.266 3.168 6.91 33.6% 14.5% 6.452 C 

C: Congested 

 

                                       

12 The unit is times/minute 



 107

 

 

Figure 4.11 QoS vs. VOD Sessions. 
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system gets congested due to the starvation of network bandwidth. Note 

that this number will drop to about 7 if 1Mb/s video streams are used. 

These  results agree with our analytical predictions. Theoretically, the 

maximal bandwidth in the system is throttled by the 10Mbps Ethernet. 

The practical bandwidth of the Ethernet is around 8Mbps as discussed 

in Chapter 2. From the network bandwidth perspective, the effect of VU 

users is minimal. Since each VOD session consumes 56kbps bandwidth, 

the total supportable VOD sessions will be less than 140 (56kbps * 140 = 

8Mbps). 

 From our simulation experiment results, we can see that when 

there are 300 VU users in the system, the capacity of the above 56kbps 

VOD sessions is 120. This number also agrees with simple analytical 

calculations. For the system with 300 students,  up to 120 of them can 

simultaneously view the VOD sessions (as part of the course material). 

The QoS curves for VU and VOD have the same shape, and they 

“jump” at the same point. The reason for this is that in the non-

prioritized network protocols being used, there  are  no reservations or 

preferences made for the different applications when the network 

resources are allocated. This lack is one of the characteristics of the 

classic (as opposed to the new generation) “best-effort” TCP/IP protocols, 

which were not designed to carry  mixtures of different types of traffic, 

each  with its own QoS requirements. For our telelearning applications, if 

the network can distinguish the “delay sensitive” VOD sessions from 

other traffic, and process them with higher priority, the QoS/Capacity of 

the VOD sessions will be improved.  The QoS of VOD will then be 

sustained even when the network starts to get congested; i.e. the VOD 

courses’ slight slope region in Figure 4.7 will be extended.  This would 
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happen at the cost of degrading the QoS of VU (and other applications) 

and in refusing new video connections. However, many services as VU 

are less “delay sensitive” than video, and it is possible to find a balancing 

point good for the overall system performance. There are many 

researchers working on possible new  protocols [Moh, 1996] [Johnson, 

1996], but this topic is outside the scope of this thesis.  

4.6 How Background Traffic Affects System Performance 

The background traffic of the network greatly affects the system’s 

performance.  In our network structure, background traffic exists in 

three places: 1) The subnet where the server is located. 2) The backbone 

network. 3) The subnet where the user is located. These cases will now 

be analyzed individually and we will see what is most likely to be the 

bottleneck in the system.  

We will use “background traffic level”, B, to represent the intensity 

of the background traffic on the network segment being studied. Since 

one of our main interests here is to find the maximum tolerable 

background traffic level in each of the specific network segment, we will 

vary the background traffic level for the segment being studied and set 

the background traffic in other parts to be zero. 
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4.6.1 Background Traffic in the Server’s Subnet 

System Configuration: 

 

Server’s processing power consumed by a 

VU user’s request (N) 

1 

Number of students taking VU courses 300 

Number of VOD sessions 60 

Average (loaded) image size and standard 

deviation (µ,σ) 

64kB, 20kB 

Loading image frequency (F) 25 % 

Server processing power (P) 1500 jobs/s 

Background traffic level in this network 

segment (B) 

0% ~ 40% 

 

As  in previous simulations we assume that the system is “half 

loaded” with 300 VU users; however, we have added  60 streaming-video 

sessions  because we believe that the Video service will be integrated into 

the VU system as an important part. In addition, video services  are more 

“network bandwidth sensitive” and can be heavily  impacted by the 

background traffic in the network environment. (Note that 60 is also 

chosen by the “half loaded” consideration since the capacity is 120). 
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Simulation Results: 

The results of the above simulations are shown below in Table 4.13 and 

in Figure 4.12. 

Table 4.13: QoS vs. Background Traffic in the Server’s Subnet 

 

VU 

Request Response 

Time (s) 

QoS 

Parameters 

VOD NoteBackground 

Traffic  Level 

Max. Mean Standard 

Deviation

"Not 

good"

"Bad" Buffer 

O/U Flow 

 

0% 1.52 0.111 0.16 0.0% 0.0% 0.784  

10% 1.58 0.123 0.18 0.0% 0.0% 0.815  

20% 2.10 0.194 0.29 0.0% 0.0% 0.806  

30% 5.32 0.564 0.61 0.4% 0.0% 1.232  

40% 15.92 1.137 1.25 7.4% 7.0% 2.992 C 

C: Congested. 
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Figure 4.12 QoS vs. Background Traffic in Server’s Subnet 
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Observations: 

As shown in Table 4.13 and Figure 4.12, the overall system quality 

degrades as the level of background traffic on the server’s subnet 

increases.  Video is very sensitive to the background traffic of the server’s 

subnet.  If we use  “play buffer’s over/under flow rate is less than 1.5 

times/min.” as the criterion for estimating the system capacity, we 

should keep the background traffic level of the server’s subnet at less 

than 30% of the available bandwidth. If the background traffic level is 

greater than 40%, the network gets congested. This can also be 

understood using an analytical approach. The total practical bandwidth 

of the Ethernet is 8Mbps and the 60 VOD sessions need 3.4Mbps 

(56kbps*60) of bandwidth. Even the 300 VU users  do not require such a 

large amount of network bandwidth; a background traffic level of 40% 

will definitely congest the Ethernet. 



 114

4.6.2 Background Traffic on the Backbone  

System Configuration: 

 

Server’s processing power consumed by a 

VU user’s request (N) 

1 

Number of students taking VU courses 300 

Number of VOD sessions 60 

Average (loaded) image size and standard 

deviation (µ,σ) 

64kB, 20kB 

Loading image frequency (F) 25 % 

Server processing power (P) 1500 jobs/s 

Background traffic level in this network 

segment (B) 

20% ~ 90% 
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Simulation Results: 

The results of this work are shown below in Table 4.14. 

Table 4.14: QoS vs. Background Traffic in the Backbone 

 

VU VOD 

Request response Time(s) QoS 

Parameters 

Background 

Traffic  Level 

Max. Mean Standard 

Deviation

"Not 

good"

"Bad" 

Buffer O/U 

Flow 

20% 22.3 1.533 6.02 22.9% 4.1% 0.697 

40% 23.3 1.642 6.07 23.6% 5.6% 0.712 

60% 21.1 1.278 6.42 23.3% 5.9% 0.768 

75% 23.7 1.644 5.94 22.8% 3.6% 0.755 

80% 29.3 1.753 6.29 24.1% 4.8% 0.748 

90% 30.9 3.256 7.56 31.4% 9.6% 3.485 

 

Observations: 

As shown in Table 4.12, the overall system quality does not 

degrade appreciably when the background traffic on the backbone is 

under 80%. This shows that the backbone network is able to handle the 

traffic of the above configuration even with a large quantity of 

background traffic.  
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4.6.3 Background Traffic in the User’s Subnet 

We assume that the 300 VU users and 60 VOD sessions 

mentioned in the former sections are evenly distributed in the user’s 

subnets. That is, each user’s subnet has 50 VU users and 10 video 

sessions. The background traffic on each of the user subnets is identical. 

Both simulation and  “back of the envelope” calculation (as used above) 

show that the user’s subnet gets congested when the background traffic 

reaches  approximately 75%of the capacity in each of the users subnets; 

an acceptable QoS can be maintained as long as the background traffic 

level in the user’s subnet is below 65%.  

4.6.4 Conclusions 

From the results above, we found that for the current system 

configuration, the effect of congestion on the server’s subnet is much 

more severe than elsewhere (30% tolerable background traffic compared 

to 80% and 65% in the backbone and the user’s subnets). From 

viewpoint of telelearning applications, the critical link is thus the server’s 

subnet. The server shares the 10M bandwidth with other stations, and 

this bandwidth is used for subnet internal communication and 

communication to the backbone as well. Thus, making the server’s 

subnet dedicated to the server is important. Historically, Virtual-U 

testing system experienced bad performance due to the background 

traffic caused by a name-server located in the same subnet.  An upgrade 

to the server’s subnet will improve the performance of the whole system. 

If we keep the server’s subnet unchanged and upgrade only the 

backbone network or the user’s subnet, it will not improve the 
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performance of the entire system, as the bottlenecks are not there. 

Another possible approach is to move the server so that it placed directly  

on the backbone network.  

4.7 How Streaming Video and VU Affects Each Other 

As we discussed earlier, VU and  streaming video have different 

critical resources to consume. Within the system capacity, one might 

expect that adding more VU or  video users would not greatly degrade the 

QoS  of the other type of user. However, the QoS of streaming video is 

sensitive to the traffic pattern  on the network (i.e. the burstiness), since 

this may result in delay jitter. Therefore, some characteristics VU courses 

may affect the QoS of  video sessions. For example, the frequency of 

downloading images in VU is a strong candidate for doing this. 

System Configuration: 

 

Server’s processing power consumed by a 

VU user’s request (N) 

1 

Number of students taking VU courses 300 

Number of VOD sessions 60 

Average (loaded) image size and standard 

deviation (µ,σ) 

64kB, 20kB 

Loading image frequency (F)  10% ~ 50% 

Server processing power (P) 1500 jobs/s 

Background traffic level (B) 0% 
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Simulation Results: 

The simulation results for the above configuration are shown below in 

Table 4.15 and in Fig. 4.13 

Table 4.15: QoS vs. Image Loading Frequency of VU 

 

VU VOD 

Request Reopens 

Time(s) 

QoS 

Parameters 

VU Image 

Loading  

Frequency 

Max. Mean Standard 

Deviation

"Not 

good"

"Bad" 

Buffer O/U Flow 

 

10% 2.829 0.131 0.22 0.0% 0.0% 0.771 

25% 2.348 0.156 0.24 0.0% 0.0% 0.816 

50% 2.715 0.242 0.35 0.0% 0.0% 1.018 
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Figure 4.13 QoS of VOD vs. VU Image Frequency 
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Observations:   

As the frequency of loading images in the VU courses increases, 

the QoS of  video sessions degrades. The plot of Figure 4.13 shows a 

linear shape which means the QoS degrades gradually. From the results 

of former sections, we know the system is not congested in this 

configuration. The reason for the QoS degradation can be explained in 

this way: the VU traffic gets more bursty when more images are 

downloaded, this causes more underflows and overflows in the VOD play 

buffers, which in turn downgrades the perceived quality of service. This 

experiment thus shows that different  “modes” of telelearning may affect 

each other.  
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Chapter V 
Conclusions 

In this thesis, we have presented a computer-based simulation 

method  for carrying out performance research on networked multimedia 

systems such as telelearning.  A real system can be decomposed into 

several functional components, each of which can then be modeled 

separately with the expert knowledge in that specific field.  When the 

conceptual models are implemented into computer programs, a 

simulation system that represents the real system’s structure and 

functionality will be available. We used the Virtual-U system as an 

example to describe how to build such a simulation system. We also 

presented some results we obtained when we used the simulation system 

to predict Virtual-U’s capacity and analyze key factors’ effects on system 

performance. 

 Through the work described in this thesis, we have demonstrated 

that our approach is valid and that it can be fruitful in the future. A 

simulation system with  reasonable complexity  can be obtained to 

represent the real system from the perspective of our research interests 

(we do not have to repeat everything that exists in the real system).  How 

good the simulation system is depends on the accuracy we can achieve 

for the models.  

We built a simulation system (tool) with OPNET that can simulate 

students taking courses through the Virtual-U. Although the models  

used are somewhat coarse grained (leaving room for future students),  

the simulation system includes almost all of the key components in the 

real system (the user, the server, the network environment et cetera.) and 
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is able to help evaluate the overall system performance. The work of 

building such a simulation system is twofold.  Firstly we need to take 

into account as many of the systems “key factors” as possible. Secondly 

we should accurately represent how each factor works. Since our main 

research interests are in the overall system performance and how each 

factor contributes to it, a framework that includes all the key 

components is the “Number 1” target of building the first version of the 

simulation system. The models developed so far all need work for the 

simulation to be a better guide to what happens in the real world; 

however, all of the key components of the system are present and 

working. 

