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ENSC380
Lecture 4

Obijectives:
¢ Introduction to discrete-time (DT) signals

¢ DT exponential and sinusoidal signals
¢ DT unit step and unit impulse functions

¢ Transformation of DT signals: amplitude scaling, time shifting, time scaling ,
1 differencing, accumulating

¢ Energy and power signals (DT or CT)
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Lecture 4

DT Signals

212

Discrete time signals are signals which are defined only at integer values of
their argument.

Consider a CT signal which is sampled every T seconds. This means that the

switch in the circuit below, closes every Ts seconds. The frequency of
sampling is then fs; =

x(7) @ x[n]

D -]‘:*I

If () iIs sampled every T, seconds, the signal at the output of the switch is

z( )
This signal is instead shown as x[n|, where n is an integer.

Some of the more important DT signals are “exponentials” and “sinusoids”.
These are analogous to their CT counterparts, with slight but important
differences!
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DT Exponential 1o
Mathematical formula:
g[n] = AeP™ or g[n] = Aa™, o =€P

where A is a real constant and g is a complex constant.

i Comple
1 Real o Plex o
o < 1
-1 < <D Re(x[n]) Im(x[n])
0 <o <1 ‘ l
n
IIITLT$1"W n -
- .|
| o) = 1

o<-1

o> 1 ‘ Re(x[n]) fta[a])
n
|t!'HfTTTTTTIIIH{ - 71 ‘—LU—’_H_—LU_‘_D—LI_L It j—’———‘—u—’—‘—’—‘—“—‘—”—d n

Lecture 4 Atousa Hajshirmohammadi, SFU




DT Sinosoids
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¢ General form:;
gln] = Acos(2nKn + 0)

¢ What is the condition for g[n] to be periodic?

¢ The fundamental period of a DT periodic sinusoid, is the smallest integer N
which solves KN = m for an integer m.

¢ Example: what is the fundamental period of:

15
gln] = SCOS(Qﬂ'En +0)
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DT Sinosoids (Cont.) 512

¢ Two DT sinusoids:

- Period | | Period

il

¢ An interesting point to note is that sometimes two DT sinusoids can be

identical even if they have different Ks. For example: g;[n] = cos(%”n) and

g2[n] = cos(12%n)

g,[n] = cos (%)
-

Fi

[ 4.

gln] = cos ('2%:)
-
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DT Singularity Funcs.
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Unit sequence (very similar to CT unit step):

u[n]:{ 1 n>0

0 n<O

1 n=0
0 n#0

¢ Unit impulse (not too similar to CT impulse!): §[n] = {

i ® Recall: §(5t) = ?
Now: §[5n]| =?

@ See your Text for other DT singularity functions;
ramp[n], recty, [n],comby, [n]
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DT Transformations 712

¢ Amplitude scaling and time shifting for DT signals are the same as for CT signals.

¢ Time scaling for DT signals:
¢ Time compression : h[n] = g[Kn] where K > 1 (integer)
Some of the samples from the original function get lost (decimation):

Q[p]=2n h[n]fg[3q]
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Lecture 4

¢ Time scaling:
¢ Time expansion

DT Transformations (Cont.)

the transformed signal are undefined :

4

g[n]
: 3

3.5

3 L

2.5¢

2

1.5

1

0.5

|

5

h[n]=g[n/2]

8/12

. h[n] = g[+] where K > 1 (integer) Some samples in

O
0

4_,

¢ The unknown samples can be left as “undefined” or they can be
interpolated, based on the the known values before and after them.
(Matlab function: “interp”)
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Example o/1o

We have interpolated the previous example, by adding one sample between every
two values:

45 I I I I I I I I

h[n] with interpolated
values
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DT Transformations (Cont.)
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Two more transformations for DT signals are differencing and accumulation .
These are similar to CT differentiation and integration, but much simpler.

For example, the first forward difference of a DT signal is defined as:
Agln] = g[n + 1] — g[n]

And the first backward difference of a DT signal is defined as:

Agn — 1] = g[n] — g[n — 1]

If h[n] = Ag[n — 1] = g[n] — g[n — 1], then the accumulation of A[n] results in

g[nl:
g[n] = > h[m]

Read pages 81 - 85 of your text, to learn more.

DT signals also can be divided into even and odd functions. Again, very
similar to CT signals. (Text: 85-89)
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Signal’s Energy

11/12

The energy of a signal (x(t) or z[n]) is defined as:

Bo= [ loto)Pa B =Y [an]l

® Example: Find the energy contained in z[n] = (5)"u[n]

¢ A signal which has a finite energy is called an “energy signal ”.

¢ But many signals (CT or DT) don’t have a finite energy. In this case we
consider their average signal power (averaged over time).
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Signal’s Power o1

¢ The average power (or power for short) of a signal (x(t) or z[n]) is defined as:

1 (% p VA
T 2 e © 2
rom i+ [ o po= i 3 el

@ Are periodic signals “energy signals”? Why?

i ® For periodic signals, their average power is equal to:

1 fto+T 1
P, = —/ 2(t)|2dt = —/ (t)|2dt
T to T Jr
1 k+N-—-1 1
P S BblP= Y el
n=k n=<N>

¢ Signals which do not have finite energy, but have finite power are called
“power signals ”
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