
QOS PREDICTION AND EVALUATION FOR NETWORKED
TELELEARNING APPLICATIONS

by

Yu Chen

B.Sc., Beijing University of Posts & Telecoms, 1992

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

In The School Of

Engineering Science

 Yu Chen 1999

SIMON FRASER UNIVERSITY

March 1999

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy
or other means, without permission of the author.

 ii

Approval

Name: Yu Chen

Degree: Master of Applied Science

Title of thesis: QoS Prediction and Evaluation for Networked
Telelearning Applications

Examining Committee:

 Chair: Dr. M. Saif, P.Eng.

 Dr. Jacques Vaisey, P.Eng.
 Associate Professor
 School of Engineering Science

 Dr. Steve Hardy
 Professor
 School of Engineering Science

 Dr. Paul Ho
 Professor
 School of Engineering Science

 Date Approved:

 iii

Abstract

Telelearning is a collection of strategies and techniques for

instruction at a distance. With the relatively recent success of the

Internet and its almost universal accessibility, the web has become a

very attractive vehicle for the delivery of courses. Depending on the

course content and the amount of synchronous interaction between

students, the amount of network traffic can vary tremendously – and this

can have a huge impact on the quality of service (QoS) experienced by

the system users. Thus, in planning to deliver courses, network

administrators and course designers need answers to the following

questions:

•� What is the “capacity” for a given system configuration and QoS

criteria?

•� What is the effect of changing the course content on the QoS?

•� How do the critical resources in the system affect the overall QoS?

•� What is the most effective systems architecture?

•� What system resources need to be present to offer a course.

The answer to each of these questions can be quite complicated,

since systems have many parameters and each user will interact with the

environment in unique and often complicated ways .

This thesis describes our efforts to answer these questions with the

OPNET computer simulation package. We have studied the

configurations and usage of the experimental Virtual-U, and have built

computer models of the following main system components: the network,

the server system, and the user model for interacting with the system in

the specific courses. In simulations, parameters such as the server

 iv

processing rate, the intensity of background traffic and the course

content are varied to see the effect of these changes and predict the

system capacity.

From the simulation results, we discovered that the system

bottleneck in the current Virtual-U system is in the server. From the

network bandwidth perspective, the server’s subnet is most likely to

suffer bandwidth starvation. The user’s activity and the course material

content all have effects on the system performance. Adding more

multimedia content in a course will increase the load to the system, but

if we control it at a reasonable level under the system capacity, the

degradation of QoS is not dramatic. Although some results need

additional work for improved accuracy, these results show that our

method of carrying out QoS research through computer simulation is

valid and that the simulation tool we have built is able to aid the

development and application of telelearning systems such as Virtual-U.

 v

Dedication

To my wife Jun Yan.

 vi

Acknowledgments

Thanks to Cindy Xin of the Telelearning Research Lab for providing

VU server log data.

 vii

Table of Contents

APPROVAL .. II

ABSTRACT.. III

DEDICATION..V

ACKNOWLEDGMENTS ..VI

TABLE OF CONTENTS..VII

LIST OF TABLES ...X

LIST OF FIGURES ..XIII

ABBREVIATIONS.. XV

CHAPTER I. INTRODUCTION ... 1

CHAPTER II. COMPUTER NETWORK AND COMPUTER SIMULATION....... 10

2.1 Computer Network and Protocols..10

2.2 Computer Simulation ...16

2.3 Traffic modeling ..20

CHAPTER III. THE SIMULATION SYSTEM... 24

3.1 Overview..24

 viii

3.2 Simulation System Construction..25

3.2.1 The Network Model ...27

3.2.2 The Server Model ..28

3.2.3 The Background Traffic...32

3.2.4 The User Model ...33

3.3 QoS measurements...65

3.4 Summary..67

CHAPTER IV. EXPERIMENTS AND RESULTS .. 69

4.1 General Description ...69

4.2 System Capacity for VU Courses...72

4.3 How Server’s Processing Power affects QoS of VU courses...85

4.3.1 Capacity vs. the Effective Processing Power ...85

4.3.2 QoS vs. the Effective Server’s Processing Power ..90

4.4 How ‘Loading Image’ Affects QoS of VU Courses...98

4.4.1 The Loaded Image Size..98

4.4.2 The Frequency of Loading Images...100

4.5 Capacity for Adding VOD Sessions ..104

4.6 How Background Traffic Affects System Performance...109

4.6.1 Background Traffic in the Server’s Subnet ..110

4.6.2 Background Traffic on the Backbone ..114

4.6.3 Background Traffic in the User’s Subnet...116

4.6.4 Conclusions..116

 ix

4.7 How Streaming Video and VU Affects Each Other...117

CHAPTER V. CONCLUSIONS... 122

APPENDIX A. OPNET SIMULATION PACKAGE... 129

APPENDIX B. PROGRAM DESCRIPTION .. 133

REFERENCES ... 137

 x

List of Tables

TABLE 3.1:TRANSITION PROBABILITY FOR THE VU CONFERENCE BASED

COURSE .. 42

TABLE 3.2: TRANSITION PROBABILITIES FOR VU COURSE...................... 51

TABLE 3.3: TRANSITION PROBABILITY FOR VOD....................................... 61

TABLE 3.4: ‘LUMPING’ EFFECT .. 64

TABLE 4.1: VU COURSE PERFORMANCE FOR DIFFERENT NUMBER OF

USERS (N=1) ... 74

TABLE 4.2: VU COURSE PERFORMANCE FOR DIFFERENT NUMBER OF

USERS (N=10) ... 75

TABLE 4.3: VU COURSE PERFORMANCE FOR DIFFERENT NUMBER OF

USERS (N=15) ... 80

TABLE 4.4: VU COURSE PERFORMANCE FOR DIFFERENT NUMBER OF

USERS (N=20) .. 82

TABLE 4.5: CAPACITY OF THE SYSTEM OFFERING VU COURSES 84

TABLE 4.6: SYSTEM CAPACITY VS. THE EFFECTIVE SERVER

PROCESSING POWER ... 87

 xi

TABLE 4.7: VU REQUEST RESPONSE TIME VS. SERVER’S PROCESSING

POWER.. 91

TABLE 4.8: VU RESPONSE TIME VS. LOADED IMAGE SIZE....................... 99

TABLE 4.9: VU RESPONSE TIME VS. IMAGE-LOADING FREQUENCY..... 102

TABLE 4.10: SERVICE QUALITY WHEN ADDING VOD USERS 106

TABLE 4.11: QOS VS. BACKGROUND TRAFFIC IN THE SERVER’S SUBNET

.. 111

TABLE 4.12: QOS VS. BACKGROUND TRAFFIC IN THE BACKBONE 115

TABLE 4.13: QOS VS. IMAGE LOADING FREQUENCY OF VU................... 118

TABLE 3.1:TRANSITION PROBABILITY FOR THE VU CONFERENCE BASED

COURSE .. 42

TABLE 3.2: TRANSITION PROBABILITIES FOR VU COURSE...................... 51

TABLE 3.3: TRANSITION PROBABILITY FOR VOD....................................... 61

TABLE 3.4: ‘LUMPING’ EFFECT .. 64

TABLE 4.1: VU COURSE PERFORMANCE FOR DIFFERENT NUMBER OF

USERS (N=1) ... 74

TABLE 4.2: VU COURSE PERFORMANCE FOR DIFFERENT NUMBER OF

USERS (N=10) ... 75

 xii

TABLE 4.3: VU COURSE PERFORMANCE FOR DIFFERENT NUMBER OF

USERS (N=15) ... 80

TABLE 4.4: VU COURSE PERFORMANCE FOR DIFFERENT NUMBER OF

USERS (N=20) .. 82

TABLE 4.5: CAPACITY OF THE SYSTEM OFFERING VU COURSES 84

TABLE 4.6: SYSTEM CAPACITY VS. THE EFFECTIVE SERVER

PROCESSING POWER ... 87

TABLE 4.7: VU REQUEST RESPONSE TIME VS. SERVER’S PROCESSING

POWER.. 91

TABLE 4.8: VU RESPONSE TIME VS. LOADED IMAGE SIZE....................... 99

TABLE 4.9: VU RESPONSE TIME VS. IMAGE-LOADING FREQUENCY..... 102

TABLE 4.10: SERVICE QUALITY WHEN ADDING VOD USERS 106

TABLE 4.11: QOS VS. BACKGROUND TRAFFIC IN THE SERVER’S SUBNET

.. 111

TABLE 4.12: QOS VS. BACKGROUND TRAFFIC IN THE BACKBONE 115

TABLE 4.13: QOS VS. IMAGE LOADING FREQUENCY OF VU................... 118

 xiii

List of Figures

FIGURE 2.1 THE OSI MODEL .. 11

FIGURE 2.2 THE MODELING AND ANALYSIS PROCESS 19

FIGURE 3.1 SIMULATION MODEL.. 26

FIGURE 3.2 SERVER MODEL... 29

FIGURE 3.3 : AN EXAMPLE OF MARKOV CHAIN MODEL 35

FIGURE 3.4 HISTOGRAM OF THE TRAFFIC IN STATE 2 44

FIGURE 3.5 HISTOGRAM OF THE TRAFFIC IN STATE 4 & 5...................... 45

FIGURE 3.6 NORMAL APPROXIMATION OF THE TRAFFIC IN STATE 4 & 5.

.. 46

FIGURE 3.7 REQUEST INTERARRIVAL TIME OF STATE 4......................... 48

FIGURE 3.8 THE TRAFFIC OF STATE 1 IN VOD... 57

FIGURE 3.9 THE TRAFFIC OF STATE 2 IN VOD.. 59

FIGURE 4.1 VU RESPONSE TIME VS. # OF USERS (N=10)......................... 77

FIGURE 4.2 VU SUBJECTIVE QOS VS. # OF USERS (N=10) 78

 xiv

FIGURE 4.3 SYSTEM CAPACITY VS. THE EFFECTIVE SERVER’S

PROCESSING POWER ... 89

FIGURE 4.4 VU RESPONSE TIME VS. SERVER’S PROCESSING POWER. 93

FIGURE 4.5 VU QOS VS. SERVER’S PROCESSING POWER...................... 94

FIGURE 4.6 QOS VS. VU IMAGE LOADING FREQUENCY 103

FIGURE 4.7 QOS VS. VOD SESSIONS. ... 107

FIGURE 4.8 QOS VS. BACKGROUND TRAFFIC IN SERVER’S SUBNET... 112

FIGURE 4.9 QOS OF VOD VS. VU IMAGE FREQUENCY............................ 120

FIGURE A.1 OPNET WORK FLOW... 130

 xv

Abbreviations

CD Collision Detect

CGI Common gateway Interface

CRC Cyclic Redundancy Check

CSMA Carrier Sense Medium Access

FTP File Transfer Protocol

GIF Graphics Interchange Format

HTML HyperText Markup Language

HTTP Hypter Text Transfre Protocol

IEEE Institution of Electrical and Electronic Engineers

IP Internet Protocol

ISO International Standards Organization

JPEG Joint Photographic Experts Group

LAN Local Area Network

MAC Medium Access Control

MPEG Moving Picture Experts Group

NNTP Network News Transport Protocol

OSI Open Systems Interconnection

QoS Quality of Service

SMTP Simple Mail Transfer Protocol

TCP Transmission Control Protocol

TL-NCE Telelearning Network of Centers of Excellence

UDP User Datagram Protocol

VBR Variable Bit Rate

VOD Video On Demand

VU Virtual-U

 xvi

WWW Word Wide Web

 1

Chapter I
Introduction

Telelearning is a collection of methods and technologies of using

networked computer environment and tools for education and training. It

will provide “virtual universities” on the network and enable students to

access learning resources beyond the “border” of conventional

classrooms. The Telelearning Network of Centers of Excellence (TL-NCE)

is conducting the research and development of telelearning systems to

make them able to "support the development of a knowledge economy

and learning society in Canada" [Telelearning Web]. In order to make a

better design of telelearning systems, and also a better usage of

telelearning systems to deliver courses, system designers and educators

need answers to the following questions:

•� What is the capacity of a system for a given system configuration

and QoS criteria?

•� What is the effect of changing the course content on the QoS?

•� How do the critical resources in the system affect overall QoS?

•� What is the most effective system architecture?

•� What system resources are required to offer a course?

The answer to each of these questions can be quite complicated,

since systems have many parameters and each user will interact with the

environment in unique and often complicated ways (which may interact

with metrics such as the QoS). Nevertheless, it is possible to have a

better understanding of the systems and their key factors by studying

the behaviors of an experimental telelearning system in some “typical”

conditions. Our research started by studying Virtual-U (VU), an

 2

experimental Internet-based course delivery environment developed by

researchers in Simon Fraser University.

Virtual-U [VU Web] is a web-based software system which allows

universities or organizations to offer post-secondary level courses online.

It includes tools for course design and facilitation, class discussion and

presentation, course resource managing, class management and

evaluation, and system administration. The basic Virtual-U components

are:

1) VGroup Conferencing System (VG): “VGroup” supports group

communication and collaboration in a secure newsgroup-style.

Instructors can set up collaborative groups and define structures,

tasks and objectives. Any user can learn to moderate conferences and

to create sub-conferences. Users can easily sort messages in different

ways to follow conversational threads, and view as a list of message

titles or view the whole message.

2) Course Structuring Tool: This tool enables instructors to organize the

resources of an on-line course.

3) Assignment Submission Tool: This tool enables instructors to request,

receive and comment on course activity and assignment files which

are submitted by students (to the course server) in a Virtual-U course.

4) Grade-book tool: This tool manages the database of students grades

for each course delivered with Virtual-U.

5) System Administration Tool: This tool assists the system

administrators in installing and maintaining Virtual-U.

Virtual-U is a learning environment based on the World-Wide-Web

(WWW). This design makes Virtual-U easy to access and ready to

integrate multimedia content. The “Web” [Tanenbaum, 1996], is an

 3

architectural frame-work for accessing linked documents stored on the

Internet. The richness of HTML, the language of the web, makes it

relatively easy to add multimedia content to a web page. In addition,

commonly available web browsers support multimedia content such as

images, rich-text, and audio/video through third-party applications. By

being centered in the Web, Virtual-U has inherited all of these strong

points and is using them to build a “virtual university”.

Virtual-U’s 1997 design uses Common Gateway Interface (CGI)

programs [Schwartz, 1993] because CGI is widely used in the

development of Web servers and has a large amount of libraries

available. The pages viewed by the user are not pre-made static Web

pages, but generated dynamically by the responding CGI program

according to the user’s request. Inside each page there are some icons

representing the choices available for the user, any choice made will

invoke another CGI program to generate a new page. The communication

protocols that Virtual-U based on are the TCP/IP [Miller, 1992]

communication protocols. TCP/IP is very popular in today’s network

environments and widely supported by vendors and products. TCP/IP’s

popularity provides high accessibility to the applications based on them

(such as VU), but it does not distinguish traffic according to its QoS

requirements and do not provide QoS guarantees, thus it is difficult to

support high quality multimedia services.

As of 1997, the version our work is based on, Virtual-U courses

were based on an ascii-text conference model (using the VGroup

conferencing system), where each course contains numerous conference

threads in which students can post contributions or read what others

have written. When taking a course offered by VU, a student mostly

 4

interacts with the “VGroup” system. As the first step, a student logins

into the system to view the “VGroup welcome page”. He or she then has

several choices, such as reading course introduction material and listing

the available conferences. If the student wants to see the conference list

they simply click on the appropriate icon and list will be displayed. After

the student finds the conference he or she is most interested in, he or

she can then list all the unread messages. After that, what the student

can do is similar to that in a regular Email system; i.e. the student can

read a message or put his or her comments on a new message and post

it . In each of the steps above, the student is able to move backwards

and make other choices.

Virtual-U is evolving and improving. In order to provide a better

learning environment, future versions of the system will include options

for multimedia technologies such as “Video on Demand” (VOD) streaming

applications, where the students can view a lecture stored on the

server by playing with a “virtual VCR”; and video conferencing where a

student can interact with the teacher and other students through their

computers. These technologies are already available in the market, and

there may be more compelling possibilities in the near future. In our

research, we studied two types of courses: VU conference based courses

(referred as VU course) and “VOD” courses that allow streaming video.

More possibilities will be added to the simulation system in the future.

 As we mentioned earlier, Virtual-U utilizes the popular TCP/IP

based network to achieve high accessibility. However, the current (as

opposed to next generation) TCP/IP protocols were designed for data-

oriented services that do not have QoS constraints other than reliable

delivery. These are “best effort” protocols in the sense that they do not

 5

distinguish traffic according to their QoS requirements and do not

provide QoS guarantees. For the a telelearning system that may have a

lot of multimedia content, this kind of protocol is problematic, since

multimedia services have strict QoS requirements, such as delay and

delay jitter, that really need to be guaranteed. For multimedia services,

“best effort” networks should be used with care. Good estimates of the

expected traffic and available bandwidth are required so that the whole

system can be run at a “safe” load and so that QoS degradation due to

resource starvation will rarely happen. In the future, this problem will

likely be solved through the usage of network protocols that support

multiple QoS classes and provide QoS guarantees. Many protocols and

proposals of this type are underway , such as IEEE 802.12 [Watson,

1995], Ethernet++ [Edwarts, 1995], IP version 6 [Huitema, 1998] et

cetera. Some of them will be discussed in this thesis.

Quality of service (QoS) is one of the main interests of our research

and in our context, it refers to performance measures such as delay,

delay jitter, packet-loss rate, and distortion, as seen by the users and

applications. Distortion is the reduction in the quality of the information

perceived by the user because of quantization, compression, and loss et

cetera. that may be necessary because of the limited bandwidth available

on the channel. In telelearning systems such as Virtual-U, different types

of applications and courses are run and they may have different QoS

requirements. For example, delay and/or delay jitter must be upper-

bounded to ensure in-time delivery. Loss and distortion must also be

bounded to ensure a reasonable subjective quality. For interactive

applications such as video conferencing, a long time delay will make the

interaction difficult. On the other hand, for the VOD courses using

 6

streaming video, delay jitter is even more harmful then the delay itself. In

order to smooth the delay jitter caused by the network’s traffic

fluctuation, there is a play buffer in the viewer’s play station. When the

incoming (from the source) traffic rate is higher than the play station’s

displaying rate, the amount of data in the buffer increases; if the

incoming traffic rate is lower than the displaying rate, the amount of data

in the buffer decreases. Since the buffer has a limited volume, it can only

handle fluctuations in the arrival rate that are within a certain level.

Above this level, play buffer overflow or underflow will happen, and the

perceived quality will degrade due to the loss of a video frame or the

repetition of an old one. Compared courses rich in multimedia content,

text based courses can tolerate much more delay; i.e., students will

generally not complain about waiting for 3~5 seconds while retrieving a

message from the server (but 30 seconds is definitely a problem). The

wide range of requirements, from those with relaxed to stringent QoS

parameters, suggests that it would be highly advantageous for

applications to have control over the QoS provided to them.

Before any mechanisms are implemented to control the QoS of

telelearning applications, it is very important to define appropriate QoS

measures (or benchmarks) that can capture the essence of the

impairments. At this stage, there are two considerations in selecting the

QoS measures. Firstly, as we are mostly interested in the overall system

capacity and QoS, the measures should be able to take into account the

(QoS) contributions from all the sub-systems and reflect the “end to end”

performance. Secondly, we should use both statistical and subjective

measures. The statistical characteristics such as “maximum value”,

“minimum value”, “mean” and “standard deviation” are widely used in

 7

QoS analysis, but they do not always reflect the subjective quality of

service. We should find ways to directly reflect the user’s subjective QoS.

As we know, QoS requirements are different for different types of

services. Even for the same type of service, different users may have

different QoS requirements. Therefore, we should define several QoS

levels based on the “satisfactory levels” and study the percentage of

services that fit into each of these QoS levels. As a reasonable starting

point, three QoS levels are used in this thesis:

“Good”: Very good quality.

“Not good”: The quality is not good, but will be
 acceptable to most users.

“Bad”: Bad and not acceptable.

The QoS measures and parameters are chosen based on the above

considerations. For example, for the Virtual-U conference based courses,

we will measure the request response time (T), which is defined as the

time from when a user sends out the request until the requested

information is received. The parameters for the three QoS levels are set

as: T<5s, 5s<=T<20s, T>20s respectively. These QoS measures will be

used for system performance evaluation.

Our approach in carrying out research on the QoS of telelearning

systems and to answer the above questions consists of computer

simulations using a commercial package called OPNET1. We have

1 For information about OPNET, please refer to Appendix A.

 8

studied the configurations and usage of the experimental Virtual-U

system, and have built computer models of the following main system

components: the network, the server system, and the user’s that interact

with the system in the specific courses. In the simulations, parameters

such as the server processing rate, the intensity of background traffic

and the course content are varied to see the effect of these changes and

to predict the system capacity.

From the simulation results, we have learned quite a lot about the

system’s capacity and were able to generate quantitative information on

the effect of varying critical factors. For the system configuration of 1997,

and with text-based courses, we have confirmed that the system

bottleneck is not the network, but rather the server. The capacity of the

system depends on the server’s processing ability, which is determined

by both hardware power and software design. Also, from the network

bandwidth perspective, the server’s subnet is most likely to suffer

bandwidth starvation. The user’s activity and the course content also

effect the system performance. Adding more multimedia content to a

course will increase the load on both the server and the network, but if

we control the amount of traffic generated to be a reasonable amount

below the network bandwidth limit, the degradation in the QoS is not

dramatic. Although some results need additional work for improved

accuracy, these results show that our method of carrying out QoS

research through computer simulation is valid and the simulation tool

we have built is able to provide useful information about the expected

performance of telelearning systems.

In conclusion, the contributions we made in this research are: 1)

We analyzed the system structure of Virtual-U (1997) and the usage

 9

pattern of test courses, and constructed simulation models. 2) We

implemented the simulation models into computer code and built a

simulation tool in OPNET. 3) We executed experiments with the

simulation system and obtained results about telelearning QoS issues.

The remaining sections of this thesis are organized as follows. In

Chapter 2, we provide background information about computer

networks and computer simulation. Chapter 3 describes our method of

building a simulation system and presents a simulation system of

Virtual-U as an example. Some experiment results generated by our

simulation system are then discussed in Chapter 4. Finally, we evaluate

our simulation system and point out further improvements in Chapter 5.

 10

Chapter II
Computer Network and Computer Simulation

2.1 Computer Network and Protocols

A telelearning system is to provide a networked learning

environment and its success relies on the supporting network. Modern

computer networks are designed in a highly structured way to reduce the

design complexity. That is, the networks are organized as a series of

layers, each layer is responsible for a certain group of functions. The

layers are independent and communicate through interfaces. A popular

reference model for the structure of computer networks is the ISO OSI

(Open Systems Interconnection) Reference Model [Tanenbaum, 1996],

which is developed by the International Standards Organization (ISO) as

a step toward international standardization of various protocols.

Standardized protocols have enabled many communications systems to

respond to the demand for network interoperability. This is very

important for telelearning systems that ideally need a network with no

border.

In the OSI model (refer to Figure 2.1) there are seven functional

layers. The application layer defines the tasks performed from the user’s

perspective. Examples include Email, file transfer and Web browsing. The

Virtual-U course environment belongs to this layer. The presentation

layer handles any conversions required to prepare files for presentation

to the user. The session layer establishes sessions for users on different

machines. One example of the session layer services is the “token

 11

management” which makes sure that the two communication sides will

not attempt the conflicting operations at the same time.

Figure 2.1 The OSI Model2 [Freeman, 1995]

2 This figure is drawn based on the Figure 5.20 “The OSI Model” of [Freeman, 1995].

Protocols

Peer

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Interconnecting Medium

Virtual-U

TCP

IP

Ethernet

 12

The transport layer is responsible for end-to-end file delivery. This layer

includes protocols for detecting and correcting errors that occur during

file transfer. The popular Transmission Control Protocol (TCP) is an

example of this layer. The network layer is responsible for delivering

packets of information that will be assembled into files in the transport

layer. Routers, the equipment broadly used in today’s network to move

traffic from node to node, operate in the network layer to determine

which path can be used to access the destination computer. Routers can

also implement congestion control algorithms, which can improve overall

system performance. The Internet Protocol (IP) in common use is a

protocol of the network layer. The data-link layer defines the frames of

data traveling through a network, as well as error-correction and

retransmission schemes. The frame format may include CRC checks and

error-correction codes, which allow the link to appear virtually error-free

to the user. LAN protocols, such as Ethernet and Token Ring, belong to

this layer. Bridges, which are used for connecting multiple LANs

together, implement some of the data-link functions. The physical layer

defines how unstructured binary digits (bits) travel over the physical

media between machines. Physical-layer protocols define pin

configurations for cables and voltage levels.

The OSI model is a conceptual model. In real networks, the

functions are not always implemented according to the seven layer

definition. For example, the web systems in the Internet do not have

explicitly defined “presentation ” and “session” layers. The necessary

functions are instead implemented in the “Application layer” for system

simplicity and efficiency. The stack model of Virtual–U and its supporting

 13

network environment include Ethernet, the TCP/IP protocol suite and

the Virtual-U applications.

The Ethernet is a bus-based local area network (LAN) technology

whose operation is managed by a medium access control (MAC)3

protocol, which has been standardized by the Institution of Electrical

and Electronic Engineers (IEEE) under the name 802.3 [Tanenbaum,

1996]. The role of this MAC protocol is to provide efficient and fair

sharing of the communication channel, which in our case is the 10Mbps

bus connecting the stations of the LAN. The Ethernet MAC accepts data

packets from a higher layer protocol (such as IP) and transmits them at

appropriate times to other stations on the bus. Because the higher layer

protocols can forward data at any time and the bus is a broadcast

medium, collisions are unavoidable in the Ethernet protocol. Ethernet

therefore attempts to provide efficient mechanisms for handling

collisions, i.e. carrier sensing and collision detecting (CSMA/CD). When a

station wants to transmit, it listens to the bus. If the bus is busy, the

station waits until it goes idle, otherwise it transmits immediately. If two

or more stations simultaneously begin transmitting on the “idle” bus,

they will collide. All colliding stations then terminate their transmission,

wait a random time, and repeat the whole process all over again. In June

1995, IEEE approved 802.3u (which is commonly called “Fast

Ethernet”)[Johnson, 1996]. This protocol keeps the frame format of 802.3

and the CSMA/CD, but makes it go faster-100Mbps. Technically, 802.3u

is an addendum to the 802.3 rather than a new protocol.

3 MAC is a sub-layer of the data link layer in the OSI model.

 14

The Ethernet is widely used in today’s network because its

algorithm is simple and stations can be installed without taking the

network down. Furthermore, the delay at low load is practically zero.

Stations can transmit data as soon as the bus is free and do not have to

wait for tokens as in other systems such as Token Ring [Tanenbaum,

1996]. However, “802.3” is non-deterministic, which is often

inappropriate for real time work because it does not distinguish traffic

with different priorities. At heavy load, collisions become frequent, which

has a serious impact on the throughput. An overloaded Ethernet will

collapse totally and the data throughput will go to zero. The utilization of

the Ethernet depends on many factors, such as the number of stations,

the frame size, the traffic load of each station et cetera. As a general rule,

the actual capacity of an Ethernet system is approximately 80% of its

stated maximum; i.e. on our subnets, the maximum throughput is about

8Mbps.

The Internet Protocol [Freeman, 1995] is a connectionless network

layer protocol whose task is to interconnect multiple networks. It

provides services to transport layer protocols (e.g. TCP and UDP) and

relies on the services of data link layer protocols (e.g. Ethernet and Token

Ring) to relay packets to other IP modules. Within a single host or router

in the network, IP may have several interfaces to different types of data

link layer protocols. This property provides the ability to route packets

between different types of networks. IP essentially works like a "glue"

that binds the different networks together into one network. Packets that

are created and forwarded by IP modules are called datagrams. IP

datagrams carry headers that hold control information such as the

source and destination addresses, type of service, identifier and so on.

 15

Because IP connects different types of networks that may support

different maximum packet lengths, datagrams may have to be broken

into fragments, which are also considered datagrams. The various

resulting fragments may travel independently through the network,

following completely different routes and possibly arriving out of order at

the destination. IP therefore has the task of reassembling the fragments

before it can deliver data to the higher level protocols. This process is

transparent to the upper layer for data services such as file transfer. But

for multimedia services such as streaming video that require sequential

delivery, this fragmentation is problematic. Packets’ “arriving out of

order” may cause delay and delay jitter which will seriously affect the

perceived quality of service.

The Transmission Control Protocol (TCP) [Freeman, 1995], typically

used with IP, is a widely used connection-oriented transport layer

protocol that provides reliable, ordered packet delivery over an unreliable

network. TCP forms a communication channel between two higher layer

entities, referred to as applications that operate across a network.

Another popular transport layer protocol is the User Datagram Protocol

(UDP) [Tanenbaum, 1996]. Unlike TCP, UDP is a connectionless protocol;

i.e. it allows users to send messages without first establishing a

connection. However, UDP does not provide a guarantee of delivery and

sequencing and can be viewed as simply a user interface to IP.

In conclusion, today’s computer networks are organized in a

structured manner. Different types of networks and systems

communicate each other through standard protocols. Applications are

provided with vehicles and routes from the network to reach destinations

far away. Telelearning systems like Virtual-U use popular network

 16

technologies (e.g. TCP/IP, Ethernet) to achieve their high accessibility

and take advantages of the considerable operational experience.

However, these mature technologies do not distinguish traffic according

to their QoS requirements and transmit them with “best efforts”. They

should be used with care when carrying multimedia services.

2.2 Computer Simulation

While making applications like Virtual-U more and more far

reaching, today’s communication networks and computer systems are

getting more and more complex. It is too difficult to analyze the system

performance with only paper and a pencil, because the systems are

mathematically intractable and simplistic models are not representative

of the true complexity. Queuing theory based analytical models

[Schwartz, 1987] are very useful for the performance analysis of

telephone networks, where only the number and the duration of calls

are interesting from the traffic perspective. On the contrary, telelearning

systems contain users, servers, and network components each of which

is very complex by itself. It is impossible to use a single analytic model

to represent all of them. Meanwhile, the behavior of the components is

not independent. For example, too many user requests to the server will

cause long response times , since requests will get piled up in server’s

waiting queue. The requests will be re-sent by the users or the

application software if their waiting timers expire. This re-sending will

continue until either the requested data from the server arrives or a

certain number of retries fail. This re-sending mechanism can cause

congestion of the network connecting the user and the server, which will

make it harder for the server to finish its current work. This example

 17

tells us that separately considering system components such as the

network and the server will not lead to a correct estimation of the

performance. Thus, the approach of decomposing the whole system into

separate analytic models will not allow us to produce satisfactory

results.

Fortunately, computer simulation is at the stage where it can play

becoming an important role in performance analysis. The type of

simulation that we are interested in is called discrete-event system-level

simulation [MacDougall, 1987]. Discrete-event systems change state at

discrete points in time, as opposed to continuous systems which change

state over time. Real systems can be modeled at several levels of detail.

Since we are interested in the overall system from a performance

standpoint, we should represent only those elements of the system

pertinent to the performance issues.

The three basic components of the simulation are the input, the

simulation system and the output. Simulation input data may either be

generated probabilistically within the simulation program according to

models obtained from the real system, or it may be generated externally.

For example, in a trace-driven simulation, the input is obtained from a

trace of real system execution.

 In modeling a system, we need to describe both its structure and

the way in which it accomplishes work. Developing a model to represent

the real system has two tasks: developing a representation of the system,

and developing a representation of the work to be done by the system

(this is also called workload characterization). The simulation outputs

are the functions of the input to the simulation system. The analysis of

 18

these functions leads to system understanding and performance

evaluation.

The modeling and analysis process is outlined in Figure 2.2. The

first step is to describe the system operation from a performance

viewpoint and then to abstract the description into models which

include both the represented facilities and their attributes according to

the analysis objectives. In the next step, the appropriate analysis method

is chosen, which includes the definition of a set of performance

measures. Thirdly, a model implementation is developed. This also

includes the program debugging and verification. Verification insures

that the simulation program is indeed an implementation of the model.

The following step is to validate that the model (and of course the

simulation system implemented in computer programs) is a reasonable

representation of the real system. This can be done by executing some

experiments and comparing the results with real systems. Finally,

simulations are executed and results are analyzed.

Figure 2.2 The Mode

In the implementation of a

possible to use existing software p

to speed up the development and

provides a “comprehensive so

simulating, and analyzing the per

computer systems and applicati

Web] that organizes models in a

node model and process mod

interconnections between the c

node is described by a block struc

the interrelation of processes in

SYSTEM DESCRIP

ANALYSIS METH

SIMULATION PROG

SYSTEM V

SIMULATION EXECUTIO

TION & MODELING

OD SELECTION

RAM DEVELOPMENT

ALIDATION

N & OUTPUT ANALYSIS

 19

ling and Analysis Process

 complicated simulation system, it is

ackages such as OPNET [OPNET Web]

to focus on the issues at hand. OPNET

ftware environment for modeling,

formance of communications networks,

ons, and distributed systems”[OPNET

 hierarchical way (i.e. network model ,

el). The network models define the

ommunicating entities (nodes). Each

tured data flow diagram, which defines

 a sub-system. Every programmable

 20

block in a node model has its functionality defined by a process model

which “combines the graphical power of a state-transition diagram with

the flexibility of a standard programming language and a broad library of

pre-defined modeling functions” [OPNET Web]. Our simulation of the

Virtual-U is implemented and executed in OPNET.

2.3 Traffic Modeling

A communications network is used to carry traffic. In telelearning

systems and all other networked systems, the applications interact with

the network and other components in the network (e.g. the server)

through traffic. Users consume system resources through their generated

traffic. Traffic is thus a key component throughout all network related

issues and modeling is crucial in network performance research. In our

simulation, two types of traffic models are constructed; i.e. ,the model

describing the traffic generated by the telelearning users model for

background traffic, which is defined as the traffic on the system

corresponding to non-telelearning usage. Telelearning systems may

provide a lot of multimedia services. Therefore, during the traffic

modeling, not only the number of requests but also the statistical

properties of the information transmitted for the requests is important.

Based on statistical empirical data on multimedia traffic, a number of

models have been advanced to capture the statistical nature of

multimedia traffic. Stochastic source models simulate the behavior of the

traffic generated by a terminal (e.g. a computer terminal, a video-on-

demand server et cetera.), while more general models represent the

multiplexed traffic of many sources. The set of traffic models examined

in the literature is rather large, but we can nevertheless make a broad

 21

distinction between two categories, according to the purpose for which

they are usually used. On the one hand, there is a search for models

that capture the relevant statistical properties of a specific kind of traffic

from a source as accurately as possible. A good traffic model will not only

capture the first few moments of the statistics, but will render higher

order statistics as well. For example, there have been many proposals for

modeling variable-bit-rate (VBR) video traffic, using first order auto-

regressive models [Maglaris, 1988] and Markov Modulated Poisson

processes [Schwartz, 1996]. On the other hand, we also have models that

are based solely on a few parameters extracted from the traffic

characteristics. These parameters (peak rate, burstiness, average rate,

and some tolerances) are insufficient to fully describe a traffic stream;

however, they can be used to generate upper bounds on loss and delay of

traffic. These models are called “bounded traffic models.” [Michiel, 1997].

Both stochastic models and bounded models are used in developing our

simulation models.

One popular traffic model is the Poisson model [Schwartz, 1987]

[Frost, 1994]. This model has been used since the telephone era, where it

was effective at modeling the times at which telephone calls arrived at a

switch. A Poisson process is a memoryless, independent and identical

(i.i.d) process. The interarrival times are exponentially distributed and

the number of arrivals in disjoint intervals are statistically independent.

The exponential distribution is:

)(1)(λ

λ
xexf −= ; λσµ == ,

 22

while the Poisson distribution is:

λλ −= exf x

x

!)(; λσµ == 2 ,
Where λ==is the rate parameter; µ and � represent the expectation

and standard deviation respectively.

One important property of Poisson process is that the

superposition of independent Poisson processes results in a new Poisson

process whose rate is the sum of the component rates. Also, the

memoryless property of Poisson processes can greatly simplify queuing

problems involving Poisson arrivals. Poisson processes are fairly common

in models for traffic that are made up of a large number of independent

traffic sources. “The theoretical basis for this phenomenon is known as

Palm’s Theorem [Larson, 1979]. It roughly states that under suitable but

mild conditions, such multiplexed streams, the statistics of the sum

approaches a Poisson process as the number of streams grows.” [Frost,

1994] Thus, traffic streams on main communications trunks are

commonly believed to follow Poisson arrival statistics, as opposed to

traffic on upstream links, which is less likely to be Poisson. The Poisson

model is simple and can be used with care for simulating the background

traffic of a network, although there are problems with certain kinds of

traffic.

As opposed to Poisson, recent studies have discovered that packet

traffic appears to be statistically self-similar [Beranetal, 1992]. A self-

similar phenomenon exhibits structural similarities across all (or at least

a wide range) time scales. In the case of packet traffic, self-similarity is

manifested by the absence of a natural length of a burst: at every time

scale ranging form a few milliseconds to minutes and hours, similar-

 23

looking traffic bursts are evident. In this case, self-similar models are

better at simulating the traffic generated by multimedia sources that

Poisson models because they capture the traffic burstiness, which

directly affects the QoS of the network. Poisson models assume that the

traffic arrivals are independent on time, which is not the case for some

types of traffic such as the VBR video. If traffic follows a Poisson arrival

process, it would have a characteristic burst length which would tend to

be smoothed by averaging over a long enough time scale. However,

measurements of real VBR traffic indicate that significant traffic

burstiness is present on a wide range of time scale [Beran, 1995]. An

example of the self-similar stochastic model is the fractional Gaussian

noise [Mandelbrot,1968].

In the next chapter, we will present a simulation system for

Virtual-U, a networked learning system.

 24

Chapter III
The Simulation System

3.1 Overview

The goals of our work are to build a simulation system that can

represent a real telelearning environment and to carry out research on

network-related performance issues. In order to achieve these goals, we

followed a four-step procedure:

Step 1: We studied the architecture, operation and functionality of the

experimental Virtual-U system to determine the appropriate building

blocks for our simulation. At this point, we also identified the most

important system parameters.

Step 2: We studied the individual components of the test system and

built a simulation model for each of them. We also obtained values for

each of the simulation parameters in this step. This process needs to

be done for each distinct type of course that will be offered. For

example, the models for conference based courses are based on the

statistical data in the web-server log files from a “text-based” VU

course (i.e. BUS362), while the models for Video on Demand (VOD)

courses are based on the network traffic traces obtained when a

student attended a streaming video lecture from a Stanford

University on-line course.

Step 3: We implemented the simulation models on the computer

simulation using the “industrial strength” OPNET package

environment.

 25

Step 4: We then studied the capacity and performance issues using our

simulation system. Specifically, we predicted the system capacity (in

terms of the number of users the system will support with a

reasonable QoS) and determined how varying various resource

parameters affected this capacity.

After analysis of the 1997 Virtual-U system design and the network

environment (SFU CSSnet) it is implemented on, we built a simulation

system that includes a network model, a background traffic model, a

server model, and a user model; this system is shown in Figure 3.1.

While modeling all these components, we kept in mind three

following principles:

1) The models are derived from the current Virtual-U design, however, it

must be possible to extend them in order to predict the capabilities

and characteristics of future versions of Virtual-U – especially when

the use of rich-text and multimedia becomes prevalent.

2) The models should represent the generic and universal characteristics

of networked multimedia systems, which will make our simulation

system robust enough to be valid for telelearning systems other than

Virtual-U.

3) All the models should be simple and easy to implement in computer

simulation.

3.2 Simulation System Construction

The simulation system includes a network model, a background

traffic model, a server model, and a user model. These will now be

discussed individually.

 26

Figure 3.1 Simulation Model

User Server Subnet Backbone Subnet

Request

Response

SERVER
MODEL NETWORK MODEL

BACKGROUND TRAFFIC MODEL

USER

MODEL

TRAFFIC

Respons
Request

 27

3.2.1 The Network Model

In order to build a scaleable network model that can be

straightforwardly adapted to different network environments, we used

hierarchical building blocks (which can be easily implemented in

OPNET), i.e. the network model consists of four levels: Network � subnet

� station � process. The current network model is based on a simple 2-

layer network architecture that consists of a high-speed backbone

(100Mbps) and 10base_T subnets (10Mbps). The backbone network is

“organized” by an eight-port Multi-ports Intelligent Bridge, as is used in

the SFU CSSnet. Eight-port bridges are also common in most of today’s

LAN environments and are thus appropriate for “general” telelearning

environments. In our simulation model, all of the eight ports are used,

seven ports are connected to the subnets and one port is connected to

what we call the “internet-backbone”. Each subnet is a 10Base_T

Ethernet subnet that can be populated with users (we mean user’s

computers), servers, bridges, hubs, routers et cetera, all the network

subscribers (i.e. users, servers) are called stations. There is currently a

limit of 32 stations per subnet in the existing setup, so we chose the 32-

ports hub model (for the same reason as the bridge stated above). In this

thesis, we have “user subnets” that only contain client workstations and

“server subnets”, which contain servers and clients in both types of

subnet, we also provide choice to include workstations to generate

background traffic, as required by the simulation.

As mentioned earlier, the backbone network is also connected by a

router to the “Internet backbone network”, which is in turn connected to

another Ethernet subnet, which could contain other servers. This

 28

architecture can potentially simulate a student logging onto a remote

server if this is a common activity in a course.

3.2.2 The Server Model

The Virtual-U server provides the web based course material to the

client workstations when this material is requested. In order to facilitate

the course offering, it maintains a course database that has all the

related course material and administrative information (e.g. the students’

grade books); a user interface that receives user requests and returns

required information; and of course a whole package of controlling

programs that are responsible for processing the user requests and

controlling the system resources. In the 1997 version of the system,

the interface between user requests and the course database was

implemented by Common Gateway Interface(CGI) programs. When a

user request is received, the corresponding CGI program (or set of

programs) is executed to process the request and gather the information

required. The processing of the request may require database queries or

updates, information comparisons or calculations. After all the

information is ready , a web-page is generated and sent back to the user.

In the real server, the crucial resources include the CPU, memory,

I/O bus, disks, et cetera. As our goal is to simulate the system delays of

the user requests contributed by the server, we do not have to repeat all

the components in building the server model, instead we need to build a

model which can represent the server’s structure and functionality from

the point of view of processing the user request. Therefore, we modeled

the server as an interface to the users, a queue, a processor and a

database. (See Figure 3.2)

 29

Figure 3.2 Server Model

In our server model, the “interface” is responsible for the

communication with the user , i.e. receiving a request and sending

backed required data. It also determines what type of processing will be

needed in the server when receiving a request. The “queue” and the

“processor” are modeled as a single processor with a single First Come

First Serve (FCFS) queue. The processor‘s processing ability is

represented by a single “processing power” parameter having units of

“jobs/second”. We define a “ job” as the basic request from a user, such

as “get a message” or “put a message” and the resulting communication

with the course. Ideally, this processing parameter should be a function

of the server load, the CPU power, the cache size, the I/O speed et cetera.

Of course, we should also take into account other factors such as the

type of file system and the code efficiency. However, for simplicity, we

have assumed that the parameter can be effectively represented as a

constant and that it is obtainable through experiments. The processing

delay in the server is calculated the server’s processing power and the

interface

Database

ProcessorQueue

 30

amount of data required by the user request. Future work should

address the improvements possible through more accurate server

models.

Another important factor is that the user requests are not always

identical and thus different types of requests will consume different

amounts of the server’s processing power. In the Virtual-U system, each

user request is processed by the corresponding CGI program. When a

CGI program is being executed, it may invoke other programs and spawn

several sub-tasks, all of which consume the server’s processing power

and thus add to the total processing delay in the server. For example, a

HTML request will spawn many processes to form the components of the

page, all of which require processing. Another example is a request that

requires the comparison of several pieces of database information.

During the processing of this kind of request, the server will have to

search the database to obtain the required information and then make

the comparison. Although the requested result itself may be very

concise, the resources allocated to such a task may be large. Therefore

the number of bytes in a users request does not always directly

represent the real processing load in a server. To account for the factor

of processing power consumption for different type of user request, we

used a parameter called “Number of processing power units consumed”,

which is denoted by “N”. In our simulations, this “property” is

implemented as one parameter in the user’s request. In truth, this

parameter depends both on the type of the request (what information

and operation will be required in the sever) and on the current state of

the system; however, for simplicity, we currently assume that “N” can be

modeled as a constant in each main application category; i.e., streaming

 31

video, or web page downloads (which may contain images). Future work

should attempt to improve the model of the server and the user to make

a more accurate representation of this factor.

In conclusion, the processing delay associated with a server

request is a function of the server’s processing power(P), the amount of

data required by the request(L) and the type of request(N). Until a more

complex and accurate model is available, the processing delay (T) in the

server is calculated with the following formula, based on the

assumptions mentioned earlier, where the parameter “A” is chosen to fit

the real system according to the experiments of the real system :

Databases also play a very important role in the Virtual-U system

(although the 1997 version used a simple “flat” file structure); however,

the goal of our simulation at this stage can be achieved without a model

of the internal database mechanisms. Our main interest is in the traffic

rather than how the information is organized. Nonetheless, the

simulation system has the capability of modeling the database in detail

should it be required in the future.

In estimating the server’s processing power, we based our analysis

on the hardware specification. Since our applications are I/O intensive

tasks, we assumed the bottleneck in the sever is in the I/O bus. It is

10Mbps for a Sun Ultra1 work station which is the hardware of the VU

sever in 1997. If we use the average message length (800 Bytes) as the

length of a standard job, we get the number of 1500 jobs/sec. This

 N ×� L �A × T =
 P

 32

estimate does not take into account the fact that software factors which

may also play important roles in determining this parameter. The overall

“effective” processing power also depends on software factors which we

use “N” to represent. Although our most interests are in the overall

“effective” processing power, in reality the improvement of software and

hardware are usually though separate processes. We will experiment

with the various numbers for “N” and use the “combination” to represent

the “effective” processing power.

3.2.3 The Background Traffic

The background traffic is the basic traffic (as opposed to the

telelearning traffic under study) on the local subnets and the backbones.

The amount of background traffic will significantly affect the amount of

the congestion and will thus contribute to the delay experienced by

telelearning users. Background traffic will typically be generated by

applications such as Telnet, FTP, HTTP, NNTP, and SMTP, which have

historically accounted for a high percentage of the traffic on real network,

however, newer multimedia applications such as video and audio are

expected to take up a quickly growing share of the network bandwidth

[Crovella, 1996], [Paxon, 1994]. As discussed in Chapter 2, the Poisson

model is a simple and popular model in modeling network traffic. Recent

studies have shown that some traffic, such as user initiated TCP session

arrivals, can be well modeled as Poisson process but that other types of

traffic deviate considerably from Poisson statistics [Paxon, 1995]; what

model is best depends on what type of traffic is running on the network.

Initially, we develop a model that is simple and “reasonable” accurate.

The model chosen in the first step is the Poisson model. Although it is

 33

not perfect, it does to some extent reflect the characteristics of the traffic

running on the CSSNet4.

3.2.4 The User Model

Our simulation uses a computer model to represent telelearning

users generating requests to the server. This model must be simple

enough to be implemented in our simulation, but it must also be flexible

enough to capture the essence of the "typical" user's behavior, which may

depend on such variables as the course content, the user's knowledge

about the course material, the user's thinking habit and the design of the

system. As many of these factors and interactions are not well

understood, it is very hard to build a deterministic model , or to hope to

be able capture the users behavior exactly. However, it is possible to

build a user model with stochastic process and try to reflect the "large

scale" interaction in such a way as to have predictive power for

estimating things like the quality of service. To model the network

activity when users attend specific courses, we only need to know the

possible actions and the likelihood of them being undertaken. Because

these actions are usually limited by the technological reasons as well as

the system design (e.g. in a web based system the choices at any given

time are limited by the icons currently available) and/or human thinking

patterns (e.g. people usually read posted messages before posting

replies), we are also able to obtain the probabilities for each choice using

4 We are presently lacking the data for the traffic running on the network. Until
February 1998, there is no formal report on the CSSNet traffic analysis. The
understanding of the traffic on CSSnet is based on the discussion with the network
administrators.

 34

statistical analysis of the server log-files for different users. In this way,

we treat the user “activities” as states and obtain a Markov chain model

(as shown in the Figure 3.3) that can stochastically represent the

average behavior of the users.

Thus, to achieve our goal of building a user model that represents

the real telelearning users generating requests and the resulting traffic

produced by the server, our strategy is to first quantify the typical user's

behavior for a specific kind of course content by examining the server log

files for specific courses and then to build up a Markov chain model that

consists of several "states". Each model state represents the user’s “main

activity” when taking a certain course and is associated with probability

density functions for the file sizes (traffic) requested and the time

between requests. We are not modeling the dependencies of the

intrastate file sizes in the models being built to reflect the “large scale”

interaction (as we mentioned earlier). If the user’s activities are too

complex , we may also decrease the grain by analyzing the log files to

identify patterns of "meta" activities. The model cycles between these

states according to transition probabilities in the way that users

“typically” work with the real system . Also, users in the various states

will wait different amounts of time between requests, which we term the

states “request inter-arrival time”.

 35

Figure 3.3 : An Example of Markov Chain Model

S1 S2

S3

Start

End

P(1,2}

P(2,1)

P(1,2)

P(2,3)
P(1,3)

P(2,3)

: One state

P(i,j) : The transition probability from state i to

the state j.

 36

The above model will help us to study the effect of changing the

course content on the system performance. If the change is not to the

design of the course itself, the task may be as simple as changing the

probability density functions associated with each state; however, if the

design of the course is substantially changed, then the whole model

must be reworked in a reasonable way.

In order to increase the system flexibility, we propose classifying

courses into several different categories, which can then be used as

models for new courses. For example, one category may be the Web

based conference courses offered by Virtual-U (VU course), another

category may have lectures based on streaming video content (Video On

Demand course). These possibilities will now be discussed in more

detail.

VU Conference-Based Courses

As we mentioned earlier, the VU conference-based course is

organized like a news group. Students read and post messages

according to specific topics raised in the course. Each topic leads to a

“conference”, a student can join any “conference” they have permission

to. When students take such a course, they first login to the system and

choose the course/conferences that they are interested in; they then read

newly posted messages and post their own. Handouts and assignments

are also available though the messaging system.

To get a user model for the students taking VU courses through

Virtual-U, we need to analyze and obtain the usage pattern of students

who are taking the test courses. Fortunately, the usage of the VU system

are (at least partially) recorded in the server’s log files. The log files of the

 37

VU server contain the information about user request to the server. Each

user request will generate a record. In such a record, there is

information as the user’s IP address, the user’s login ID, the date and

time of the request, the CGI program called (and the arguments), the size

of data transferred and the result of the request (i.e. success or failure).

Analyzing these log files and building a user model was done in

collaboration with the researchers in Virtual-U Research Laboratory.

Some of our work is based on their research results on the typical usage

patterns, and our traffic modeling was achieved using the log files they

provided. According to the analysis of log files for the test courses,

several typical user’s usage pattern were discovered [Zaiane , 1998]. For

example, new users like to try various options, while experienced users

are more focused. There is a strong usage pattern of “start V-Group”, “list

conferences”, “list unread messages”, “display a message” and “

preview/add a message” for all users. This pattern is understandable

because it is the result of both “natural” human behavior as well as the

system design. For our study, it makes more sense to use the pattern of

users already experienced with the VU system to build the simulation

model. Based on this discovery from analyzing log data of the testing

course BUS362, , we have built a five-state model for the VU conference

based courses.

State 1: "Start V_Group" represents the state in which a user logs into to

Virtual-U and views the VU welcome page.

State 2: "List Conferences" represents the situation where users list the

conferences that they have joined.

State 3: "List Unread Messages" represents the situation where users

list all the unread messages.

 38

State 4: "Display a message" is the state for displaying and reading

messages.

State 5: "Preview/Add a message" is the state in which a user previews

and posts composed messages.

 In order to get models for the traffic of each of the states and to

form the state transition probability matrix, the raw server log files were

then processed to remove erroneous records and unrelated domains and

the records sorted by course. We then used the following analysis

procedure on the data corresponding to our chosen date-range:

1. Sort the records by user. In the log files, the original records are

ordered by time, here we sort them by user-ID.

2. Parse the records into sessions. A session here refers to the period

of time during which a student is actively using the VU system. It

starts from the time when a user logins into VU and ends when

they log out. There is no “logout” record in the log file; however, if a

user has no communication with the VU server for more than 30

minutes, then they are treated as “logged out”. The 30 minute

parameter comes from observation (VU Research Lab) that very few

sessions last more than 30. The records are parsed according to

the “user_ID” and time stamps.

3. Label the records according to the states. The state number (as we

defined] is labeled for each record. The state in the model

represents a student’s usage of a specific function provided by the

VU system. A state can be “recognized” by the CGI program being

called by the user request, which is available in one of the

domains in the records.

 39

4. Calculate the transition probability matrix. The transition

probability is calculated state-by-state using the state label of each

record. For each state, the calculations are done for each student

separately and then the results are averaged for all students.

Please note that the transition between states across a session

(defined in step 2) is regarded as an invalid transition and is not

counted.

5. Calculate and obtain the histogram of the traffic attached to the

request in each state. The quantity of “data transferred” in the log

file is used as the traffic size of the request.

6. Calculate and obtain the histogram of the “request inter-arrival

time” for each state. The “request inter-arrival time” is not included

in the log file as a domain, but it can be obtained by determining

the time between two consecutive (within one session) requests.

7. Find the statistical models for the traffic size and the request

inter-arrival time of each state. With the completion of this step, we

have a model that can be used to represent the user’s request and

the traffic incurred; this model is then used in the OPNET

simulations.

Using the procedure described above, we analyzed a log file

containing 24 hours of data for the 48-student course BUS 362. Since

the log file was obtained in the second half of the semester, most of the

students will be experienced with the VU System.

The parameters of the user model such as the “request inter-

arrival time” should only reflect the user’s behavior, but the information

obtained from the log file also contains “noise” which depends on the

conditions of the testing system. The system dependency should be

 40

filtered out from the user model. If the system is not congested, the

“noise” is only in the forms of system “processing delay” or “transmission

delay” which are relatively small compared to users’ thinking and

reading. However, if the system is congested, this effect will not be small

any more. Unfortunately, the congestion status of the system is not

recorded by the log file, it is difficult to filter the system dependency with

current log data. At this stage, we assume the error caused by the

system dependency is not severe and the user model obtained from the

log data can reasonably approximate the user’s behavior. Efforts on

building the model with no system dependency should be made in the

future.

The accuracy of the statistical model depends on the number of

samples being processed and the complexity of the model to be

implemented into the simulation. However, at this stage of the project,

our goal is to obtain “reasonable” approximation of the behaviors of a

“typical” user. More accurate models that better catch the interaction

between the system and the users need to be developed, but this is a

matter for future work. With simplicity in mind, we used two approaches

to obtain the “first cut” approximation. The first approach was to fit the

histogram of real data with a well-known distribution by “eyeballing”,

while the second approach, used when a simple statistical distribution

could not be found, was to represent the data using a “pessimistic”

constant that was worse than 90% of the samples. Since we are doing

research about QoS/capacity issues, under-estimation of the traffic is

more harmful than over-estimation. This approximation leads us to a

conservative prediction of the system capacity and QoS. The “pessimistic

level” (e.g. the 90% above) will determine the traffic of the model. The

 41

more “pessimistic” of the model, the more conservative an capacity

estimation will be make. It is always a trade off between the number of

users in the system and the QoS can be guaranteed all the users. This

judgement is beyond the scope of our study. We will do some

experiments to see how changing the “pessimistic level” affects the

results.

When the work in a state is done, a state transition will happen

according to the transition probability matrix. The transition probability

matrix that we obtained from the BUS 362 course is given in the

following table.

 42

Table 3.1:Transition Probability For the VU Conference Based Course

 state 1 state 2 state 3 state 4 state 5

state 1 2.5% 96.5% 1% 0 0

state 2 21.5% 5.6% 63.3% 1.7% 7.9%

state 3 15.3% 0.4% 24.5% 54.2% 5.6%

state 4 17.3% 0.4% 24.2% 54.4% 5.6%

state 5 15.3% 0 27.1% 18.6% 39.0%

Details of traffic observed in each of the 5 states are as follows:

State 1: "Start V_Group" The traffic in this state is modeled as a

constant 6094 bytes, because the login process and the information to

the user (i.e. the information in the welcome page) are determined by

the design of system interface and will not vary from user to user.

State 2: "List Conferences" The traffic in this state shows some humps

in the histogram curve (Figure 3.4), since users may join different

numbers of conferences. We could not fit this histogram it with any

well-known simple distribution. Until a more accurate model can be

found, we used the “pessimistic” constant approach as mentioned

earlier and simply model this traffic by a constant 10kB (90% of the

traffic in this state is less than 10kB according to the analysis of the

log file).

State 3: "List Unread Messages" It is very difficult to model how many

unread messages are there since the user last login. Like State 2, the

histogram of traffic in this state could not be fit with any simple

distribution. So until a more accurate model can be found, the traffic

 43

associated with this state is modeled as a constant 35kB (90% of the

traffic in this state is less than 35kB according to the analysis of the

log file).

State 4,5 : “Display a message" & “Preview/Add a message" These states

represent a user reading or writing a message. If we look at a course

for the whole time it is running, the messages a user can read are the

messages other users have written and posted. The distribution of

message size in these two states should be approximately the same

(we assume the error caused by the fact that “a message can only be

viewed after it is posted” is minimum), although most messages will

be read many times. Figure 3.5 shows the histogram of the message

sizes5. The curve’s bell-shape makes us think about making an

approximation with a truncated Normal distribution. By eyeballing,

we found that a Normal distribution with µ=300Bytes and σ=450Bytes

fits this histogram fairly well (see Figure 3.6). However, this model

under-estimates the right tail of the histogram. As we stated earlier, at

this stage, we would like to choose a simple model with a conservative

estimate. So until a more accurate model can be found, the message

size is modeled as a constant 2.5kB (90% of the message size is less

than 2.5kB according to the analysis of the log file). Please note that it

does not mean we can not have a more accurate model in the future

based on the Normal distribution. On the contrary, we think that it

5 The data for this figured is not the one-day log file used for other states, we were able
to use the file from the VU research Laboratory which contains the information of the
messages in this course (BUS362) during a period of 3 months.

 44

may be possible to model it by an Normal distribution with a large

variance if more data in the future can prove that the “tail problem” is

not severe. Otherwise, some “adjusted” Normal distribution (e.g. a

combination of a Normal distribution and another type of distribution

to handle the tail) will be the approaches for an accurate model. The

interesting thing is that when we looked at another VU course, the

histogram of message size also showed a bell shape. We suspect that

the law of large numbers [Hogg, 1997] is at work here.

Figure 3.4 Histogram of the Traffic in State 2

Histogram of Traffic Size of State2:"List
Conferences"

0
10
20
30
40

50
0
20

00
35

00
50

00
65

00
80

00
95

00
11

00
0
12

50
0

Bin

Fr
eq

ue
nc

y

Frequency

 45

Figure 3.5 Histogram of the Traffic in State 4 & 5.

Histogrm of the Message Size in Course
BUS362

0
100
200
300

10
0

90
0
17

00
25

00
33

00
41

00
49

00
57

00
65

00
73

00

Bin

Fr
eq

ue
nc

y

 46

Figure 3.6 Normal Approximation of the Traffic in State 4 & 5.

Histogram of M e ssage Size (BUS362)
and Normal approximation

0
50

100
150
200
250

10
0

11
00

21
00

31
00

41
00

51
00

61
00

71
00

Bin

Fr
eq

ue
nc

y

His togram Norm al Dis t.

 47

 Regarding the request inter-arrival times in states 1-3, the users

always take a quick look and go to another state. So, if we use a

“pessimistic” single number, which is higher than 90% of the data

samples, to model the request inter-arrival time in these states, the

numbers that we get are 5 seconds, 5 seconds, and 10 seconds

respectively for the above 3 states.

The request inter-arrival time for a user reading the messages of a

course, state 4, is mainly determined by the course content and the

student’s reading/thinking habits. A long message by itself will take a

long time to read; a message full of hard questions will also take a long

time to read. All these types of messages will make for a long request

interarrival time. A student who wish to read and think through the

messages one by one will have a different interarrival time model than

the student who likes to read many related messages first and then

make a thorough thinking about them. For these reasons, an accurate

and representative model for the interarrival times is not easy to obtain

and we make the simplifying assumption of defining this behavior for a

“typical” user. In the future, improvements may be possible by dividing

the users into several groups according to the expected distribution of

“thinking habits”.

The histogram of the interarrival time for course BUS 362 is

shown in Figure 3.7. Through “eyeballing”, we approximated the

histogram by an exponential distribution with µ=σ=168s.

 48

Figure 3.7 Request Interarrival Time of State 4.

Request Inter-arrival Time of Message Reading
and Exponential Approximation

0
10
20
30
40
50
60

15 16
5

31
5

46
5

61
5

76
5

91
5

10
65

12
15

13
65

15
15

Bin

Fr
eq

ue
nc

y
Histogram
Exponential Dist.

 49

Conference based courses with image loading

Today’s technologies are able to provide ever increasing amounts

of multimedia content, such as images, rich-text and audio/video over

the Internet. We believe that multimedia adds educational value in many

situations and that future telelearning systems must support these types

of applications. In order to examine the effect of having additional

multimedia content in a course, we built a new traffic model, which is

based on the basic model above, and new "invented" state, State 6:

“Loading an image”, to represent what happens when users request

multimedia information such as images or large rich-text files, such as

WORD documents; other types of information such as video will be

considered later in this section. For simplicity, everything downloaded in

this state is referred to as an “image”.

The key attributes of the State 6 are the frequency of requests for

images size of the image being loaded. The projected usage manner of

loading the image is to download an image referred by the course

material, so we will model the loading frequency by the percentage of

messages that refers to an image, i.e. the transition probability from

state 5 to state 6, P(5,6). The size of the image (i.e. image file) depends on

many technical factors such as the data format (e.g. JPEG, MPEG, GIF et

cetera.), image displaying size, resolution and the content. An accurate

model of the image file size will thus be quite course dependent and a

thus course data is needed to produce a truly accurate model.

Unfortunately, the current version of Virtual-U (for which test data is

available) runs essentially text-based courses and there is no data

available for multimedia rich cases. However, in order to come up with a

 50

generic situation, we decided that it would be reasonable to assume that

the file sizes random with a truncated Normal distribution. Our

projected behavior pattern is as follows: after a student reads a message,

he or she loads an image referred by that message, then after loading

and viewing the image, the student may read another message or load

another image if there is a series of them. If we assume there is a 25%

chance a user will load an image after reading a message, and after

viewing the image, a 60% chance the student will view another message

while a 40% chance the student will load another image. After analyzing

14 “typical” images [GIF and JPEG) on a computer (we picked the

scanned pictures rather than the computer icons), we developed a few

different test models. For a course that demands many high-quality

images as a core component of its content, such as an art history course,

we set µ=128KB and σ=40KB; for the next rung of courses with moderate

image demands, such as geography and biology ,we set , µ=64KB and

σ=20KB. For both of these types of courses, we set the nominal image

loading frequency to be 25% of all requests; i.e., P(5,6) = 25%. For

different categories of courses the frequency of loading images and the

mean size of loaded image may vary. We vary these parameters in the

simulations and examine how adding this type of multimedia content

affects the system QoS.

The new set of transition probabilities after inserting this state is

shown in Table 3.2.

 51

TABLE 3.2: Transition Probabilities for VU Course6

 state 1 state 2 state 3 state 4 state 5 state 6

state 1 2.5% 96.5% 0.9% 0 0 0

state 2 21.5% 5.6% 63.3% 1.7% 7.9% 0

state 3 15.3% 0.4% 24.5% 54.2% 5.6% 0

state 4 17.3% 0.4% 24.2% 39.4% 5.6% 25%

state 5 15.3% 0 27.1% 18.6% 39% 0

state 6 0 0 0 60% 0 40%

Video On Demand Course

In the future, it is expected that most telelearning courses will

include increasing amounts of multimedia content. In addition to the

downloading of images and rich-text files, another possibility is the

inclusion of streaming-video (Video On Demand, or VOD) lectures on the

server that can be viewed over the Internet using applications such as

Microsoft’s NetShow [NetShow Web]. A VOD session can be a type of

course by itself, or it can be integrated into a VU conference course as

part of the course material (as an additional state). In our simulation, we

make it separate from the VU courses. However, from the perspective of

analyzing the system QoS, the two usage modes of VOD sessions do no

have significant difference, because the system performance is affected

6 As we stated above, we would vary the transition probability for state 6 in the
simulation, the values in this table about state 6 are just an example.

 52

by the traffic and, as far as a VOD session goes it will impose the same

amount of traffic on the system no matter what the usage mode.

The NetShow product was formerly called “Vxtreme” (Microsoft

acquired Vxteme in 1997). We used NetShow for VOD course analysis

because NetShow has already had examples of usage for education

purposes and provided sample VOD courses for evaluation. In the

NetShow application, students typically log into the server and select

specific lectures from a list; viewing begins by clicking on the “play”

button on the screen. Students can pause the lecture when desired, or

rewind/fast forward to quickly move around in the lecture. Using

streaming video lectures, students can “attend” a lecture while also

having the freedom to appreciate the lecture content at their own pace.

We believe that this kind of application provides a very good learning

environment and that is very attractive for many telelearning courses.

For this reason, we built a streaming video “VOD” course model into our

simulation. Alternative video delivery mechanisms such as “multicast”

are also possible; however, they don’t fit well into the “any time, any

place” paradigm of telelearning.

It is possible to use TCP or UTP to setup VOD sessions (NetShow

provides both options). As we discussed in Section 2.1, TCP guarantees

delivery while UTP does not. For VOD sessions, there is not really real

tine interaction, TCP can make sure the viewer misses nothing due to

temporary (as opposed to a severe problem cause the network goes down

for a log time) network congestion.

 Based on the interface of NetShow and our knowledge of the way

a VOD course is supposed to be, we created a three state Markov chain

model.

 53

State 1: " Play " In this state, a student views the lecture at the normal

speed. The VOD server delivers data to the viewer’s computer to play

the lecture in real time.

State 2: " Fast Forward/Rewind " In this state, students fast-rewind or

fast-forward the lecture to the part that they want to view. Students

are able to view what happens at a lower resolution for navigational

purposes. The server delivers data to the viewer’s computer at a lower

traffic rate due to the lower resolution and dropping of the audio

signal. From the traffic perspective, there is no significant difference

between the fast forwarding and rewinding. The same amount of

information is transferred (low resolution video and no audio), it does

not matter if the mode is backwards or forwards. The results of

experiments test traffic traces agreed this reasoning. The simple

experiments we did are as follows: for a given VOD lecture, we chose a

certain part (starting from A and ending at B). We fast-forwarded

from point A to point B and then rewind from point B to pint A. Then

compared the traffic histograms of the two traces. The results showed

very little differences.

State 3: " Pause " This state models, a student stopping the lecture and

taking the time to think about the course material, or to look

something up. The server stops delivering data to the viewer’s

computer.

In order to examine the traffic involved in such a VOD lecture, we

captured and analyzed the traffic from the viewer’s side (the traffic

information from the source end is not available) when a tester was

viewing a VOD sample lecture. The sample lecture was one lecture of the

VOD course CSS244a offered by Stanford University. This course was

 54

prepared with Microsoft NetShow (it was called Vxtreme at that time)

and accessible though the Vxtreme’s home page (It is not available

anymore after the acquisition). The traffic trace was collected by a

LANalyzer, which is a tool provided by Novell to monitor the traffic of a

station in a Ethernet. In the trace files there are such information as the

source address, destination address, packet length, time stamp for all

the packets received. With this information, we are able to calculate the

traffic (rate) for a VOD session from the viewer’s side. The obtained data

rate may have variability due to network reasons (as the packets traverse

the network to reach the viewer’s site). We assume this is not big enough

to have a significant impact. More accurate models (ideally from

information on the source end) should be built for higher quality formats.

At present, we assume that the VOD sessions are separate from the VU

course. Models should be obtained for the situation when a VOD session

is part of a VU conference based course and stored together with other

VU course materials; however, we leave this for future work.

 We captured separate traces (about 15 minutes each) “playing”

and rewinding/fast-forwarding the lecture; then calculated the traffic (in

bits/s) and approximated them with statistical models. By eyeballing, we

found that the traffic histograms of the two traces can be “reasonably”

fitted by Normal distributions. We now discuss the traffic in each of the

three states:

State 1: "Play" - The measured traffic is shown in Figure 3.8. By

eyeballing, we found the histogram curve has a bell shape and that

the characteristic is close to a Normal distribution with µ=56 kbits/s

and σ= 5 kbits/s. When we looked at several other VOD traces

 55

prepared by NetShow, we found that their traffic distribution also

had bell shapes.

State 2: "Fast Forward/Backward" - Similarly to state 2, we approximate

the traffic shown in Figure 3.9 with a Normal distribution; however,

this time the parameters are µ=18 kbits/s and σ= 5kbits/s.

State 3: "Pause" - This state is an idle state and involves no traffic.

By analyzing the data, we found that our sample user “plays” the

video for around 10 minutes , “rewinds/fast-forwards” for 1 minutes to

the target; and the “pause” time is 5-10 minutes. So we set the duration

time7 of the State1, 2, and 3 as 10 minutes, 1 minute and 10 minutes

respectively. When a state reaches its duration time, a state transition

happens according to the state transition probability matrix. The

transition probabilities were estimated by analyzing the same tester

taking the same course (CSS244a). The results are presented in Table

3.3 below.

7 Please do not get confused by the missing of “state duration time” in the VU model.
The definition of the states in the VU model is based on the user’s action, i.e. one
state has one action. So in fact, the “state duration time” is the same as the “request
interarrival time”.

 56

 57

Figure 3.8 The Traffic of State 1 in VOD

The Histogram of traffic in State 1 and Normal
Approximation

0
10
20
30
40
50
60
70
80
90

40 44 48 52 56 60 64 68 72 76 80

Bin

Fr
eq

ue
nc

y
Histogram
Normail Dist.

 58

The Histogram of Traffic in State 2 and Normal
Approximation

0

10

20

30

40

50

60

70

1 4 7 10 13 16 19 22 25 28 31 34 37

Bin

Fr
eq

ue
nc

y

Histogram
Normal Dist.

 59Figure 3.9 The Traffic of State 2 in VOD

 60

 61

Table 3.3: Transition Probability For VOD 8

 state 1 state 2 state 3

state 1 40% 20% 40%

state 2 30% 20% 50%

state 3 10% 5% 85%

The Simulations

The models discussed above were implemented in OPNET. In the

OPNET package, there are many standard network components and

functions built that we and use; while for the applications, OPNET

provides some examples to show how the lower layer models can be

used. In our network model, all that we are using are standard network

equipment (e.g. bridges, hubs) and network protocols. We can choose

the existing models and configure the parameters according to our

requirements. But for the application (as opposed to the network)

implementations, e.g. our user models, we have to construct our own

models. In the OPNET example models, there is one called “GNA” that

simulates basic network applications such as Email , FTP et cetera. We

chose to build our models based the “GNA” model because it uses the

same client-server mechanism as what we are using and some basic

functions can also be used in our programs. Meanwhile we do not have

8 The data here is based on the analysis of one tested user; it may not be valid for all
other users and for all the VOD courses.

 62

to redesign the application-network interfaces. All these can speed up

the development of our system.

In the “GNA” model, a control program “app-mgr” calls the

program “gna” to generate different application processes and control

them. The program “gna” has 2 states, one is “burst”, which simulates

traffic generation , and the other is “idle”, where no traffic is generated.

Inside the “burst” state, traffic is generated according to the “packet size”

and “packet interarrival time” parameters, which are defined according to

the type of application. The states are switched according to the

predefined time of each state according to the type of application.

In our programs, the “app-mgr” is modified to distinguish

applications and call the appropriate programs, i.e. “vugna” for VU

conference based courses, “cygna” for VOD streaming video, and “odgna”

for the applications defined in the original “GNA” models. The program

“vugna” is developed to implement the 6-state model of a student taking

VU courses. The program “cygna” is developed to implement the 3-state

model of a student viewing the VOD lectures. The program “odgna” is a

modified version of the “gna” which can work well with other programs

we developed.

In each of the states, traffic is generated according to the models

we defined: the main parameters we use are the “packet size” and

“packet interarrival time”. A set of state-leaving conditions are defined

and the decision making mechanism for state transition are also

developed. In our programs, the states switch according to the defined

“states transition probabilities”. To achieve this, we add a random

number generation mechanism and the transition decision is made

based on this random number. Some new functions are also developed to

 63

facilitate the model construction, such as a new traffic sending function

that allows each state to determine the traffic size it will send and also

the responding traffic size. In the streaming video “VOD” program

(“cygna”), a user play buffer is implemented so that we can use play

buffer’s overflow and underflow as a measure of video QoS.

As our server model is not complicated at this stage of the

simulation development, we simply adopt the provided “GNA” model.

Along with the model development , a set of “Probes” are defined to

collect data during simulations, such as the VOD buffer’s over and

underflow, the VU courses’ response time and the throuput of each

network segment et cetera.

The models discussed in the above sections were used in the

following way to create our simulations. Ideally, each student would be

simulated by running the user model appropriate to the course being

tested on a “user station”, as defined when we discussed the network

model. Unfortunately, however, we cannot always afford to have separate

user station for each synthetic student. Each user station has a lot of

components which require computing resources such as the memory

and simulation running time. We do not have unlimited memory and

simulation time to run the simulations with arbitrary numbers of

components. To resolve this situation, we can simulate multiple (n)

users with one station by making the requests generated at n times the

frequency as a single user (i.e. shorten the average interarrival time by a

factor of n). As we discussed earlier in the section 2.3, the superposition

of independent Poisson processes results in a new Poisson process whose

rate is the sum of the competent rates. Since we use a stochastic process

to generate user requests in our user model and each request is

 64

generated independently, the “lumping” approach is able to simulate

multiple independent users by having a single station interact with the

Virtual-U system. The error caused by “lumping” depends on the

“lumping rate” (i.e. the number of users lumped in one station) and the

number of individual stations. As long as there are sufficient number of

individual stations defined, the error caused by “lumping” should be

minimum. Mostly, the number of simulated users in our experiments is

not more than 300 and there are 150 stations defined, so there are

sufficient number of stations in our simulations. A spot-checking test

was executed to compare the results of 150 “lumped” VU users (by

lumping to 50 individual user-stations) with 150 individual VU users. All

the tests configurations (details refer to Section 4.2) and measurement

methods are identical for the two cases. From the results shown in Table

3.4, we can find that the difference is not significant. The “lumping error”

in our simulations should not be worse than that in this spot-checking

test, because our lumping rate is lower (2 compared to 3)and there are

more individual stations (150 compared to 50) there.

Table 3.4: ‘Lumping’ Effect

Request Response Time (s) QoS Parameters

of VU users Max.

Min.

Mean

Standard

Deviation

"Not

good"

"Bad"

150 21.9 0.0158 0.492 5.09 14.7% 4.2%

150 (lumped) 21.1 0.0158 0.483 5.02 13.6% 4.5%

 65

It should also be noted that the VOD traffic models come from the

traces captured from the network, which naturally include network

overhead. When information such as the data of a VOD frame is being

transmitted across the network, it is put into special formats form

according to the network protocols. The information is split and

encapsulated into the “protocol data unit”, which is defined according to

a standard format and is recognizable by all the network entities. Besides

this payload information, a protocol data unit also has a header

containing such data as the address and control information, which will

be used for delivering the payload information. At the receiver end, all the

overheads are striped off and the original information is reformed to what

was in the sender and then forwarded to the end user. So before we can

use the “network captured” traffic model to generate traffic at the

application layer, the network overhead should be taken off. However,

since we can not accurately estimate how much it accounts for, it is

safer to leave it on and be conservative.

3.3 QoS Measurements

In the previous sections, we described the construction of the

simulation system. We are now able to execute the simulation and study

the system capacity and performance. To make sense of these results,

the QoS measures must be properly defined.

As mentioned earlier, when we evaluate the system performance,

both statistical and subjective QoS measurements should be used. As we

discussed in Chapter 1, we set 3 levels of subjective quality levels and

they are defined as:

��“Good”: Very good quality.

 66

��“Not good”: The quality is not good, but may be acceptable in some

cases.

��“Bad”: The quality is bad and is unacceptable.

For the VU conference based courses, the request response time,

T, which is defined as the time from when a user sends out the request

until the requested information is received, reflects the quality directly

experienced by the users. Unlike other measures such as the number of

requests processed by the server, the packet error rate in the network

connecting the server and the user, the throuput of the user’s station in

the LAN segment, this measure takes in to account the impacts from

almost all of the components in the system. We are thus interested

various statistical parameters based upon T, such as its “maximum

value”, “minimum value”, “mean” and “standard deviation”. The three

subjective QoS levels for T itself are thus intuitively set as:

“Good” T< 5 sec.

“Not Good” 5 sec. ≤ T < 20 sec.

“Bad” T ≥ 20 sec.

For the VOD course, the actual delay is not critical because there

is not much interaction which is very sensitive to the delay. On the other

hand, “delay jitter” is important, since too much jitter will cause the play

buffer at the client station to overflow and underflow, which will greatly

degrade the video quality through frame loss. We use the rate of play-

buffer’s underflow/overflow, R, as the QoS measurement for VOD course.

Note that R is also dependent upon the size of the play-buffer, a bigger

 67

buffer can smooth larger delay variation and make a smaller R; on the

other hand a bigger buffer need longer time to fill during the initialization

(pre-fill the buffer at the beginning) which means longer initialization

delay. It is a trade off between the delay jitter soothing capability and the

initialization delay while the size of play buffer is determined. Since our

video source transmitted at an average rate of 56kb/s, we assumed a

play-buffer size of 128kbits, corresponding to 2-seconds of video. The

three quality levels were then defined based on R as is shown below,

with the actual values being heuristically chosen.

“Good” R< 1.0 times/min.

“Not Good” 1.0 times/min. ≤ R < 1.5 times/min.

“Bad” R>1.5 times/min

3.4 Summary

In this chapter we described the method used to analyze a real

telelearning system and to construct a simulation model of it. We also

presented our simulation system for the Virtual-U system (based on its

1997 design) as an example. The simulation models developed were a

network model, a background traffic model, a server model and a user

model. These models were derived from the analysis of the real system

structure and usage records (e.g. log files) obtained from real telelearning

courses. In each of the models, we also defined several parameters that

can be changed according to the resources available to the system, the

course content and user’s usage pattern. All these models were

implemented using OPNET. The simulation system is able to simulate

 68

students taking conference based courses and/or “Video On Demand”

streaming video courses. We also defined a set of QoS measurements

that represent the system performance both objectively and subjectively.

With this simulation system, we are able to carry out research on system

capacity and performance issues for telelearning applications. In next

chapter, we will give some examples about how we used the simulation

system to predict the system capacity and analyze the effects of the key

factors. Some of the interesting results we have obtained will also be

discussed.

 69

Chapter IV
Experiments and Results

4.1 General Description

In this chapter, we describe how to use the simulation system to

analyze the performance and capacity of telelearning applications using

Virtual-U and “streaming video” examples. We also present a series of

results in order to demonstrate the power of our approach. The following

questions are examined:

1) What is the capacity of Virtual-U in offering conference based courses

and how many streaming video sessions can be added in the same

system?

2) How will the factors such as the server’s processing power, the

average course file-size, the frequency of image downloads and the

background traffic level in the network affect the system performance

and capacity?

3) When multiple types (categories) of courses are offered on the same

system, how do they affect each other?

The system configurations are based on the models we described

in Chapter 3, which include a network model, a user model, a server

model and a background traffic model.

The network model that we will use in the simulation is the “SFU-

like” two-layered network model as described in Chapter 3 (a 100Mbps

high-speed backbone with seven 10Mbps 10Base_T subnets connected to

it). A server is located in one of the seven subnets. 150 individual

 70

stations are evenly distributed in the other six subnets; however, we are

able to simulate more than 150 users in the system using the technique

described in Section 3.2.4.

The user model used in the simulation is the 6-state model as

described in Section 3.2.4. For Virtual-U conference based courses (VU),

without streaming video, we vary the following parameters in the

simulations:

1) The number of server processing units consumed by each user

request, N. As mentioned in Chapter 3, we approximate the “N” by a

single constant for each type of courses, i.e. the value of “N” is the

same for all states of the model for a course.

2) The frequency of loading images, F. This is the probability that a

“plain message” event will be followed by a transition to state 6.

3) The mean and standard deviation, (µ, σ), of the Normal distribution

that models the sizes of the “images” down-loaded to the users.

As we described in Section 3.2.4, some parameters of the user model are

modeled by a “pessimistic” constant which is worse than 90% of the

samples. Increasing the “pessimistic level” will lead to user model with

heavier traffic , thus a more conservation prediction of the system

capacity. Some experiments will be done with a “99% pessimistic level”,

i.e. we replace the “pessimistic” constants in the former described VU

user model with new values which are worse than 99% of the data

samples. The values got changed are:

Traffic in State 2 “List conferences” = 17 KB;

Traffic in State 3 “List unread messages” = 61 KB;

Traffic in State 4 “Read a message” = 13 KB;

Traffic in State 5 “Put a messages” = 13 KB;

 71

Since we think “90% pessimistic level” is reasonable to be used in

building a user model, for most of our experiments, we use the model

described in Section 3.2.4.(It is used as default if there is no specific

note).

The server model and background traffic models used in the

simulation are as described in Chapter 3. The server processing power,

P, is set to a nominal 1500 jobs/sec.; however, recall that this parameter

can be adjusted using the “N” parameter described above. The

background traffic level, B, is defined as the average percentage of the

total bandwidth used by the non-telelearning applications. It is set to

zero when we study factors other than background traffic, but we vary

this parameter to analyze how background traffic affect system

performance. According to our analysis of VU courses, the mean message

size is 2.5kB and the interarrival time is 168s on average; this makes the

average traffic generated by a user in state 4 equal to 120bps. On the

other hand, if an image is loaded, the traffic rate may tens of kilobytes

per second for a short period of time. (The real rate depends on many

factors as the state of the network, the throuput of the server and the

user’s access speed et cetera.) Therefore the traffic is bursty and the

sustained level is low. For this type of traffic pattern, it is difficult to

predict the performance with a “paper and pencil” approach and the

effect of multiplexing can only be evaluated by simulation. On the other

hand, the traffic pattern of streaming video applications is less bursty

and analytically tractable. The average rate of the VOD session we

studied is 56kbps9. Please note that the VOD rate is not limited to this

9 We assume the user will only “play” the video to make a conservative estimate

 72

one. The rate of VOD sessions depend on the required video quality and

the available bandwidth, it could be 128bps, 256bps et cetera, or as high

as 1Mbps.

The simulation results will be discussed in the following sections.

4.2 System Capacity for VU Courses

A good estimate of Virtual-U system’s capacity, which is defined as

the number of users can be supported at the same time, is important for

both the system designers and the educators who use VU to provide

courses. In order to get this estimate, our approach is to simulate a

given system configuration and different number of users in the system.

By examining the system’s performance with a given QoS criterion, we

are able to find the maximum number of users that can be. In the

following, we vary N, the available server processing power.

System Configuration:

Server’s processing power

consumed by a user’s request (N)

1, 10, 15, 20

Average (loaded) image size and

standard deviation (µ,σ)

128kB, 40kB

Loading image frequency (F) 25%

Server processing power (P) 1500 jobs/s

Background traffic level (B) 0

The user model used

As the parameters of “image loading”, we chose numbers

appropriate to “heavy” image use because we are most interested in

 73

exercising the system to find where the performance breaks down and we

also wish to get a conservative estimate of the system capacity. These

numbers will, of course, need to be tuned for specific courses once this

data is available.

Simulation Results:

In the following tables of the simulation results, the “QoS

Parameters” (e.g. “Bad”) are as defined in Section 3.3. The system is

regarded from the users’ perspective as “slightly congested” if the end to

end response time shows a slow but observable increasing trend and the

part in “bad” region is below 20%. The system is regarded from the users’

perspective as “congested” if the end to end response time shows a quick

increasing trend and the part in “bad” region is over 20%.

The simulation results for “N=1, 10, 15, 20” are listed in Tables

4.1-4.5, and the QoS measurements for “N=10” are shown in Figures 4.1-

4.4.

 74

Table 4.1: VU Course Performance for Different Number of Users (N=1)

Request Response Time (s) QoS Parameters

of users Max.

Min.

Mean

Standard

Deviation

"Not

good"

"Bad"

Note

150 21.9 0.0158 0.492 5.09 14.7% 4.2%

300 22.1 0.0158 0.863 4.99 15.6% 3.9%

450 28.5 0.0158 2.037 5.76 24.0% 5.2%

600 62.7 0.0158 4.559 8.53 29.7% 11.6%

675 126.3 0.0182 10.548 19.45 34.2% 16.1% SC

750 153.4 0.0255 16.476 23.36 46.8% 25.8% C
SC: Slightly congested.

C: Congested.

 75

Table 4.2: VU Course Performance for Different Number of Users (N=10)

Request Response Time (s) QoS Parameters

of users Max. Min. Mean Standard

Deviation

"Not

good"

"Bad"

Note

10 10.074 0.0217 0.988 1.379 3.9% 0.0%

20 10.744 0.0217 1.011 1.842 5.9% 0.0%

30 23.085 0.0217 1.313 3.183 9.9% 1.2%

40 33.047 0.0217 1.587 3.778 12.9% 2.6%

50 54.162 0.0217 2.980 19.312 25.5% 7.9%

55 123.470 0.0217 6.086 15.444 35.2% 16.2% SC

60 179.388 0.0217 25.673 50.762 59.8% 46.3% C

SC: Slightly congested.
C: Congested.

 76

Table 4.3: VU Performance the “99% Pessimistic User Model” (N=10)

Request Response Time (s) QoS Parameters

of users Max. Min. Mean Standard

Deviation

"Not

good"

"Bad"

Note

10 15.822 0.0283 2.122 2.936 16.9% 0.0%

20 32.730 0.0286 3.457 5.746 31.4% 3.5%

30 51.596 0.0282 5.665 8.225 41.2% 9.8%

40 101.664 0.0281 10.304 16.743 53.7% 19.5% C

50 167.768 0.0281 25.203 28.720 77.1% 49.4% SC

SC: Slightly congested.
C: Congested.

 77

Figure 4.1 VU Response Time vs. # of Users (N=10)

VU Request Response Time vs.# of Users

0

10

20

30

0 10 20 30 40 50 60 70

of Users

R
eq

ue
st

 R
es

po
ns

e
T

im
e

(A
ve

ra
ge

) (
s)

 78

Figure 4.2 VU Subjective QoS vs. # of Users (N=10)

VU QoS vs . # of Users

0.0%

20.0%

40.0%

60.0%

80.0%

0 20 40 60 80

of Users

Pe
rc

en
ta

ge
 in

Q

oS
 L

ev
el

s

"Not Good" "Bad"

 79

Figure 4.3 VU Response Time(99% pessimistic, N=10)

VU Request Response Time vs.# of Users
(99% pessimistic)

0
5

10
15
20
25
30

0 10 20 30 40 50 60

of Users

R
eq

ue
st

 R
es

po
ns

e
T

im
e

(A
ve

ra
ge

) (
s)

 80

Figure 4.4 VU Subjective QoS vs. # of Users (99% pessimistic, N=10)

Table 4.4: VU Course Performance for Different Number of Users (N=15)

 Request Response Time (s) QoS Parameters

VU QoS vs . # of Users (99% pess imist ic)

0.0%
20.0%
40.0%
60.0%
80.0%

100.0%

0 20 40 60

of Users

Pe
rc

en
ta

ge
 in

Q

oS
 L

ev
el

s

"Not Good" "Bad"

 81

of users Max. Min. Mean Standard

Deviation

"Not

good"

"Bad" Note

10 11.719 0.0231 1.318 1.887 7.4% 0.0%

20 18.676 0.0174 1.809 3.346 12.8% 0.0%

30 33.935 0.0227 2.095 4.874 17.4% 2.1%

35 86.686 0.0227 4.970 12.929 36.4% 14.4%

40 102.037 0.0227 7.241 16.463 42.6% 17.4% SC

50 270.632 0.0227 33.712 48.351 67.4% 46.9% C

SC: Slightly congested.

C: Congested.

 82

Table 4.5: VU Course Performance for Different Number of Users (N=20)

Request Response Time (s) QoS Parameters

of users Max. Min. Mean Standard

Deviation

"Not

good"

"Bad"

Note

10 33.473 0.0238 2.143 4.075 10.5% 1.7%

15 52.475 0.0241 2.759 6.208 26.8% 3.0%

20 60.214 0.0238 4.175 10.782 34.1% 13.4%

25 98.665 0.0238 5.964 14.825 39.7% 15.3%

30 193.302 0.0238 16.672 35.895 47.6% 28.9% C
C: Congested.

 83

Observations:

As the number of users increases, the overall quality of service

degrades both objectively and subjectively. For the above system

configuration with N=1, if the number of users is more than 675, the

system starts to get congested (due to starvation of the server’s

processing power); when there are over 750 users, the system starts to

get heavily congested. If we use the “less than 10% of the service is bad”

quality as the criterion for determining the system capacity, then we

should keep the number of users below 600. But these kind of

performance is not what we have seen from the real VU system which

has a much less capacity. The reason is that we overestimated the

server’s ability in processing users’ request. The “N=1” is not the case in

the real VU. The VU is implemented with CGI scripts, as we mentioned

earlier in Chapter 1, when a CGI task is executed, it may spawn many

“sub-tasks” which will all consume the server’s processing resource. So

in the real VU, the “N” is greater than 1 and the overall effective server’s

processing power is less than 1500 jobs/s.

With the same system configuration, different values of “N” make

the server’s “effective power” vary, which also changes the capacity;

however, the shapes of the “Performance vs. the number of students”

curves are similar. As the number of students increases within the

system’s capacity, the quality of service degrades gradually; however,

when system is near its capacity, the quality of service degrades

dramatically in both objective and subjective measurements. The system

capacities are estimated and listed in Table 4.6 for different values of “N”.

 84

We also estimated the number of VU courses could be offered at

the same time. Based on the observation that there are around 50

students in the test courses, we assume each VU course will have 50

students registered, among these, we assume that approximately 50% of

the users are active during peak usage times. We are most interested in

the quality under peak conditions, since it is the worst case that is most

important.

Table 4.6: Capacity of the System Offering VU Courses

N # of users # of courses

1 600 24

10 50 2

15 30 110

20 20 111

The observed performance of real Virtual-U system is very close to

“N= 10” case in simulation. That is, the “P=1500 jobs/s and N = 10” can

represent the situation in the real system. However this performance is

not very satisfactory. The capacity needs improvement. Our projection for

a commercialized Virtual-U that is able to bring us an “on-line

university” is a system capable of offering 20~50 (or even more) courses

10 This is a rounded number.

11 This is a rounded number.

 85

simultaneously with fairly good quality. This goal should be achievable in

the near future, depending on the type of courses that the system must

support. The improvement of VU is expected come from using more

powerful hardware (e.g. processor, memory, I/O equipment et cetera.)

and from improvements in the software implementation (such as

replacing the CGI interface with a more efficient system and by making

better use of databases).

For the same system configurations, the QoS curves of the user

model with “99% pessimistic” are similar to that of user model with

“90% pessimistic”. However the number of VU users can be supported

is only 30 compared to 50 in “90% pessimistic” case, if we use the save

criterion “less than 10% of the service is bad”. A more pessimistic model

leads to a more conservative prediction of the system capacity.

4.3 How Server’s Processing Power affects QoS of VU courses

When analyzing how the server’s processing power affects the QoS

of VU service, we did experiments to derive two characteristics: 1) The

capacity vs. the effective server processing power for a given QoS

criterion. 2) The QoS vs. effective server processing power for a given

number of users in the system.

4.3.1 Capacity vs. the Effective Processing Power

First, we define the “effective processing power” to be the number

of user requests that can be processed by the server in one second. This

number can be obtained by dividing the server’s (absolute) processing

power (jobs/s) by the factor “N”. Based on the results of Section 1, we

estimated the system capacity for different values of the “effective

 86

server’s processing power” (Refer to Table 4.7). Note that we are using the

same QoS criterion (“less than 10% of the service is in bad quality”) as in

Section 1.

 87

Table 4.7: System Capacity vs. the Effective Server Processing Power

Effective server processing power # of users

75 20

100 30

150 50

1500 600

 88

Observations:

As the server’s effective processing power increases, the system

capacity increases. The plot in Figure 4.5 shows a linear relationship

between the system capacity and the server’s effective processing. This

result is due to our approximation of “N” as being a constant. We do not

know exactly what will happen if we generalize N to be function of the

system and request parameters, but we do know that the system

capacity is determined by the server’s effective processing power, which

accounts for the key factors of both hardware and software.

The linearity in the plot tells us that the performance bottleneck of

the simulated system, and indeed Virtual-U, is in the server rather than

the network because all of the variation in the server’s processing power

is reflected in the system capacity. If the network has a significant effect

on the system, the curve will be “flat” after some certain point when the

performance is throttled by the limited network bandwidth. From a

network’s perspective, it is no problem to support up to 600 students.

The server’s limitation is reached before that of the network.

 89

Figure 4.5 System Capacity vs. the Effective Server’s Processing Power

S y s t e m Capac it y Vs . Effe c t iv e
S e rv e r's Pro c e s s in g Po we r

0
2 0 0
4 0 0
6 0 0
8 0 0

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0

Effe c t iv e S e rv e r's Pro c e s s in g Po we r
(jo bs / s)

Sy
st

em
 C

ap
ac

ity

 90

4.3.2 QoS vs. the Effective Server’s Processing Power

In this experiment, we study how a server’s processing ability

affects the system performance by varying the server’s processing power.

We will try to determine both the minimum required amount of server

processing power for a desired performance, and also the effective range

of the server processing power.

System Configuration:

Server’s processing power consumed

by a user’s request (N)

1

Number of students taking VU courses 300

Average (loaded) image size and

standard deviation (µ,σ)

64kB, 20kB

Loading image frequency (F) 25%

Server processing power (P) 375~30000 jobs/s

Background traffic level (B) 0

We chose “N =1” to make the server have an “effective power” the

same as the “server processing power” (P), because that is what we

projected for the “final” Virtual-U that can be fully used (as we discussed

in Section 1). We assume that there are 300 users in the system,

because we want to investigate estimated a system that is generally half

loaded. (The system capacity is 600 when we are at the nominal P of

1500 job/s).

 91

The “image loading” parameters were chosen to match what we

consider to be a “typical” course, as described in Chapter 3.

Simulation Results:

The results of the simulations based on the above parameters are shown

in Table 4.8-4.9 and Figs. 4.6 - 4.9.

Table 4.8: VU Request Response Time vs. Server’s Processing Power

Request response Time (s) QoS ParametersServer’s

processing

power (Jobs/s)

Max. Min. Mean Standard

Deviation

"Not

good"

"Bad"

Note

375 544.1 0.1071 122.300 108.50 96.1% 85.4% C

750 242.3 0.0345 23.812 33.16 74.3% 36.0% C

1000 123.1 0.0199 5.861 15.37 47.2% 15.1%

1200 47.8 0.0158 1.874 7.28 31.1% 7.6%

1500 22.1 0.0158 0.863 4.99 15.6% 3.9%

7500 11.2 0.0092 0.198 1.18 3.5% 0.0%

30000 9.4 0.0079 0.154 0.78 0.2% 0.0%

C: Congested

 92

Table 4.9: VU QoS vs. Server’s Processing Power (99% pessimistic)

Request response Time (s) QoS ParametersServer’s

processing

power (Jobs/s)

Max. Min. Mean Standard

Deviation

"Not

good"

"Bad"

Note

750 851.4 0.0967 192.700 162.50 95.1% 86.2% C

1200 250.5 0.0197 26.956 44.89 55.3% 29.3% C

1500 103.3 0.0235 7.334 18.17 29.1% 16.5%

1800 60.1 0.0177 3.103 10.33 18.5% 9.3%

2000 32.1 0.0232 1.369 4.89 11.8% 2.6%

3000 5.54 0.0235 0.224 0.617 4.5% 0.0%

7500 7.71 0.0169 0.211 0.063 2.1% 0.0%

C: Congested

 93

Figure 4.6 VU Response Time vs. Server’s Processing Power

VU Response Time vs. Server's
Processing Power

0

10

20

30

0 2000 4000 6000 8000

Server's Processing Power(jobs/s)

VU
 R

es
po

ns
e

Ti
m

e(
s)

 94

Figure 4.7 VU QoS vs. Server’s Processing Power

VU QoS vs. Server's Processing Power

0.0%

20.0%

40.0%

60.0%

80.0%

0 2000 4000 6000 8000

Server's Processing Power(jobs/ s)

Pe
rc

en
ta

ge
 o

f
Se

rv
ic

e
In

 E
ac

h
Le

ve
l

"Not Good" "Bad"

 95

Figure 4.8 VU Response Time vs. Server’s Processing Power (99%

pessimistic)

VU Response Time vs. Server's
Processing Power (99% pessimistic)

0

100

200

300

0 2000 4000 6000 8000

Server's Processing Power(jobs/s)

V
U

 R
es

po
ns

e
Ti

m
e(

s)

 96

Figure 4.9 VU QoS vs. Server’s Processing Power

VU QoS vs. Server's Processing
Power(99% pessimistic)

0.0%

20.0%

40.0%

60.0%

0 2000 4000 6000 8000

Server's Processing Power(jobs/ s)

Pe
rc

en
ta

ge
 o

f
Se

rv
ic

e
In

Ea

ch
 L

ev
el

"Not Good" "Bad"

 97

Observations:

As shown in Table 4.8 and Figures 4.6-4.7, the overall system

quality degrades when the server’s processing power decreases. When

there are 300 students taking VU courses and if the server’s processing

power is only 375 jobs/s, the whole system is congested. If we use “less

than 10% of the service is bad quality” as a criterion for estimating the

system capacity, then we should use a server whose processing power

better than 1200 jobs/s. On the other hand, for a system of this scale, a

server more powerful than 7500 jobs/s will not gain much in quality of

service. The “knee” shapes of the curves in Figures 4.6~4.7 show that

there exists a “critical” region (375,1500) for the server’s processing

power in which varying the server’s processing power has a great impact

on the whole system’s performance; and a “flat” region (7500, infinity) in

which upgrading the server will gain little for the given QoS criterion.

This suggests a method for evaluating the importance of upgrading the

server. The shapes of the curves of QoS vs. server processing power are

also valid for the servers with more or less processing powers. The main

difference is that the “turning” point will vary. For the VU server (1997)

which has “N=10” (the effective server processing power is less than the

“absolute” processing power), the curve will looks like the above “N=1”

curve shift to the left.

For the experiments with the user model of “99% pessimistic”, as

shown in Table 4.9 and Figures 4.8-4.9. The QoS curves show the

similar shape. The main differences is for the same configuration, the

“99% pessimistic” model always have worse performance compare to the

“905 pessimistic” model because it generate more traffic. If we use “less

 98

than 10% of the service is bad quality” as a QoS criterion , then we

should use a server whose processing power better than 1800 jobs/s.

For the same condition “90% pessimistic” model requires 1200 jobs/s.

The more conservative estimation of the user model leads to

requirements of more powerful server for the same QoS criterion.

4.4 How ‘Loading Image’ Affects QoS of VU Courses

As we know, multimedia content such as images and rich-text will

cause much more traffic than simple ASCII text. The “loading images”

parameters thus play an important role in determining the system

performance. Better quality images (such as better resolution, more

colors et cetera.) will cost more bits and make for larger files, while using

more images in a course may make the course more “vivid” and easily

understood. It is thus useful to determine how the loaded image size

and frequency will affect the system’s performance. In addition, we want

to be able to estimate the largest image files (and loading frequency) that

we can safely use in a course for a given system configuration and QoS

criterion. These parameters are important to course designers, who want

their courses to “work”.

4.4.1 The Loaded Image Size

System Configuration:

Server’s processing power consumed by

a user’s request (N)

1

 99

Number of students taking VU courses 300

Average (loaded) image size and

standard deviation (µ,σ)

µ=64kB - 1MB

Loading image frequency (F) 50 %

Server processing power (P) 1500 jobs/s

Background traffic level (B) 0

For the image size, we use a Normal distribution, as explained

previously. The average image size (mean value) varies from 64kB to 1MB

and for these initial experiments, we assume that the standard deviation

is simply 1/3 of the mean value. This value was chosen for the variance,

since it matched that of the image testset used in the creation of the

models (see Section 3.2.4). We assume that this variance will generalize

to different courses using different ranges of image size. In practice these

distributions should be tailored to the course being modeled.

Although our prediction for a “reasonable” frequency of image

loads is 25%, we set the number to be 50% here. Because we want to

exercise the worst case and produce a conservative estimate for the

maximum supportable image size.

Simulation Results:

The results of the simulations described above are given in Table 4.10.

Table 4.10: VU Response Time vs. Loaded Image Size.

Image Request Response Time (s) QoS Parameters Note

 100

Size (kB) Max. Min. Mean Standard

Deviation

"Not

good"

"Bad"

64 22.2 0.0158 0.354 4.93 12.5% 3.7%

256 22.1 0.0158 0.863 4.99 15.6% 3.9%

512 37.2 0.0159 3.148 6.96 25.2% 7.5%

1024 471.7 0.0200 46.124 85.27 47.2% 25.4% C

C: Congested

Observations:

As shown in Table 4.10, the overall system QoS degrades as the

image size increases. For the current system, we should keep the image

size at or below 512kB if we use the “less than 10% of the service is bad

quality” as the QoS criterion. As we know, most compressed images

(MPEG, GIF et cetera.) are below this level; however, many WORD files

and special application images (medical and geographical, for example)

are larger.

4.4.2 The Frequency of Loading Images

System Configuration:

Server’s processing power

consumed by a user’s request (N)

1

Number of students taking VU

courses

300

Average (loaded) image size and 256kB, 85kB

 101

standard deviation (µ,σ)

Loading image frequency (F) 25 %, 50%, 70%

Server processing power (P) 1500 jobs/s

Background traffic level (B) 0

Although our prediction for the “reasonable” image size is below

the level of 128kB, we set the number to be 256kB here. Because we

want to use the worst case to produce a conservative estimate of the

image loading frequency.

 102

Simulation Results:

The results of the experiments described above are presented below in

Table 4.11 and Figure 4.10.

Table 4.11: VU Response Time vs. Image-loading Frequency.

Request Response Time (s) QoS Parameters Image

Frequency Max. Min. Mean Standard

Deviation

"Not

good"

"Bad"

Note

25% 13.9 0.0145 0.636 2.69 7.9% 0.0%

50% 22.1 0.0158 0.863 4.99 15.6% 3.9%

70% 26.9 0.0158 1.207 3.36 14.7% 6.5%

 103

Figure 4.10 QoS vs. VU Image Loading Frequency

Qo S v s . VU Im a g e Lo a d in g F re q u e n c y

0 %
1 %
2 %
3 %
4 %
5 %
6 %
7 %

0 % 2 0 % 4 0 % 6 0 % 8 0 %

Im a g e Lo a d in g F re q u e n c y

Pe
rc

en
ta

ge
 o

f
Se

rv
ic

e
in

 "
B

ad
"

R
eg

io
n

 104

Observations:

As shown in Table 4.11 and Figure 4.10, the overall system QoS

degrades with the increase of the image loading frequency. If we look at

the percentage of time service is in the “bad” region, the performance

degrades linearly, as shown in Figure 4.6. For the system configuration

above, if we use the “less than 10% of the service is bad quality” as a QoS

criterion, the quality is still acceptable even when the loading image

frequency is set to 70%. Therefore “image downloads” are unlikely to

cause serious problems to VU courses, as long as they are kept to a

reasonable level.

4.5 Capacity for Adding VOD Sessions

The effort in this section is to see how many streaming video, or

VOD, sessions can be added if the system is half loaded with other VU

courses (300 users). The configuration of the system is based on our

prediction for the “final” Virtual-U system rather than the 1997’s version.

Because VU itself is evolving and we believe it makes more sense to

provide VOD service when the system is “mature” in providing

conference-based courses.

At present, we do not have detailed information about the VOD

server of the sample VOD lectures we captured; however, we do not have

to use the same server in the telelearning environment, though we may

provide the same type of video lectures. In our simulation, we assume

the server has dedicated RAM, Disk arrays, I/O et cetera for video

processing and that the software for video processing is well designed. In

a word, the video processing is efficient at the server site and the server

 105

has enough power to handle the traffic compared to the network. In some

situations, it may be desirable to have a separate video server and this is

a topic to be explored in future research.

System Configuration:

Server’s processing power consumed by a

VU user’s request (N)

1

Number of students taking VU courses 300

Average (loaded) image size and standard

deviation (µ,σ)

64kB, 20kB

Loading image frequency (F) 25 %

Server processing power (P) 1500 jobs/s

Background traffic level (B) 0

Simulation Results:

For the VU course, we continue to use the “request response time”

as the QoS measurement; however, for the streaming video session, we

measured the rate of the play buffer’s under/over flow (times/minute)

instead, since this is much more important from the viewers point of

view. The results are shown in Table 4.12 and in Figure 4.11.

 106

Table 4.12: Service Quality When Adding VOD Users

VU

Request Response Time

(s)

QoS

Parameters

VOD Note# of VOD

users

Max. Mean Standard

Deviation

"Not

good"

"Bad" Buffer12

O/U Flow

0 1.487 0.104 0.17 0.0% 0.0% N/A

30 1.517 0.104 0.16 0.0% 0.0% 0.706

60 1.522 0.110 0.16 0.0% 0.0% 0.784

90 2.348 0.156 0.24 0.0% 0.0% 0.841

105 5.032 0.328 0.37 0.0% 0.1% 1.030

120 9.793 0.596 0.85 12.3% 1.2% 1.416

135 35.266 3.168 6.91 33.6% 14.5% 6.452 C

C: Congested

12 The unit is times/minute

 107

Figure 4.11 QoS vs. VOD Sessions.

Observations:

As the number of VOD user increases, the overall quality of service

degrades for both VU and VOD users. The QoS curves have “knee”

shapes. When the number of VOD sessions is below 120, the overall QoS

does not degrade dramatically because the VU and VOD services are

consuming different critical resources. For the VU users, the critical

resource is the server’s processing power, while the critical resource for

the VOD is network bandwidth. Adding more VOD sessions does not

greatly degrade the QoS of VOD users as long as there is enough network

bandwidth. When the number of VOD sessions is greater than 135, the

Q o S v s . VO D S e s s i o n s Ad d e d

0

0 .5

1

1 .5

2

2 .5

3

3 .5

3 0 6 0 9 0 1 0 5 1 2 0 1 3 5

o f VO D S e s s i o n s Ad d e d

V
U

 R
es

po
ns

e
T

im
e

(s
)

0 .0 0 0

1 .0 0 0

2 .0 0 0

3 .0 0 0

4 .0 0 0

5 .0 0 0

6 .0 0 0

7 .0 0 0

V
O

D
 O

/U
 F

lo
w

 R
at

e
(/M

in
.)

VU
VO D

 108

system gets congested due to the starvation of network bandwidth. Note

that this number will drop to about 7 if 1Mb/s video streams are used.

These results agree with our analytical predictions. Theoretically, the

maximal bandwidth in the system is throttled by the 10Mbps Ethernet.

The practical bandwidth of the Ethernet is around 8Mbps as discussed

in Chapter 2. From the network bandwidth perspective, the effect of VU

users is minimal. Since each VOD session consumes 56kbps bandwidth,

the total supportable VOD sessions will be less than 140 (56kbps * 140 =

8Mbps).

 From our simulation experiment results, we can see that when

there are 300 VU users in the system, the capacity of the above 56kbps

VOD sessions is 120. This number also agrees with simple analytical

calculations. For the system with 300 students, up to 120 of them can

simultaneously view the VOD sessions (as part of the course material).

The QoS curves for VU and VOD have the same shape, and they

“jump” at the same point. The reason for this is that in the non-

prioritized network protocols being used, there are no reservations or

preferences made for the different applications when the network

resources are allocated. This lack is one of the characteristics of the

classic (as opposed to the new generation) “best-effort” TCP/IP protocols,

which were not designed to carry mixtures of different types of traffic,

each with its own QoS requirements. For our telelearning applications, if

the network can distinguish the “delay sensitive” VOD sessions from

other traffic, and process them with higher priority, the QoS/Capacity of

the VOD sessions will be improved. The QoS of VOD will then be

sustained even when the network starts to get congested; i.e. the VOD

courses’ slight slope region in Figure 4.7 will be extended. This would

 109

happen at the cost of degrading the QoS of VU (and other applications)

and in refusing new video connections. However, many services as VU

are less “delay sensitive” than video, and it is possible to find a balancing

point good for the overall system performance. There are many

researchers working on possible new protocols [Moh, 1996] [Johnson,

1996], but this topic is outside the scope of this thesis.

4.6 How Background Traffic Affects System Performance

The background traffic of the network greatly affects the system’s

performance. In our network structure, background traffic exists in

three places: 1) The subnet where the server is located. 2) The backbone

network. 3) The subnet where the user is located. These cases will now

be analyzed individually and we will see what is most likely to be the

bottleneck in the system.

We will use “background traffic level”, B, to represent the intensity

of the background traffic on the network segment being studied. Since

one of our main interests here is to find the maximum tolerable

background traffic level in each of the specific network segment, we will

vary the background traffic level for the segment being studied and set

the background traffic in other parts to be zero.

 110

4.6.1 Background Traffic in the Server’s Subnet

System Configuration:

Server’s processing power consumed by a

VU user’s request (N)

1

Number of students taking VU courses 300

Number of VOD sessions 60

Average (loaded) image size and standard

deviation (µ,σ)

64kB, 20kB

Loading image frequency (F) 25 %

Server processing power (P) 1500 jobs/s

Background traffic level in this network

segment (B)

0% ~ 40%

As in previous simulations we assume that the system is “half

loaded” with 300 VU users; however, we have added 60 streaming-video

sessions because we believe that the Video service will be integrated into

the VU system as an important part. In addition, video services are more

“network bandwidth sensitive” and can be heavily impacted by the

background traffic in the network environment. (Note that 60 is also

chosen by the “half loaded” consideration since the capacity is 120).

 111

Simulation Results:

The results of the above simulations are shown below in Table 4.13 and

in Figure 4.12.

Table 4.13: QoS vs. Background Traffic in the Server’s Subnet

VU

Request Response

Time (s)

QoS

Parameters

VOD NoteBackground

Traffic Level

Max. Mean Standard

Deviation

"Not

good"

"Bad" Buffer

O/U Flow

0% 1.52 0.111 0.16 0.0% 0.0% 0.784

10% 1.58 0.123 0.18 0.0% 0.0% 0.815

20% 2.10 0.194 0.29 0.0% 0.0% 0.806

30% 5.32 0.564 0.61 0.4% 0.0% 1.232

40% 15.92 1.137 1.25 7.4% 7.0% 2.992 C

C: Congested.

 112

Figure 4.12 QoS vs. Background Traffic in Server’s Subnet

Q o S v s . B a c k g ro u n d T ra ff i c

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

0 % 1 0 % 2 0 % 3 0 % 4 0 %
T h e b a c k g ro u n d T ra ff i c Le v e l

V
U

 R
es

po
ns

e
T

im
e(

s)

-

0 .5 0 0

1 .0 0 0

1 .5 0 0

2 .0 0 0

2 .5 0 0

3 .0 0 0

3 .5 0 0

V
O

D
 B

uf
fe

r
O

/U

Fl
ow

 R
at

e(
/M

in
)

VO D VU

 113

Observations:

As shown in Table 4.13 and Figure 4.12, the overall system quality

degrades as the level of background traffic on the server’s subnet

increases. Video is very sensitive to the background traffic of the server’s

subnet. If we use “play buffer’s over/under flow rate is less than 1.5

times/min.” as the criterion for estimating the system capacity, we

should keep the background traffic level of the server’s subnet at less

than 30% of the available bandwidth. If the background traffic level is

greater than 40%, the network gets congested. This can also be

understood using an analytical approach. The total practical bandwidth

of the Ethernet is 8Mbps and the 60 VOD sessions need 3.4Mbps

(56kbps*60) of bandwidth. Even the 300 VU users do not require such a

large amount of network bandwidth; a background traffic level of 40%

will definitely congest the Ethernet.

 114

4.6.2 Background Traffic on the Backbone

System Configuration:

Server’s processing power consumed by a

VU user’s request (N)

1

Number of students taking VU courses 300

Number of VOD sessions 60

Average (loaded) image size and standard

deviation (µ,σ)

64kB, 20kB

Loading image frequency (F) 25 %

Server processing power (P) 1500 jobs/s

Background traffic level in this network

segment (B)

20% ~ 90%

 115

Simulation Results:

The results of this work are shown below in Table 4.14.

Table 4.14: QoS vs. Background Traffic in the Backbone

VU VOD

Request response Time(s) QoS

Parameters

Background

Traffic Level

Max. Mean Standard

Deviation

"Not

good"

"Bad"

Buffer O/U

Flow

20% 22.3 1.533 6.02 22.9% 4.1% 0.697

40% 23.3 1.642 6.07 23.6% 5.6% 0.712

60% 21.1 1.278 6.42 23.3% 5.9% 0.768

75% 23.7 1.644 5.94 22.8% 3.6% 0.755

80% 29.3 1.753 6.29 24.1% 4.8% 0.748

90% 30.9 3.256 7.56 31.4% 9.6% 3.485

Observations:

As shown in Table 4.12, the overall system quality does not

degrade appreciably when the background traffic on the backbone is

under 80%. This shows that the backbone network is able to handle the

traffic of the above configuration even with a large quantity of

background traffic.

 116

4.6.3 Background Traffic in the User’s Subnet

We assume that the 300 VU users and 60 VOD sessions

mentioned in the former sections are evenly distributed in the user’s

subnets. That is, each user’s subnet has 50 VU users and 10 video

sessions. The background traffic on each of the user subnets is identical.

Both simulation and “back of the envelope” calculation (as used above)

show that the user’s subnet gets congested when the background traffic

reaches approximately 75%of the capacity in each of the users subnets;

an acceptable QoS can be maintained as long as the background traffic

level in the user’s subnet is below 65%.

4.6.4 Conclusions

From the results above, we found that for the current system

configuration, the effect of congestion on the server’s subnet is much

more severe than elsewhere (30% tolerable background traffic compared

to 80% and 65% in the backbone and the user’s subnets). From

viewpoint of telelearning applications, the critical link is thus the server’s

subnet. The server shares the 10M bandwidth with other stations, and

this bandwidth is used for subnet internal communication and

communication to the backbone as well. Thus, making the server’s

subnet dedicated to the server is important. Historically, Virtual-U

testing system experienced bad performance due to the background

traffic caused by a name-server located in the same subnet. An upgrade

to the server’s subnet will improve the performance of the whole system.

If we keep the server’s subnet unchanged and upgrade only the

backbone network or the user’s subnet, it will not improve the

 117

performance of the entire system, as the bottlenecks are not there.

Another possible approach is to move the server so that it placed directly

on the backbone network.

4.7 How Streaming Video and VU Affects Each Other

As we discussed earlier, VU and streaming video have different

critical resources to consume. Within the system capacity, one might

expect that adding more VU or video users would not greatly degrade the

QoS of the other type of user. However, the QoS of streaming video is

sensitive to the traffic pattern on the network (i.e. the burstiness), since

this may result in delay jitter. Therefore, some characteristics VU courses

may affect the QoS of video sessions. For example, the frequency of

downloading images in VU is a strong candidate for doing this.

System Configuration:

Server’s processing power consumed by a

VU user’s request (N)

1

Number of students taking VU courses 300

Number of VOD sessions 60

Average (loaded) image size and standard

deviation (µ,σ)

64kB, 20kB

Loading image frequency (F) 10% ~ 50%

Server processing power (P) 1500 jobs/s

Background traffic level (B) 0%

 118

Simulation Results:

The simulation results for the above configuration are shown below in

Table 4.15 and in Fig. 4.13

Table 4.15: QoS vs. Image Loading Frequency of VU

VU VOD

Request Reopens

Time(s)

QoS

Parameters

VU Image

Loading

Frequency

Max. Mean Standard

Deviation

"Not

good"

"Bad"

Buffer O/U Flow

10% 2.829 0.131 0.22 0.0% 0.0% 0.771

25% 2.348 0.156 0.24 0.0% 0.0% 0.816

50% 2.715 0.242 0.35 0.0% 0.0% 1.018

 119

 120

Figure 4.13 QoS of VOD vs. VU Image Frequency

QoS of VOD vs. VU Image Frequency

-

0.200

0.400

0.600

0.800

1.000

1.200

0% 20% 40% 60%
VU Image Loading Frequency

V
O

D
 P

la
y

Bu
ffe

r
O

/U
 F

lo
w

 (/
M

in
)

 121

Observations:

As the frequency of loading images in the VU courses increases,

the QoS of video sessions degrades. The plot of Figure 4.13 shows a

linear shape which means the QoS degrades gradually. From the results

of former sections, we know the system is not congested in this

configuration. The reason for the QoS degradation can be explained in

this way: the VU traffic gets more bursty when more images are

downloaded, this causes more underflows and overflows in the VOD play

buffers, which in turn downgrades the perceived quality of service. This

experiment thus shows that different “modes” of telelearning may affect

each other.

 122

Chapter V
Conclusions

In this thesis, we have presented a computer-based simulation

method for carrying out performance research on networked multimedia

systems such as telelearning. A real system can be decomposed into

several functional components, each of which can then be modeled

separately with the expert knowledge in that specific field. When the

conceptual models are implemented into computer programs, a

simulation system that represents the real system’s structure and

functionality will be available. We used the Virtual-U system as an

example to describe how to build such a simulation system. We also

presented some results we obtained when we used the simulation system

to predict Virtual-U’s capacity and analyze key factors’ effects on system

performance.

 Through the work described in this thesis, we have demonstrated

that our approach is valid and that it can be fruitful in the future. A

simulation system with reasonable complexity can be obtained to

represent the real system from the perspective of our research interests

(we do not have to repeat everything that exists in the real system). How

good the simulation system is depends on the accuracy we can achieve

for the models.

We built a simulation system (tool) with OPNET that can simulate

students taking courses through the Virtual-U. Although the models

used are somewhat coarse grained (leaving room for future students),

the simulation system includes almost all of the key components in the

real system (the user, the server, the network environment et cetera.) and

 123

is able to help evaluate the overall system performance. The work of

building such a simulation system is twofold. Firstly we need to take

into account as many of the systems “key factors” as possible. Secondly

we should accurately represent how each factor works. Since our main

research interests are in the overall system performance and how each

factor contributes to it, a framework that includes all the key

components is the “Number 1” target of building the first version of the

simulation system. The models developed so far all need work for the

simulation to be a better guide to what happens in the real world;

however, all of the key components of the system are present and

working.

We also obtained some interesting results from the computer

simulation tool we developed and gained a better understanding of the

system capacity and how the key factors affect the system performance.

For the system configuration of 1997, the system bottleneck is not the

network, but the server. The capacity of the system depends on the

server’s processing ability, which is determined by both hardware power

and software design. From the network bandwidth perspective, the server

subnet is most likely to suffer bandwidth starvation. The users activity

and the contents of the courses all have effects on the system

performance. For example, adding more multimedia content to a course

will increase the load of the system. But if we control the amount of the

material to a reasonable level, the degradation of QoS is not dramatic.

VU and VOD traffic consume different “critical resources” (server power

and network bandwidth respectively) and could be used in “mixture”. If

the mixing is controlled in a good level, both good QoS and system

efficiency can be achieved.

 124

Analytical analysis agrees with computer simulation if an

application’s traffic is analytically tractable. Although our assumption

that the video server has enough power to ignore its effect on the

performance needs re-evaluation in future work, we have been able to

see how the network bandwidth imposes limitation on the system

capacity.

As for the accuracy obtained from the simulation, we can not get a

good answer until some experiments are made real systems that have

significant multimedia content, since otherwise we are just exercising the

server. Although the numbers in our results may not be totally accurate,

some clues are provided about the overall behavior of the system (e.g. the

shape of curve) and our results will help further investigations.

According to our results, in the existing VU system that offers text-

based conference courses, the server is the bottleneck and needs

improvement. When multimedia courses (e.g. streaming video lectures)

are added, QoS oriented new protocols should be considered to make

better network support.

The new QoS protocols provide better support to multimedia

services through two ways. One is to reserve bandwidth for real time

traffic and guarantee the availability of required resources. The other is

to label the traffic streams and process them according to their priorities.

During the evaluation of these newly designed protocols, we should keep

in mind both the protocols’ performance improvement and their

backward compatibility with existing hardware and software. For the

existing Virtual-U network environment, new QoS oriented protocols can

be adopted in two levels. One is in the local network; the other is across

the Internet.

 125

For the local network, there are many QoS oriented LAN protocols

providing better support to multimedia traffic than the 802.3. Among

them are IEEE 802.12[Watson, 1995] and Ethernet++ [Edwarts, 1995].

IEEE 802.12 retains the frame format from the original Ethernet.

Instead of CSMA/CD, it uses a deterministic protocol called demand

priority MAC. Stations need to ask for permissions from the hub before

transmitting any frame. The protocol is efficient because it avoids the

collision problem in CSMA/CD and there is no token propagation around

the network as in Token Rings. The demand priority protocol can support

two priorities by providing two request signals: a standard priority (SP)

request for the old applications as file transfer and a high priority (HP)

request for the delay-sensitive traffic such as voice and video. A hub will

always serve a HP request before a SP request. It serves each priority

level in a round-robin order in which the available bandwidth will

automatically be shared evenly among all stations currently active at the

highest priority. A SP request may be promoted to HP if it has waited

longer than some fixed amount of time (such as 250 ms). With two

priority levels the network can provide a service that guarantees

bandwidth and bounds the access delay for real-time applications. It is

observed that while 802.12 can keep high priority (HP) request’s delay

very small, it may also result in the standard priority requests (SP)

suffering long delay [Moh, 1996]. This protocol is standardized and has

many vendors in the market.

Ethernet++ employs a reserved cyclic access scheme with call

admission control to provide high priority (HP) services to real-time

traffic. The traditional CSMA/CD is used for standard priority (SP)

access that supports non-real-time traffic. It operates a dual protocol

 126

network. This protocol does not provide absolute preemptive channel

access for HP stations, HP traffic delay is dependent on SP traffic

conditions. The non-preemptive nature provides a reasonable inter-

priority fairness. This is very important for telelearning systems as VU,

because there will be traffic of both real time applications and non-real

time applications.

On the Internet side, IP version 6 [Huitema, 1998] will provide

better support for multimedia services. IP version 6 is also called IPv6 as

opposed to IP version 4 that is being used at present. IPv6 specification

defines flows. “A flow is a sequence of packets sent from a particular

source to a particular (unicast or multicast) destination for which the

source desires special handling by the intervening routers”. Flow labels

will be used if the transmission needs some special treatment. This

enables prioritized processing. Reservation is also available.

In the Internet, one reservation protocol of choice is RSVP

(ReSerVation Protocol) [Braden, 1996] which is designed for multicast

applications such as high-speed video transmission. These applications

have some peculiar characteristics, like a large number of receivers that

may be experiencing very different transmission conditions and that may

also belong to different network domains. They do resource reservation

by sending RSVP messages to the network with a specific QoS

requirement. The RSVP daemon sets parameters in a packet classifier

and packet scheduler to obtain the desired QoS. The packet classifier

determines the QoS class for each packet and the scheduler orders

packet transmission to achieve the promised QoS for each stream. RSVP

carries the request through the network, visiting each node the network

uses to carry the stream. At each node, RSVP attempts to make a

 127

resource reservation for the stream. Although the RSVP protocol is

designed specifically for multicast applications, it can make unicast

reservations. RSVP is not the only IP reservation protocol that has been

designed for this purpose, but RSVP currently has the most industry

support.

Further work on the simulation system could be in three areas:

1) We should improve the accuracy of the models in representing the

real system. For example, in the server model, the server’s processing

power parameters needs to be estimated better, with different types of

requests using different amounts of processing power. This re-

evaluation may come from a thorough analysis of the server along

with some experiments to get real measurements. One of the

difficulties we met in building an accurate user model comes from the

“unpredictability” of human thinking habits. One approach to

overcome this may be to increase the granularity of the simulation by

dividing users into several groups according to their

behaviors/habits, so that a statistical model could be found for each

of the groups. Efforts should also be made for a user model without

the system dependency. One approach may be analyzing the log data

of a set of users work with a “congestion free” environment, i.e. the

network is isolated and has enough resources for the users; the

server is also powerful enough and will not be a bottleneck. For the

background traffic model, we may try how a “self-similar”

background traffic model affect the system performance. We are not

expecting significant different for the VU users since the VU

application is not very sensitive to background traffic itself; however,

the VOD service may got impacted, because the “self-similar”

 128

background traffic is more bursty, this will cause more underflow or

overflow of the viewer’s play buffer which in turn will degrade the

quality of service of the VOD sessions..

2) More work needs to be done in the validation of our simulation

models. The best way to do this it is through experiments on a real

system. This approach is the most reliable but some times difficult to

do because of the lack of data available regarding real courses –

especially ones that push the technological envelope. Another

alternative for validation would be to build a log-file collection

mechanism right into our simulation. Some level of validation could

then be obtained by comparing the simulation’s log-file with the one

produced by the course that we are trying to model. This second

method may be easier, but it should be used with care since we need

to validate the “log data collecting system” in the simulation first. It is

also not clear that similar log-files would mean that the QoS is being

predicted correctly.

3) Finally, more features need to be built into the simulation to make it

more "versatile". For example, we could include such applications

as video/audio conferencing as one of the tools available in a course.

in order to increase the levels of student-student interaction. We

could also add new protocols (such as IPv6, RSVP, 802.12 et cetera.)

to the network model and evaluate the performance of different types

of networking technologies in supporting telelearning applications.

This work will provide very useful guidelines to the telelearning

system designers for taking complete advantages of today’s network

environment and optimizing telelearning systems.

 129

Appendix A
OPNET Simulation Package13

“OPNET is a comprehensive software environment for modeling,

simulating, and analyzing the performance of communications networks,

computer systems and applications, and distributed systems.”

OPNET is used to analyze the performance and behavior of existing

or proposed networks, systems, and processes (as shown in Figure A.1).

A set of tools are included with the package that assist users through

the following phases of the modeling and simulation cycle:

1) Model Building and Configuration

•= Network Editor - define or change network topology models

•= Node Editor - define or change node level (system architecture)

models

•= Process Editor - define or change process level (behavioral logic)

models

2) Running Simulations

•= Simulation Tool - define and run simulations using models

constructed with the OPNET editing tools.

•= Interactive Debugging Tool - interact with running simulations

3) Analyzing Results

•= Analysis Tool - display and compare statistical results

•= Animation Viewer - watch dynamic behavior of models during

simulation runs

13 The information in the appendix is based on the OPNET web site www.mil3.com.

Figure A.1 OPN

 “To lend structure and

models fit together in a hier

Network Models define th

communicating entities, or no

structured data flow diagram,

interrelation of processes. Eac

has its functionality defined by

Define Problem
Gather Data

A

R

M

Build Models

un Simulations
nalyze Results
 130

ET work flow [OPNET Web]

 discipline to the overall model, OPNET

archical fashion.” [OPNET Web] OPNET

e position and interconnection of

des. Each node is described by a block

or OPNET Node Model, which depicts the

h programmable block in a Node Model

 an OPNET Process Model with a standard

ake Decisions

 131

programming language and a broad library of pre-defined modeling

functions.

The OPNET Network Editor graphically represents the physical

topology of a communication network. Networks are made up of nodes

and links objects, which are graphically assembled and parameterized

via pop-up dialog boxes. To create node objects, users select node types

from a library of example and user-defined models. Each OPNET Node

Model has a specific set of attributes that are used to configure it.

The OPNET Node Editor graphically represents node architectures,

which are diagrams of data flow between modules typically representing

hardware and software subsystems. Module types include processors,

queues, and traffic generators. Processors are general modules that

defined according to protocol and algorithm specification. The

functionality of processor and queue objects is defined using OPNET

Process Models. Instances of OPNET Node Models are used to populate

OPNET Network Models.

The OPNET Process Editor uses a state-transition diagram

approach to support specification of any type of protocol, resource,

application, algorithm. States and transitions graphically define the

progression of a process in response to simulated events. Within each

state, general logic can be specified using a library of pre-defined

functions. The full flexibility of the C programming language is also

accessible. As with other OPNET editors, users can construct entirely

new process models.

After a set of OPNET Network, Node, and Process Models are fully

defined, users can run simulations based on them via the OPNET

 132

Simulation Tool, and plot statistical performance measurements based

on simulation studies in the OPNET Analysis Tool.

“The OPNET Analysis Tool provides a graphical environment that

allows users to view and manipulate data collected during simulation

runs.” [OPNET Web] Standard and user-specified probes can be inserted

into a model to collect statistics. Simulation output collected by probes

can be displayed in numbers or figures, or exported to other software

packages for analysis. First and second order statistics on each trace

along with the confidence intervals can be automatically calculated and

displayed. “OPNET supports the display of data traces as time-series

plots, histograms, probability density and cumulative distribution

functions, and scatter grams.” [OPNET Web] All these are helpful in

getting results and discoveries.

 133

Appendix B
Program Description

Network Model

In the network model, the backbone network is an eight-port

bridge. The seven subnets are: subnet_1, subnet2, subnet_3, subnet4,

subnet_5, subnet6 and the server net.

In each of the user's subnet, there are 25 user stations and 2

background traffic generators connected to a 32 port Ethernet hub. In

the server's subnet, there are a server and 2 background traffic

generating stations.

The multi-ports bridge is defined by the file

"ethernet8_bridge.nd.m". The key parameter is the "Bridge frame service

rate (bps)".

The Ethernet hub is defined by the model "ethernet32_hub.nd.m".

The background traffic generating station is defined by

"ethernet_station_base.nd.m and the key parameters are:

1) Application data size: This is the packet size for the

background traffic. (bits)

2) Application traffic generator rate PDF: This is the distribution

of the background traffic packets.

3) Application traffic generating rate : This is the average value of

the background traffic generating rate.

4) Ethernet address: This is the address of the background traffic

generator’s address.

 134

5) Destination highest address: This is the upper bound of the

destination address for the background traffic.

6) Destination lowestest address: This is the lowest bound of the

destination address for the background traffic.

Server Model

The server is defined by "cyeth10T_server_base.nd.m". The key

parameters are :

1) Server's processing power: This number is the server’s processing

power (jobs/s)

2) Server configuration table: This table lists all the services the

server is providing.

3) Tpal address: This is the server’s identification/address.

User Model

The user is defined by the node file "vunode1.nd.m". The user

process model are implemented by 4 files. The main control file is

"vunet_app_mgr.pr.m". It will spawn the appropriate processes for

different types of applications. These applications are: “vucli_cli.pr.m”

for VU courses, “cygna_cli.pr.m” for VOD course and “odgna_cli.pr.m”

for other applications such as Email, FTP et cetera.

The key parameters for the VU course are:

1) Login Rate: This is the hourly session rate.

2) Terminal Traffic: This is the average traffic size from the user to the

server.

3) Host Traffic: This is the average traffic size from the server to the

user.

 135

4) Server: The address of the VU server.

5) Login Duration: The average time for a login session.

6) Duration Time: The average time between 2 user's request to the

server.

The key parameters for the streaming video (VOD) course are:

1) Command Rate: The average rate of users request data from the

server.

2) Terminal Traffic: The Traffic size in the direction of user --> server.

3) Host Traffic: The Traffic size in the direction of server--> user.

4) Login Duration: The average time of a VOD session.

5) Server: The address of the VOD server.

6) Duration Time: The duration time in each of the state

7) Login Rate: The average hourly rate of VOD session.

The transition probabilities matrix of a user model is defined in the

header part of the relative model file (e.g. cygna_cli.pr.m). The program

will determine the state transition according to the conditions defined.

In the VU model, we took a “micro” view of the user’s activity and

modeled the requests. In the VOD model, our main interest is in the

traffic rate other than the atomic requests. And as we discussed earlier,

we got the trace from the viewer’s end, the traffic rate of the flow is still

good, but the packets Interarrival time are distorted by the network. So

we modeled the rate rather than the request interarrival time in the

VOD.

Each state has two parameters, the request interarrival time and

the “state duration time”. These parameters are defined in the program to

provide better modeling of real problem, but they do not have to all be

used at the same time. For example, for VU , we used a so in each state,

 136

the user only send one request, thus the “state duration time” in fact

used to model the request interarrival time. In the later, for the more

complex models, each state has multiple requests, both the two

parameters can be used.

Probes

In the Probe file “probeSS.pb.m”, some useful probes are defined:

"client VOD resp.3": The VOD response time of client1in subnet3.

"client VU resp.3": The VU response time of client1in subnet3.

"client VU resp.6": The VU response time of client1 in subnet6.

"server Eth throuput": The throuput of the Ethernet subnet where the

server is located.

"client31 Eth throuput": The Ethernet throuput of sunet3

"BK-sta Eth throuput": The Ethernet throuput of the background traffic

station in the server's net.

"VOD playbuffer 3.1": The Play buffer's over/underflow of client1 of the

subnet3.

"VOD playbuffer 6.1": The Play buffer's over/underflow of client1 of the

subnet6.

"server service time": The service time for the server of the request

"global VOD response time": The VOD response time of all the users.

"global VU response time": The VU response time of all the users.

"global application response time": The response time of all the users for

all the applications.

"global ETH throuput": The Ethernet throughput of all the subnets.

"global play buffer over/underflow": The Play buffer's over/underflow of

all the users.

 137

References

[Beran, 1995] J. Beran, R. Sherman, M. Taqqu, and W.
Willinger, “Long range dependence in variable-
bit-rate video traffic”, IEEE Transactions
Communications, Vol. 43 1995.

[Beranetal, 1992] J. Beranetal, “Variable-Bit-Rate Video Traffic
and Long-Range Dependence,” accepted for
publication in IEEE Trans. On Commun., 1992

[Braden, 1996] R. Braden et al., “resource Reservation Protocol
(RSVP) – Version 1 Functional Specification,”
Aug.12,1996. Available via
http://www.ietf.org/html. Charters/intserv-
charter.html.

[Crovella, 1996] Mark E. Crovella and Azer Bestavros, “Self-
Similarity in World Wide traffic Evidence and
Possible Causes” . In proceedings of the 1996
ACM SIGMETRCS International Conference on
measurement and Modeling of Computer
Systems. Pp.160-169, May 1996.

[Edwarts, 1995] F. Edwards and M.Schulz, “A priority media
access control protocol for video communication
support on CSMA/CD LANs”, ACM Multimedia
Systems, Springer-Verlag and ACM, 1995

[Freeman, 1995] Roger L. Freeman, Practical data communications,
John wiley &Sons, 1995

[Frost, 1994] Victor S. Frost and Benjamin Melamed, “Traffic
Modeling for Telecommunications Networks”,
IEEE Communication Magazine, March 1994

[Hogg,1997] Robert V. Hogg and Elliot A. Tanis, Probability
and statistical inference, Prentice–Hall, Inc, 1997

[Huitema, 1998] Christian Huitema, IPv6- the new Internet
protocol, Prentice–Hall, Inc, 1998

[Johnson, 1996] Howard W. Johnson, Fast Ethernet: dawn of new
network, Prentice–Hall Inc, 1998

[Larson, 1979] H.O. Larson and B. O. Shubert, Probabilistic
Models for Engineering Sciences, John Wiley and
Sons, 1979

[MacDougall, 1987] M. H. MacDougall, Simulating computer systems:
techniques and tools, MIT press 1987.

http://www.ietf.org/html

 138

[Maglaris, 1988] B. Maglaris, D. Anastassiou, P.Sen, G. Karlsson,
and J. D. Roberts “Performance models of
statistical multiplesing in packet video
communications,” IEEE Trans. Commun., vol.
COM-36, no. 7, July 1998

[Mandelbrot,1968] B. Bl Mandelbrot and J. W. Van Ness,
“Fractional Brownian Motions, Fractional
Noises and Applications,” SIAM Review, vol. 10,
1968.

[Michiel, 1997] Herman Michiel & Koen Laevens, “Teletraffic
Engineering in a Broad-band Era”, Proceedings
of the IEEE. Vol. 85. No.12 December 1997

[Miller, 1992] Mark A. Miller, Internetwork: a guild to network
communiactions by M&T public Inc 1992.

[Moh,1996] W. Melody Moh et al, “Evaluation of High Speed
LAN Protocols as Multimedia Carriers”. In 1996
IEEE International Conference on Computer
Design

[NetShow Web] http://www.microsoft.com/product/

[OPNET Web] http://www.mil3.com

[Paxon, 1994] Vern Paxon, “Empirically-Derived Analytic
Models of Wide-Area TCP Connections”. In
IEEE/ACM Transactions on Networking, 2(4),
pp. 316-336, August 1994.

[Paxon,1995] Vern Paxon and Sally Floyd, “Wide-Area Traffic:
The failure of Poisson Modeling”, In IEEE/ACM
Transactions on Network, 3(3), pp. 226-224,
June 1995.

[Schwatz, 1987] Mischa Schwartz, Telecommunication networks :
protocols, modeling, and analysis, Addison-
Wesley, 1987

[Schwartz, 1993] Schwartz R.L and Tom Christiansen, Learning
Perl, O’Reilly & Associates 1993

[Schwartz, 1996] Mischa Schwartz, Broadband integrated
networks, Prentice Hall 1996.

[Tanenbaum,1996] Andrew S. Tanenbaum, Computer networks,
Prentice Hall 1996

[Telelearning Web] http://WWW.telelearn.ca

[VU Web] http://virtual-u.cs.sfu.ca/vuexchange/

 139

[Watson, 1995] G. Watson, et al. “The demand priority MAC
protocol,” IEEE Network Magazine, Jan/Feb
1995

[Zaiane , 1998) Osmar R. Zaïane, Man Xin, Jiawei Han,
“Discovering Web Access Patterns and Trends by
Applying OLAP and Data Mining Technology on
Web Logs”. In Proc. ADL'98 (Advances in Digital
Libraries), Santa Barbara, April 1998.

