
ENSC380
Lecture 11

Objectives:

• Learn how to represent a periodic signal with its continuous time Fourier series
(CTFS)
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CT Impulse Response

• In the previous lectures we learned that the response of LTI systems to
complex exponentials (est or ejωt, is

• Furthermore, if the input to an LTI system is a sinusoidal of frequency f , the
output is

• Finally, if an excitation signal (x(t) or x[n]) is a linear combination of complex
exponentials (or real sin(.) or cos(.) signals), the response of the system is:

• Note: Complex exponentials are also called complex sinusoids because:
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Complex Exponential Response 3/13
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Fourier Series

• In early 19th century Jean Baptiste Joseph
Fourier showed that signals may in fact be rep-
resented as linear combinations of complex ex-
ponentials (or real cos(.) and sin(.))

• He showed that periodic signals can be exactly represented as linear
combinations of sinusoids.

• He also showed that for aperiodic signals, any time limited portion of them
(e.g. from t0 to t0 + Tp) can be represented as a linear combination of complex
exponentials.

• This linear combination is called “Fourier Series” (FS), for obvious reasons!

• We first consider continuous-time Fourier series (CTFS).
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Illustration for Periodic
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CTFS for Periodic Signals

• Consider a periodic signal, x(t), with fundamental period T0 (fundamental
frequency f0 = )

• The Fourier series representation for x(t) is:

x(t) =
∞
∑

k=−∞

X[k]ej2π(kf0)t

• In the above definition, f0 is called the fundamental frequency of the Fourier
series representation and kf0 is the kth harmonic of the fundamental
frequency, k is the harmonic number , and X[k] is the kth coefficient of the
FS. X[k] is also referred to as the harmonic function .

• The question now is whether it is always possible to find the FS coefficients,
X[k], and if yes how?
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FS coefficients

x(t) periodic with period T0, f0 = 1/T0:

x(t) =
∞
∑

k=−∞

X[k]ej2π(kf0)t

• To find X[k] for k = q, (q integer), multiply both sides of the above equation by
e−j2π(qf0)t and integrate over one period (t ∈ [t0, t0 + T0]).

• This will result in:

X[q] =
1

T0

∫ t0+T0

t0

x(t)e−j2π(qf0)tdt

• If the above integral converges to a finite value for all q, the FS coefficients can
be found for all q, and the FS representation is valid.

• If the above integral does not converge, the signal does not have a FS
representation.
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CTFS for Aperiodic Signals

• Consider an aperiodic signal, x(t). Extract a portion of x(t) over a time interval
t0 ≤ t ≤ t0 + Tf (Tf arbitrary) and call it x̂(t):

• Create a periodic signal (xp(t)) by repeating x̂(t) every Tf seconds:

• xp(t) can be represented by its Fourier series:

xp(t) =
∞
∑

k=−∞

• Obviously the original signal x(t), has the same FS representation, but only
during t0 ≤ t ≤ t0 + Tf .
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Example 1

Find the CTFS representation of sin(2πf0t). What is the harmonic function, X[k]?
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Example 2

What is the harmonic function (X[k]) of x(t) = cos(8πt) + cos(12πt) ?

• First we need to find the fundamental period or frequency of x(t):

• Now we can represent x(t) =
∑

k X[k]ej2π(kf0)t
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Example 3

Consider a periodic rectangular function with T = 1(s), defined over one period as

x(t) =

{

1 |t| < 1/4

0 1/4 < |t| < 1/2

Find the CTFS coefficients (harmonic function), X[k], of this signal.
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