We also obtained some interesting results from the computer 

simulation tool we developed and gained a better understanding of the 

system capacity and how the key factors affect the system performance. 

For the system configuration of 1997, the system bottleneck is not the 

network, but the server. The capacity of the system depends on the 

server’s processing ability, which is determined by both hardware power 

and software design. From the network bandwidth perspective, the server 

subnet is most likely to suffer bandwidth starvation. The users activity 

and the contents of the courses all have effects on the system 

performance. For example, adding more multimedia content to a course 

will increase the load of the system. But if we control the amount of the 

material  to a reasonable level, the degradation of QoS is not dramatic. 

VU and VOD traffic consume different  “critical resources” (server power 

and network bandwidth respectively) and could be used in “mixture”. If 

the mixing is controlled in a good level, both good QoS and system 

efficiency can be achieved. 
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Analytical analysis agrees with computer simulation if an 

application’s traffic is analytically tractable. Although our assumption 

that the  video server has enough power to ignore its effect on the 

performance needs re-evaluation in future work, we have been able to 

see how the network bandwidth imposes limitation on the system 

capacity. 

As for the accuracy obtained from the simulation, we can not get a 

good answer until some experiments are made real systems that have 

significant multimedia content, since otherwise we are just exercising the 

server. Although the numbers in our results may not be totally accurate, 

some clues are provided about the overall behavior of the system (e.g. the 

shape of curve) and our results will help further investigations.  

According to our results, in the existing VU system that offers text-

based conference courses, the server is the bottleneck and needs 

improvement. When multimedia courses (e.g.  streaming video lectures) 

are added, QoS oriented new protocols should be considered to make 

better network support. 

The new QoS protocols provide better support to multimedia 

services through two ways. One is to reserve bandwidth for real time 

traffic and guarantee the availability of required resources. The other is 

to label the traffic streams and process them according to their priorities. 

During the evaluation of these newly designed protocols, we should keep 

in mind both the protocols’ performance improvement and their 

backward  compatibility with existing hardware and software. For the 

existing Virtual-U network environment, new QoS oriented protocols can 

be adopted in two levels. One is in the local network; the other is across 

the Internet. 
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For the local network, there are many QoS oriented LAN protocols 

providing better support to multimedia traffic than the 802.3. Among 

them are IEEE 802.12[Watson, 1995] and Ethernet++ [Edwarts, 1995].  

IEEE 802.12 retains the frame format from the original Ethernet.  

Instead of CSMA/CD, it uses a deterministic protocol called demand 

priority MAC. Stations need to ask for permissions from the hub before 

transmitting any frame. The protocol is efficient because it avoids the 

collision problem in CSMA/CD and there is no token propagation around 

the network as in Token Rings. The demand priority protocol can support 

two priorities by providing two request signals: a standard priority (SP) 

request for the old applications as file transfer and a high priority (HP) 

request for the delay-sensitive traffic such as voice and video.  A hub will 

always serve a HP request before a SP request.  It serves each priority 

level in a round-robin order in which the available bandwidth will 

automatically be shared evenly among all stations currently active at the 

highest priority.  A SP request may be promoted to HP if it has waited 

longer than some fixed amount of time (such as 250 ms).  With two 

priority levels the network can provide a service that guarantees 

bandwidth and bounds the access delay for real-time applications. It is 

observed that while 802.12 can keep high priority (HP) request’s delay 

very small,  it may also result in the standard priority requests (SP) 

suffering long delay [Moh, 1996]. This protocol is standardized and has 

many vendors in the market.  

