

Objectives:

- Sampling of CT signals
- Shannon's sampling Theorem and Nyquist rate
- Aliasing

Sampling Methods

- For reasons mentioned before, most signal processing operations in the modern world are done with digital technology. This is often referred to as "Digital Signal Processing" or DSP.
- A CT signal should be "sampled" and "digitized" in order to be processed using DSP technology.
- The process of "digitization" of a signal usually consists of two stages: "Sampling" (and "Analog to Digital Conversion" (ADC).
- Here we will focus on the first part, i.e., sampling.

Ideal Sampling

• An "ideal sampler" is a system that multiplies the CT signal by a train of impulses, repeating every T_s seconds. T_s is called the "sampling period" and $f_s = 1/T_s$ is the "sampling rate".

Sampling (Cont.)

4/9

Sampling Rate and Aliasing

- The important question now is: How fast should we sample the CT signal in order to be able to recover the original signal, x(t) from $x_{\delta}(t)$?
- As long as , we can retrieve the replica of X(f) from $X_{\delta}f$, by using a .
- If sampling rate (f_s) drops to less than $2f_m$, the replicas of X(f) will overlap with each other and we cannot recover X(f) anymore. This is referred to as "aliasing".

Shannon's Sampling Theorem

- Shannon's Sampling Theorem: If a signal is sampled for all time at a rate more than twice the highest frequency at which its CTFT is non-zero it can be exactly reconstructed from the samples.
- The sampling rate $2f_m$ is called "Nyquist rate".
- A signal sampled at a rate higher than the Nyquist rate, it is called "over sampled".
- A signal sampled at a rate lower than the Nyquist rate, it is called "under sampled".
- Note: A signal that is "time limited" cannot be "band limited". This means that there is no sampling rate high enough for sampling this signal such that it is recoverable!

Example 1

Sample the signal $x(t) = A \operatorname{sinc}(\frac{t}{3})$ using an "ideal sampler" at twice its Nyquist rate. Find and sketch the CTFT of the sampled signal. Can you retrieve the original signal? How?

Example 2

Sample the signal x(t) of Example 1, but at half its Nyquist rate. Find and sketch the CTFT of the sampled signal. Can you retrieve the original signal? How?

Practical Perspective

- Shannon's theorem tells us that sampling at Nyquist rate (twice the bandwidth of the signal) is enough to retrieve the original signal.
- The above theorem however, assumes the use of an ideal LPF for original signal retrieval. But in practice our filters are non-ideal (Causal).

 Thus in practice signals are almost always "over sampled" in order to compensate as much as possible for the non-ideality of the filters.