ENSC380

Lecture 3

Objectives:

- More signal transformations: Differentiation, Integration
- Learning about even and odd functions, and how to extract the even and odd parts of a function
- Derivative and integral of even and odd functions
- Periodic signals

Differentiation / Integration

- Differentiation and Integration can be considered as two more forms of signal transformation.
- By differentiating a signal we find the rate of the changes in the signal.
- By integrating a signal we find the area under the signal
- Example: Find the derivative of this functions:

- Example: Find the integral of $u(t)$

Even/Odd Functions

- Even function: $g(-t)=$
- Odd function: $g(-t)=$

- Every function can be written as the sum of an even and an odd function, i.e., $g(t)=g_{e}(t)+g_{o}(t)$, where $g_{e}(t)=$
$g_{o}(t)=$

Sum and Product

- Sum of two even functions is
- Sum of two odd functions is
- Sum of an even and an odd function is
- Product of two even functions is
- Product of two odd functions is
- Product of an even and an odd function is

Differential and Integral

- The derivative of an even function is
- The derivative of an odd function is
- The integral of an even function is
- The integral of an odd function is

Periodic Signals

- If $\mathrm{g}(\mathrm{t})$ is periodic with period T, then

$$
g(t)=
$$

- If T is the smallest number for which the above equation holds, then T is called the fundamental period of $g(t)$
- The fundamental frequency of $g(t)$ is defined as

Sum of Periodic Signals

If the periods of two periodic signals have a finite least common multiple, then the sum of the two signals is periodic:

Second sinusoid

Two periods of the sum of the sinusoids

