ENSC380 Lecture 3

Objectives:

- More signal transformations: Differentiation, Integration
- Learning about even and odd functions, and how to extract the even and odd parts of a function
- Derivative and integral of even and odd functions
- Periodic signals

Differentiation / Integration

- Differentiation and Integration can be considered as two more forms of signal transformation.
- By differentiating a signal we find the rate of the changes in the signal.
- By integrating a signal we find the area under the signal
- Example: Find the derivative of this functions:

Example: Find the integral of u(t)

Even/Odd Functions

• Every function can be written as the sum of an even and an odd function, i.e., $g(t) = g_e(t) + g_o(t)$, where

$$g_e(t) = \qquad \qquad g_o(t) =$$

Sum and Product

- Sum of two even functions is
- Sum of two odd functions is
- Sum of an even and an odd function is
- Product of two even functions is
- Product of two odd functions is
- Product of an even and an odd function is

Differential and Integral

The derivative of an even function is

The derivative of an odd function is

The integral of an even function is

The integral of an odd function is

Periodic Signals

If g(t) is periodic with period T, then

g(t) =

• If T is the smallest number for which the above equation holds, then T is called the **fundamental period** of g(t)

• The fundamental frequency of g(t) is defined as

Sum of Periodic Signals

If the periods of two periodic signals have a **finite** least common multiple, then the sum of the two signals is periodic:

7/7