ENSC380

Lecture 8

Objectives:

- Learn the properties of the convolution sum
- Learn how to combine systems in series and parallel
- Learn the response of LTI systems to standard excitations: unit step, complex exponential, and sinusoidal

Convolution Properties

Convolution Sum:

$$
x[n] * h[n]=
$$

- Important: $x[n] * \delta\left[n-n_{0}\right]=x\left[n-n_{0}\right]$
- Proof:

Conv. Prop. (Cont.)

- Commutative:

$$
x[n] * h[n]=
$$

- Distributive:

$$
\left.x[n] *\left(h_{1}[n]\right)+h_{2}[n]\right)=
$$

- Associative:

$$
x[n] *\left(h_{1}[n] * h_{2}[n]\right)=
$$

System Interconnections

- Cascade (Series) connection:

- Parallel connection:

Stability

- Recall the stability condition (BIBO)?
- How does this relate to the impulse response?

Unit Step Response

What is the System's response to $x[n]=u[n]$? (This is also called the unit sequence response)

Complex Exponential Response

What is the response of the system to $x[n]=z^{n}$, where z is a complex number?

Sinusoidal Response

What is the response of the system to $x[n]=\cos (2 \pi F n)$?

- $\cos (2 \pi F n)$ can be written in terms of complex exponentials:
- Find the response of the system to each exponential and combine:
- It can be shown that the result is:

$$
y[n]=\cos (2 \pi F n) \sum_{m=-\infty}^{\infty} h[m] \cos (2 \pi F m)+\sin (2 \pi F n) \sum_{m=-\infty}^{\infty} h[m] \sin (2 \pi F m)
$$

Example

The unit sequence response to a system is given as:

$$
y[n]=\left[5-4\left(\frac{4}{5}\right)^{n}\right] u[n]
$$

Find the impulse response of the system:

Example (Cont.)

Find the response of the system to $x[n]$ given below:

Answer using Matlab (See page 168, Text)

