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ENSC380
Lecture 18

Objectives:
¢ Summary of different Fourier Transform methods
@ Learn the relationship between different DT methods

Lecture 18 Atousa Hajshirmohammadi, SFU



Summary of CT-FTs .

¢ CTFS: Applies to CT and periodic signals:

o

z(t) = »  X[k]eF2m (ko)
k=—o0
to+To .
X = — / ()2 (kf0)t gy
TO to

¢ CTFT: Applies to CT signals (periodic or aperiodic):

o0

X(f):}"(a:(t))z/ z(t)e 92t gy
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Summary of DT-FTs o

¢ DTFS: Applies to DT and periodic signals:
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k=ko <Ngp>
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® DTFT: Applies to DT signals (periodic or aperiodic):
2[n] = / X(F)el2mFrgp
1

X(F) = Z x[n]e J2mEN

n=—oo
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CT

DT

FT Methods

Discrete Frequency

Continuous Frequency
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CTFT-CTFS Relationship (1)

If a periodic signal, xz(t), has the CTFS coefficients (harmonic function), X[k], we
can write its CTFS representation as:

x(t) =

Then the CTFT for x(¢) is:
X(f) = F(z(t)) =
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CTFT-CTFS Relationship (2)
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An aperiodic signal, z(t), has CTFT X (F'). Create a periodic signal, =, (t), from z(t)

by repeating it every T,, = 1/ f, seconds. z,(t) then has a CTFS representation and

its harmonic function, X, k| relates to X (f):
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DTFT-DTFS Relationship (1)

can write its DTFS representation as:

x[n| =

Then the DTFT for z[n] is:
X(F) = F(z[n]) =

X[7]
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If a periodic signal, xz[n|, has the DTFS coefficients (harmonic function), X[k], we
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DTFT-DTFS Relationship (2)

An aperiodic signal, z[n|, has DTFT X (F'). Create a periodic signal, x,[n], from x[n]
by repeating it every N, = 1/F, samples. z,[n] then has a DTFS representation
and its harmonic function, X, [k] relates to X (f):

XplK] = X (KF)

p
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CTFT-DTFT Relationship

¢ Finally we study the relationship between the FT of CT signal, and the FT of
the DT signal which is a sampled from the CT signal every Ts seconds.

¢ Consider the signal z(t). Let

Lo (t) = Z §(t — nTs) i z[n]d(t — nTs) where z[n] = z(nTy)

n=—oo n=——oo

¢ Find the CTFT of z,(t), in terms of X (f), using the multiplication-convolution
property:
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CTFT-DTFT Relationship (Cont.)

¢ Also find the CTFT of z(¢), in terms of the DTFT of x[n]:

¢ Finally find the relationship between the DTFT of z[n] and the CTFT of z(¢) :
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CTFT-DTFT Relationship (Cont.)
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