Ethernet++ employs a reserved cyclic access scheme with call 

admission control to provide high priority (HP) services to real-time 

traffic.  The traditional CSMA/CD is used for standard priority (SP) 

access that supports non-real-time traffic.  It operates a dual protocol 
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network. This protocol does not provide absolute preemptive channel 

access for HP stations, HP traffic delay is dependent on SP traffic 

conditions.  The non-preemptive nature provides a reasonable inter-

priority fairness. This is very important for telelearning systems as VU, 

because there will be traffic of both real time applications and non-real 

time applications. 

On the Internet side, IP version 6 [Huitema, 1998] will provide 

better support for multimedia services. IP version 6 is also called IPv6 as 

opposed to IP version 4 that is being used at present. IPv6 specification 

defines flows. “A flow is a sequence of packets sent from a particular 

source to a particular (unicast or multicast) destination for which the 

source desires special handling by the intervening routers”. Flow labels 

will be used if the transmission needs some special treatment. This 

enables prioritized processing.  Reservation is also available.   

In the Internet, one reservation protocol of choice is RSVP 

(ReSerVation Protocol) [Braden, 1996] which is designed for multicast 

applications such as high-speed video transmission.  These applications 

have some peculiar characteristics, like a large number of receivers that 

may be experiencing very different transmission conditions and that may 

also belong to different network domains. They do resource reservation 

by sending RSVP messages to the network with a specific QoS 

requirement.  The RSVP daemon sets parameters in a packet classifier 

and packet scheduler to obtain the desired QoS.  The packet classifier 

determines the QoS class for each packet and the scheduler orders 

packet transmission to achieve the promised QoS for each stream. RSVP 

carries the request through the network, visiting each node the network 

uses to carry the stream.  At each node, RSVP attempts to make a 
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resource reservation for the stream. Although the RSVP protocol is 

designed specifically for multicast applications, it can make unicast 

reservations. RSVP is not the only IP reservation protocol that has been 

designed for this purpose, but RSVP currently has the most industry 

support.  

Further work  on the simulation system could be in three areas:   

1) We should improve the accuracy of the models in representing the 

real system. For example, in the server model, the server’s processing 

power parameters needs to be estimated better, with different types of 

requests using different amounts of processing power. This re-

evaluation may come from a thorough analysis of the server along 

with some experiments to get real measurements.  One of the 

difficulties we met in building an accurate user model comes from the 

“unpredictability” of human thinking habits.  One approach to 

overcome this may be to increase the granularity of the simulation by 

dividing users into several groups according to their 

behaviors/habits, so that a statistical model could be found for each 

of the groups. Efforts should also be made for a user model without 

the system dependency. One approach may be analyzing the log data 

of a set of users work with a “congestion free” environment, i.e. the 

network is isolated and has enough resources for the users; the 

server is also powerful  enough and will not be a bottleneck.  For the 

background traffic model, we may try how a “self-similar” 

background traffic model affect the system performance. We are not 

expecting significant different for the VU users since the VU 

application is not very sensitive to background traffic itself; however, 

the VOD service may got impacted, because the “self-similar” 
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background traffic is more bursty, this will cause more underflow or  

overflow of the viewer’s play buffer which in turn will degrade the 

quality of service of the VOD sessions.. 

2) More work needs to be done in the validation  of our simulation 

models. The best way to do this it is through experiments  on a real 

system. This approach is the most reliable but some times difficult to 

do because of the lack of data available regarding real courses – 

especially ones that push the technological envelope. Another 

alternative for validation would be to build a log-file collection 

mechanism right into our simulation. Some level of validation could 

then be obtained by comparing the simulation’s log-file with the one 

produced by the course that we are trying to model. This second 

method may be easier, but it should be used with care since we need 

to validate the “log data collecting system” in the simulation first. It is 

also not clear that similar log-files would mean that the QoS is being 

predicted correctly. 

3) Finally, more features need to be built into the simulation to make it 

more "versatile".  For example, we  could include  such applications 

as video/audio conferencing as one of the tools available in a course. 

in order to increase the levels of student-student interaction.  We 

could also add new protocols (such as IPv6, RSVP, 802.12 et cetera.) 

to the network model and evaluate the performance of different types 

of networking technologies in supporting telelearning applications. 

This work will provide very useful guidelines to the telelearning 

system designers for taking complete advantages of today’s network 

environment and optimizing telelearning systems. 
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Appendix A 
OPNET Simulation Package13 

“OPNET is a comprehensive software environment for modeling, 

simulating, and analyzing the performance of communications networks, 

computer systems and applications, and distributed systems.”  

OPNET is used to analyze the performance and behavior of existing 

or proposed networks, systems, and processes (as shown in Figure A.1 ). 

A set of  tools are included with the package that assist users through 

the following phases of the modeling and simulation cycle: 

1) Model Building and Configuration  

•= Network Editor - define or change network topology models  

•= Node Editor - define or change node level (system architecture)  

models  

•= Process Editor - define or change process level (behavioral logic) 

models  

2) Running Simulations 

•= Simulation Tool - define and run simulations using models   

constructed with the OPNET editing tools.  

•= Interactive Debugging Tool - interact with running simulations  

3) Analyzing Results  

•= Analysis Tool - display and compare statistical results  

•= Animation Viewer - watch dynamic behavior of models during 

simulation runs  

                                       

13 The information in the appendix is based on the OPNET web site www.mil3.com. 
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programming language and a broad library of pre-defined modeling 

functions. 

The OPNET Network Editor graphically represents the physical 

topology of a communication network. Networks are made up of  nodes 

and links objects, which are graphically assembled and parameterized 

via pop-up dialog boxes. To create node objects, users select node types 

from a library of example and user-defined models. Each OPNET Node 

Model has a specific set of attributes that are used to configure it. 

The OPNET Node Editor graphically represents node architectures, 

which are diagrams of data flow between modules typically representing 

hardware and software subsystems. Module types include processors, 

queues, and traffic generators. Processors are general modules that 

defined according to protocol and algorithm specification. The 

functionality of processor and queue objects is defined using OPNET 

Process Models. Instances of OPNET Node Models are used to populate 

OPNET Network Models. 

The OPNET Process Editor uses a state-transition diagram 

approach to support specification of any type of protocol, resource, 

application, algorithm. States and transitions graphically define the 

progression of a process in response to simulated events. Within each 

state, general logic can be specified using a library of pre-defined 

functions. The full flexibility of the C programming language is also 

accessible. As with other OPNET editors, users can construct entirely 

new process models. 

After a set of OPNET Network, Node, and Process Models are fully 

defined, users can run simulations based on them via the OPNET 
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Simulation Tool, and plot statistical performance measurements based 

on simulation studies in the OPNET Analysis Tool. 

“The OPNET Analysis Tool provides a graphical environment that 

allows users to view and manipulate data collected during simulation 

runs.” [OPNET Web]  Standard and user-specified probes can be inserted 

into a model to collect statistics. Simulation output collected by probes 

can be displayed in numbers or figures, or exported to other software 

packages for analysis. First and second order statistics on each trace 

along with the  confidence intervals can be automatically calculated and 

displayed. “OPNET supports the display of data traces as time-series 

plots, histograms, probability density and cumulative distribution 

functions, and scatter grams.” [OPNET Web] All these are helpful in 

getting results and discoveries. 
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Appendix B 
Program Description  

Network Model 

In the network model, the backbone network is an eight-port 

bridge. The seven subnets are: subnet_1, subnet2, subnet_3, subnet4, 

subnet_5, subnet6 and the server net.  

In each of the user's subnet, there are 25 user stations and 2 

background traffic generators connected to a 32 port Ethernet hub. In 

the server's subnet, there are a server and 2 background traffic 

generating stations. 

The multi-ports bridge is defined by the file 

"ethernet8_bridge.nd.m". The key  parameter is  the "Bridge frame service 

rate (bps)". 

The Ethernet hub is defined by  the model "ethernet32_hub.nd.m".  

The background traffic generating station is defined by 

"ethernet_station_base.nd.m and the  key parameters are:  

1) Application data size: This is the packet size for the 

background traffic. (bits) 

2) Application traffic generator rate PDF: This is the distribution 

of the background traffic packets. 

3) Application traffic generating rate : This is the average value of 

the background traffic generating rate. 

4) Ethernet address: This is the address of the background traffic 

generator’s address. 



 134

5) Destination  highest address: This is the upper bound of the 

destination address for the background traffic. 

6) Destination  lowestest address: This is the lowest bound of the 

destination address for the background traffic. 

Server Model 

The server is defined by "cyeth10T_server_base.nd.m". The key 

parameters are : 

1) Server's  processing power: This number is the server’s processing 

power  (jobs/s) 

2) Server configuration table: This table lists  all the services the 

server is providing. 

3) Tpal address: This is the server’s identification/address. 

User  Model  

The user is defined by the node file "vunode1.nd.m". The user 

process model are implemented by 4 files. The main control file is 

"vunet_app_mgr.pr.m". It will spawn the  appropriate processes for 

different types of applications. These applications are: “vucli_cli.pr.m”  

for VU courses, “cygna_cli.pr.m” for VOD course and “odgna_cli.pr.m”  

for other applications such as Email, FTP et cetera.  

The key  parameters for the VU course are: 

1) Login Rate: This is the hourly session rate. 

2) Terminal Traffic: This is the average traffic size from the user to the 

server.  

3) Host Traffic: This is the average traffic size from the server to the 

user.  
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4) Server: The address of the VU server. 

5) Login Duration: The average time for a login session. 

6) Duration Time: The average time between 2 user's request to the 

server. 

The key  parameters for the streaming video (VOD) course are: 

1) Command Rate: The average rate of users request data from the 

server. 

2) Terminal Traffic: The Traffic size in the direction of user --> server. 

3) Host Traffic:  The Traffic size in the direction of server--> user. 

4) Login Duration: The average time of a VOD session. 

5) Server: The address of the VOD server. 

6) Duration Time: The duration time in each of the state 

7) Login Rate: The average hourly rate of VOD session. 

The transition probabilities matrix of a user model is defined in the 

header part of the relative model file (e.g. cygna_cli.pr.m). The program 

will determine the state transition according to the conditions defined.  

In the VU model, we took a “micro” view of the user’s activity and 

modeled the requests. In the VOD model, our main interest is in  the 

traffic rate other than the atomic requests. And as we discussed earlier, 

we got the trace from the viewer’s end, the traffic rate of the flow is still 

good, but the packets Interarrival time are distorted by the network. So 

we modeled the rate rather than the request interarrival time  in the 

VOD. 

Each state has two parameters, the request interarrival time  and 

the “state duration time”. These parameters are defined in the program to 

provide better modeling of real problem, but they do not have to all be 

used at the same time. For example, for VU , we used a so in each state, 
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the user only send one request, thus the “state duration time” in fact 

used to model the request interarrival time. In the later, for the more 

complex models, each state has multiple requests, both the two 

parameters can be used.  

Probes  

In the Probe file “probeSS.pb.m”, some useful probes are defined: 

"client VOD resp.3": The VOD response time of client1in subnet3. 

"client VU resp.3":  The VU response time of  client1in subnet3. 

"client VU resp.6":  The VU response time of  client1 in subnet6. 

"server Eth throuput":  The throuput of the Ethernet subnet where the 

server is located. 

"client31 Eth throuput": The Ethernet throuput of sunet3 

"BK-sta Eth throuput":  The Ethernet throuput of the background traffic 

station in the server's net. 

"VOD playbuffer 3.1":   The Play buffer's over/underflow of client1 of the 

subnet3. 

"VOD playbuffer 6.1":   The Play buffer's over/underflow of client1 of the 

subnet6. 

"server service time":  The service time for the server of the request 

"global VOD response time": The VOD response time of  all the users. 

"global VU response time": The VU response time of  all the users. 

"global application response time": The response time of  all the users for 

all the applications. 

"global ETH throuput":  The Ethernet throughput of  all the subnets. 

"global play buffer over/underflow": The Play buffer's over/underflow of 

all the users. 
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