ENSC380
 Lecture 7

Objectives:

- Learn how to find the answer to the homogeneous difference equation
- Learn how to find the impulse response of the LTI DT system

Homogeneous Response

- The difference equation:

$$
a_{n} y[n]+a_{n-1} y[n-1]+\ldots+a_{n-D} y[n-D]=0
$$

is called a homogeneous difference equation.

- The general form of the function that can satisfy the homogeneous difference equation is:

$$
y_{h}[n]=A \alpha^{n}
$$

- Replace $y[n]$ with $y_{h}[n]$ in the above equation to find α :
- $y_{h}[n]=A \alpha^{n}$ is called the eigenfunction of the difference equation.

Impulse Response of DT Systems

- Consider the following LTI-DT system:

$$
a_{n} y[n]+a_{n-1} y[n-1]+\ldots+a_{n-D} y[n-D]=x[n]
$$

- We want to find the impulse response of the system, i.e., the response to $x[n]=\delta[n]$. We call this response ($h[n]$)

$$
a_{n} h[n]+a_{n-1} h[n-1]+\ldots+a_{n-D} h[n-D]=\delta[n]
$$

Impulse Response (Cont.)

- Since the forcing function (input signal) to the system is zero for all $n<0$, we can easily see that

$$
y[n]=\quad \text { for } n<0
$$

- Also for $n>0$, the difference equation is:

$$
a_{n} y[n]+a_{n-1} y[n-1]+\ldots+a_{n-D} y[n-D]=
$$

which means

$$
y[n]=\quad \text { for } n>0
$$

- How about for $n=0$? For $n=0$ it is easy to find $y[0]$ directly from the equation:

This can be used as the initial condition for $y[n]$. We will see this through examples.

Example 1

Recall the example in Lecture 6, where we were given the impulse response:

$$
8 y[n]+6 y[n-1]=x[n] \quad, \quad h[n]=\frac{1}{8}\left(-\frac{3}{4}\right)^{n} u[n]
$$

Now, let's find this impulse response for ourselves!

Example 2

Find the impulse response of this system:

$$
y[n]=x[n]-x[n-1]
$$

Example 3

Find the impulse response of this system:

