ENSC380

Lecture 6

Objectives:

- Focus on DT systems
- Learn the general form of a DT difference equation describing an LTI system
- Learn how to write an arbitrary signal in terms of $\delta[n]$
- Learn the meaning of the impulse response of a system
- Learn that the response of a DT system to a general input, is the convolution sum of the input and the impulse response of the system
- Solve examples using what you learned

LTI System

- Any DT linear and time invariant (LTI) system can be described with a difference equation of the general form:

$$
a_{n} y[n]+a_{n-1} y[n-1]+\ldots+a_{n-D} y[n-D]=x[n]
$$

Where $x[n]$ is the input (excitation) and $y[n]$ is the output (response) of the system.

- If $x[n]=\delta[n]$ then the answer to the differential equation is called the impulse response of the system, and is usually shown with $h[n]$
- The impulse response of an LTI system is very important because it simplifies finding the response of the system to an arbitrary $x[n]$. How? Let's see!
- Every DT signal $x[n]$ can be written as a linear combination of the unit impulse and its delayed versions:

$x[n]=$
- If the response of the system to $\delta[n]$ is $h[n]$, what is the response of the system to
- $x[0] \delta[n]$?
- $x[1] \delta[n-1]$?
- $x[2] \delta[n-2]$?
- ...
- $x[-1] \delta[n+1]$?
- $x[-2] \delta[n+2]$?
- $x[-3] \delta[n+3]$?
- ...
- What is the response of the system to $x[n]=\sum_{m=-\infty}^{m=\infty} x[m] \delta[n-m]$?
- The above summation is called the convolution sum and is shown with

$$
y[n]=x[n] * h[n]
$$

- Thus, the response of a DT and LTI system to a general input $x[n]$, is the convolution sum of $x[n]$ and the impulse response of the system, $h[n]$.

Example

A DT system is defined with the following difference equation:

$$
8 y[n]+6 y[n-1]=x[n]
$$

- What is the impulse response of the system?

$$
h[n]=\frac{1}{8}\left(-\frac{3}{4}\right)^{n} u[n]
$$

(We will soon learn how to find this impulse response!)

- What is the response of the system to $x[n]$ given below:

Example

Find $x[n] * h[n]$

- Now find $h[-m]$

Example (Cont.)

- Now find $y[-1]=\sum_{m} x[m] h[-1-m]$

- Now find $y[0]=$

Example (Cont.)

- Now find $y[1]=$

- Now find $y[2]=$

Example (Cont.)

- What is $y[n]$ for $n \leq-2$ and $n \geq 3$?
- Plot $y[n]$:

