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ENSC380
Lecture 15

Objectives:

@ Learn about the continuous time Fourier Transform (CTFT) for
¢ Aperiodic signals
¢ Periodic signals
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Recap of CTFS

We know that a periodic signal, =, (t), has a CTFS representation in complex
exponential or trigonometric forms:

x(t) = i X[k]e?m(kfo)t — X[O]+i (X [k] cos(2m(kfo)t) + Xs[k] sin(2m(kfo)t)]
k=—o0 k=1

Example: The CTFS representations of 10 cos(27100¢) in exponential and
trigonometric forms are:

Which means, cos(27100t) has a frequency component of (Hz) with a
weight of

Example: If the CTFS representation of a signal is given as:
x(t) = 4 + 2 cos(27(300)t) + 0.5 sin(527(400)t)

It means: The signal x(t) has a frequency component of (Hz) with a weight
of , and a frequency component of (Hz) with a weight of , and a
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CT-Fourier Transform (CTFT)

¢ CTFS can only be found for periodic signals or over a finite time interval for
aperiodic signals.

@ Can we find out about the frequency contents of a complete aperiodic signal?

® Yes, this can be done using a representation called the continuous time
Fourier transform (CTFT):

0

X(f):]-"(:r;(t)):/ x(t)e 72T

— o0

o(t) = F X)) = [ T X (e Ity

Notations:
X(f)=F(=z(t)) or a(t) < X(f)

¢ X(f) can also be written in terms of the radian frequency, by replacing f with
w/2m and is shown with X (jw).
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Example 1

Find the Fourier transform of x(t) = rect(t)
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Example 2

Find the Inverse FT of X (f) = —.
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Interpretation of CTFT

The CTFS of a periodic signal with fundamental frequency fq, indicates the
weight of the frequency components of the signal at frequencies 0, fo, 2fo, ...,
kfo, ...

The CTFT of a signal (aperiodic) is a continuous function of the frequency f.
X (f) between two frequencies, f1, and f1 + df, is an indication of how much
of the signal’s energy is contained in this range of frequencies.

Let’s look at the FT of some signals using Text book’s Matlab concept
i simulator.
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Frequency Content

Signals can be categorized based on their frequency content, i.e., the range of
frequencies their Fourier transform covers (see next slide)
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Convergence of CTFT

The condition for convergence of CTFT, is similar to the condition for CTFS.
l.e., the signal x(t) should be absolutely integrable, but here over the interval
of [—oooa]:

/wm@m<m

— o0

There are two more conditions for convergence of CTFS and CTFT, but these
are always valid for practical signals.

For some signals which are not absolutely integrable over [—ocooc], such as
periodic signals, or a constant value signal (z(t) = A), we can still find their
CTFT if we allow 6(f) in the Fourier transform.
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CTFT for z(t) = A "

® Forz(t) = A, we have X (f) = [>°_ AeJ27/tdt. This integral does not
converge.

x(7)

A

® But now consider z, (t) = Ae~°I*l & > 0. For this signal:

20
o2 + (27 f)?

Xo(f) = / Aeltlg=a2mftg — A
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CTFT for x(t) = A (Cont.) .

Now let's decrease o towards O:

5,0

o decreasing
For f #£ 0; lim, 0 X5 (f) =

For f = 0; limy—0 Xs(f) =
We can show that the area under = ' 4
Xs(f)Is: X(/)

4 i © decreasing

/oo Xo(f)df = A (independent of o)

g 1
We can conclude that: lim, 0 X (f) = 6(f)

Important Fourier Pairs:
AL AS(F) or 15 8(F)
Using a similar approach we can show that:

I3 IO o 8(f ~ fo)
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CTFT for cos(.) and sin(.) e

@ Using the last result above and assuming we know that CTFT is Linear we
can show that:

cos(27 fot) N %[5(]0 — fo) +0(f + fo)]

sin(2r fot) <o 2ij[5(f — fo) = 8(F + fo)
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Graphical lllustration
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