














4.4.8

4.4.3  Time Response and Q

Even though resonance is usually described in the frequency domain, we •
must also examine the behaviour of resonant circuits in the time domain.  
Why? 

-  Requirements are sometimes expressed in time (e.g., response time)

-  Energy and power variations are most easily discussed in the time 
domain.

Again, we'll use the bandpass form to illustrate the points.•
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cycles per time constant:
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For the bandpass form, we have the step response•
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Now look at how quickly this resonant circuit responds to a input tone at the •
resonant frequency.  Solve by transforms:

input input transform
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There is an exponential rise in amplitude, much like that of a first order 
lowpass responding to a unit step.  Not too surprising, if you check out the 
pole-zero diagrams of Y(s) for the lowpass and bandpass cases.
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 1

Example: tone detection 
 

  
 
 
 
 
 
A tone-coded system for remote control of a radio relay is arranged 
so that, when the relay receives a 1 kHz tone, it turns on its main 
transmitter.  The sketch shows a possible design.   
 
(a)  In order to reject as much noise and interference as possible, 
you want the filter to be as selective as possible.  Yet one of the 
specifications is that the transmitter should turn on within 5 ms of 
the onset of the tone.  What is the maximum Q you can use? 
 
(b)  Having designed the detector for one tone command, you 
decide to add another tone at a higher frequency to control the 
signal source to the transmitter.  The frequency of the second tone 
now has to be determined.  You decide that the response of the first 
filter to this second tone should be 15 dB less than its response to 
its own tone, to ensure there are no false triggers.  How closely 
spaced can the tones be? 
 
(c)  If we relaxed the response time requirement, could we space 
the tones more closely?   
 
(d)  What if we don’t know the tone amplitude very precisely?  
Any solutions? 
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Solution:

This circuit should do it for us:

(a)  The response of a second order bandpass filter to a tone at its resonant 
frequency is a sinusoid at the same frequency, with amplitude increasing 
from zero to its maximum value with some time constant.  The envelope is 
much like that of a first order lowpass circuit.  

     Set the threshold at 63% of the maximum output of the tuned circuit.   
This corresponds to one time constant in the rise of the envelope (i.e., it is 
1-e-1).  The time constant of a 2nd order bandpass is τ=1/ζωo and the Q of 
such a circuit is 1/2ζ .  Combining them with the requirement of a maximum 
5 ms time constant, we have

ωo 2 π⋅ 1000⋅ Hz⋅:= τmax 5 10 3−⋅ sec⋅:=

Qmax
ωo τmax⋅

2
:= Qmax 15.708=

Related parameters:

min damping 
factorζ min

1
2 Qmax⋅

:= ζ min 0.032=
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damped natural 
frequency (rad/s)

ωd ωo 1 ζ min
2

−⋅:= ωd 6.28 103× s-1=

bandwidth 
(rad/s) 

βmin
ωo

Qmax
:= βmin 400 s-1=

     If you forget some of these relationships, you can work it out like this: 
the transform of the output is the product of the transform of the sine wave 
input and the transfer function:
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Now plot it, using the values determined by the maximum time constant.
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(b)  We now have the Q and the natural frequency, and therefore the 
frequency response of the bandpass.  In locating the second tone, we need to 
find the frequency at which the response is 15 dB down from its value when 
excited by the first tone.  The transfer function is
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Now define dB and plot the magnitude of the response in dB

dB x( ) if x 10 16−< 160−, 10 log x( )⋅,( ):=

Np 100:= number of points (less 1) i 0 Np..:=

plot using geometrically spaced frequencies (equispaced in log)

ω lo 2000:= ωhi 10000:= r

Np
ωhi

ω lo
:= ω i ω lo ri⋅:=
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Graphically, we find that lower and upper -15 dB frequencies are 5263 
rad/s and 7515 rad/s.  Doing it analytically is messier.  First note that
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and that 15 dB is 100.1 15⋅ 31.623=
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Next, define v=u2, so that 
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(c)  If we relaxed the response time requirement and allowed the time 
constant to exceed 5 ms, then we could use a higher Q (assuming we could 
implement it).  The higher Q would narrow the bandwidth and allow the 
higher tone to move closer to the one at 1 kHz and still meet the -15 dB 
requirement.  Effectively, we have a longer memory with the increased time 
constant, and therefore a longer effective observation time.  This allows 
greater frequency resolution; that is, greater ability to distinguish between 
nearby frequencies.

fhi 1.192 103× Hz=fhi
ωhi

2 π⋅
:=ωhi 7.487 103×

rad
sec

=

flo 839.285 Hz=flo
ω lo

2 π⋅
:=ω lo 5.273 103×

rad
sec

=

(the negative square roots give corresponding points on the image at 
negative frequencies).

ωhi ωo vhi⋅:=ω lo ωo vlo⋅:=

These give the lower and upper -15 dB points as the positive roots

vhi 1.42:=vlo 0.7044:=

and solve to obtain the analytical counterpart of the graphical result:

246.7 v2⋅ 524 v⋅− 246.7+ 0=Substitute for Qmax

Qmax
2 v2⋅ 30.6− 2 Qmax

2⋅−( ) v⋅+ Qmax
2+ 0=

Expanding and collecting terms gives the quadratic
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(d)  The input to the threshold device is proportional to the amplitude of the 
incoming tone.  If we don't know that amplitude, it's hard to set an absolute 
threshold.  But how about a relative threshold?  Measure the incoming 
signal amplitude, whether it's a tone at some frequency or something else 
altogether, and compare the amplitude of the bandpass filter output to it.

The voltage divider ratio R2/(R2+R) sets the threshold on the bandpass 
output relative to the input amplitude.
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