ENSC380Lecture 10

Objectives:

- \bullet Learn how to find the impulse response of a CT-LTI system $(h(t))$
- \bullet Learn how to represent ^a system (DT or CT) in form of ^a block diagram

CT Impulse Response

• Any CT and LTI system can be shown with ^a linear constant coefficient differential equation of:

$$
a_n y^{(n)}(t) + a_{n-1} y^{(n-1)}(t) + \ldots + a_1 y'(t) + a_0 y(t) =
$$

$$
b_m x^{(m)}(t) + b_{m-1} x^{(m-1)}(t) + \ldots + b_1 x'(t) + b_0 x(t)
$$

- • The impulse response of the system is the answer to the above equation when $x(t)=\delta(t).$
- • In Lecture ⁹ we assumed the impulse response is given, and we found that theresponse of the system to an arbitrary input (excitation) signal $\left(x(t) \right.$ is:
- •Today we want to step back and learn how to find the impulse response itself.
- We will see that depending on the values of m and n in the above equation,
the ferm of the impulse response veries (slightly) the form of the impulse response varies (slightly).
- •We will see this through some examples.

Example 1

Find the impulse response of ^a system described by the following differential equation:

$$
y'(t) + ay(t) = x(t)
$$

This means find $h(t)$ such that:

$$
h'(t) + ah(t) = \delta(t)
$$

- \bullet • For $t < 0$ we know that:
- •• for $t > 0$, the differential equation becomes and the general answer to it is:

Example ¹ (Cont.)

•• for $t = 0$ we need to find out if $h(t)$ includes a $\delta(t)$ or higher order singularity functions at $t=0$ or not. The equation at $t=0$ becomes:

$$
h'(t) + ah(t) = \delta(t)
$$

- •**If** $h(t)$ includes a $\delta(t)$ function, then, $h'(t)$ includes the function. However, the right hand side of the equation $(\delta(t))$ does not have this function!
- So we conclude that $h(t)$ does not include $\delta(t)$ or higher order singularity functions and the complete solution is :

$$
h(t) = Ke^{-at}u(t) \quad K = ?
$$

•● To find K , we integrate both sides of the equation from 0^- to 0^+ : Find the impulse response of:

$$
y'(t) + ay(t) = x'(t)
$$

•For $t < 0$ and $t > 0$ the results are as in the previous example: $h(t) = 0$ $t < 0$ and $h(t) = K_0 e^{-at}$ $t > 0$

 \bullet \bullet However, at $t = 0$ the left hand side of equation needs to have a doublet function, which means $h(t)$ needs to have a function. The complete answer is thus:

$$
h(t) = K_0 e^{-at} u(t) + K_1 \delta(t)
$$

•• To find K_0 and K_1 , we replace h(t) in the equation:

•• Note: In the Text $\delta(t)$ is shown with $u_0(t)$, $\delta'(t)$ with $u_1(t)$, $\delta''(t)$ with $u_2(t)$, ... Find the impulse response of:

$$
y'(t) + ay(t) = x''(t) + bx(t)
$$

- •• Again, same situation for $t < 0$ and $t > 0$.
- To satisfy the equation at $t = 0$, $h(t)$ needs to have the $\delta(t)$ and its derivatives, such that $h'(t)$, will include a term $\delta''(t)$, thus:

$$
h(t) = K_0 e^{-at} u(t) + K_1 \delta(t) + K_2 \delta'(t)
$$

•Again, to find K_0 , K_1 , and K_2 , we replace $h(t)$ in the differential equation:

General Rules

$$
a_n y^{(n)}(t) + a_{n-1} y^{(n-1)}(t) + \ldots + a_1 y'(t) + a_0 y(t) =
$$

$$
b_m x^{(m)}(t) + b_{m-1} x^{(m-1)}(t) + \ldots + b_1 x'(t) + b_0 y(t)
$$

 \bullet If $m < n$: The impulse response includes only the homogeneous response:

 $h(t) = y_h(t)u(t)$

•If $m = n$: The impulse response includes the homogeneous response and an impulse function but no derivatives of the impulse function: impulse function but no derivatives of the impulse function:

$$
h(t) = K_0 y_h(t) u(t) + K_1 \delta(t)
$$

•If $m > n$: The impulse response could contain an impulse function, plus derivatives of the impulse function up to the $(m-n)$ th derivative.

$$
h(t) = K_0 y_h(t)u(t) + K_1 \delta(t) + \ldots + K_{m-n} \delta^{m-n}(t)
$$

DT Block Diagram

- \bullet We are already familiar with representing an DT-LTI system with itscorresponding block diagram.
- \bullet Example:

$$
y[n] + 3y[n-1] - 2y[n-2] = x[n]
$$

CT Block Diagram

- \bullet CT block diagrams are similar to DT, with ^a little twist!
- \bullet Example:

$$
2y''(t) + 5y'(t) + 4y(t) = x(t)
$$

 \bullet Use blocks of differentiators to draw the block diagram:

 \bullet It is conventional to implement the differential equation using integrals insteadof differentiators, because integrators are easier to implement in practice.

CT Block Diag. (Cont.)

 \bullet \bullet Write the differential equation with y $^{''}(t)$ on the left hand side:

 \bullet Now, implement using blocks of integrators: