
   4.3-1 

4.3  Comparison of Modulations  

 

• We’ve seen some of the most common modulation systems.  Time to take 

stock. 

 

o For 1-D modulations (2-D if complex), such as PAM, QAM, PSK, if 

we increase the number of bits per symbol without degrading BER, we 

must rapidly (in fact exponentially) increase the signal energy.  The 

bandwidth does not increase, though. 

 

o For multidimensional modulations like orthogonal, biorthogonal, 

simplex, increasing the number of bits per symbol to improve BER 

requires rapidly (exponentially) increasing the bandwidth.  No increase 

in required , though. bE

 

o Multidimensional with use of more than one dimension in a single 

symbol, like vertices of a hypercube, finite lattice, OFDM, can play it 

both ways to achieve more throughput: more  or more bandwidth.  bE
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o It’s a three-way tradeoff among 

BER 

(distance) 
0bE N  

power efficiency 

(energy relative to 

noise level, or SNR) 

bps/Hz 

spectral efficiency 

(throughput relative 

to bandwidth) 

  

 

Every modulation/coding 

scheme can be represented 

as a point in this space. 

 

  

o Where would we like a modulation to be? 

Are there limits? 

 

• In this section, we’ll place our modulations in this space and explore the 

limits. 
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4.3.1  Dimensions, Bandwidth and Time 

 

• Part of spectral efficiency is the question of how many dimensions are 

contained in bandwidth W and time T.   

 

o How many real numbers are required as coordinates of a signal space 

with extents W and time T ? 

 

o Not a very precise question: 

 A signal cannot be strictly timelimited and frequency limited. 

 What do we mean by bandwidth (or duration)?  Strict limit?  99% 

energy bandwidth (duration)?  90%?  50% (halfpower bandwidth 

or time)?  RMS bandwidth? 

 

 

 

• We’ll address it through the Fourier basis, because it’s easy.  However, 

more compact basis functions exist: the prolate spheroidal wave functions1 

are strictly limited in one domain and give maximum energy concentration 

in the other.  

 

                                                 
1 D. Slepian and H.O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty – 

I,” Bell Syst. Tech. J., vol. 40, pp. 43-63, January 1961. 
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• Consider real, lowpass signals that are strictly time limited to [ ]2, 2T T− .  

Expand such a signal in a Fourier series 
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The complex exponentials are separated in frequency by 1 T  Hz. 

 

Now suppose it is also approximately bandlimited to W Hz.  Then 
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Looks like 2  basis functions, with all but  complex, for roughly 

 dimensions.  However, since  is real, the coefficients are 

conjugate symmetric , so it’s roughly 

1
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• Now consider real, bandpass signals  with bandwidth W, like this one: ( )v t
 

 
 

It can be represented by the complex baseband signal  with support in ( )v t

[ ]2, 2W W− .  Fourier expansion again: 
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Now the coefficients need not be conjugate symmetric, so again 2N WT≈  

real dimensions. 

 

• Conclude there are  real dimensions in bandwidth W and time T. 

for both lowpass and bandpass signals. 

2N W≈ T

 

o Note that real and imaginary components of, say, QAM each count as 

one dimension. 

o 2dR N T W= =  dimensions/sec in bandwidth W. 
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4.3.2  Channel Capacity 

• We are used to SNR and bit/pulse dictating the BER.   

 

• However, Shannon’s capacity theorem sets a surprising limit: if the bps/Hz 

and SNR  are in the right region, communication using long code words 

becomes essentially error-free.   No time to do more than sketch the theory 

in this course: 

 

o Suppose a real dimension operates like this: 

 
Then the “capacity” in bits per dimension is  
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where  is energy per dimension. dE

 

o Interpretation: a code of length n dimensions carrying k information 

bits has a rate dr k= n

c

 bits/dimension; there is at least one code for 

which the probability of a codeword error is upper bounded by  
( )2 dn c r

ewP − −≤ ; 

hence, if we keep , we can drive the error rate arbitrarily close to 

zero by increasing the code length n. 

dr <
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o The limit on transmission rate is then  
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and using 2dR W=  dim/sec, 
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o Use bit rate:  since 2d d b b d b bE P R E R R E R W= = = , 
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This is the Shannon capacity equation ( )2log 1C W SNR= +  bps, 

expressed in terms of SNR per bit 0bE N  and spectral efficiency bR W  

bps/Hz. 

 

o Optimistically, assume we can reach bit rate bR C=  .  The we get an 

implicit equation that sets the limits for SNR and spectral efficiency: 

2
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W
    or    ( )2log 1b b bη = + γ η  

 

For any SNR, solution for bR W  gives the limit of bps/Hz for error-

free reception of long codes. 
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The solution can be viewed as the intersection of left and right sides of 

the equation (left graph below) and the resulting bR W  is a function of 

SNR per bit  (right graph below). bγ
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• One of many implications: Fixed  gives fixed spectral efficiency bγ bη .  

Now increase bandwidth W .  Throughput bit/secb bR W= η  goes up in 

proportion.  Good!  But it also means that power 0  wattb bP N R= γ  must 

also be increased in the same proportion. 
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4.3.3  Comparative Performance of Modulations 

• Since Shannon capacity sets the error performance limit in terms of a 

tradeoff between the dimensionless parameters 0bE N  SNR per bit and 

bR W  bps/Hz, modulations are compared on a plane with these quantities 

as axes, and with a specified BER (typically 10-5). 

 
• PAM vs. QAM spectral efficiency: PAM is real, with conjugate symmetric 

baseband spectrum; in principle, could be sent in half the bandwidth using 

SSB (though difficult in practice for pulses without a null at DC).  That’s 

why PAM and QAM have same spectral efficiency in the graph.  
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4.3.4  Checkpoints 

 

• There is plenty of detail in performances of the various modulation, but 

some things should be second nature to you: 

 

o Binary antipodal = 2PAM = 2PSK = BPSK.  ( )2bP Q b= γ .  BER is 

10-3 at just under 7 dB SNR per bit. 

 

o Binary orthogonal is exactly 3 dB worse than binary antipodal.  Hence 

BER is 10-3 at just under 10 dB SNR per bit. 

 

o 4QAM = QPSK = rotated 4PSK.  Their Gray coded BER is exactly the 

same as binary antipodal for the same .  SER is approximately twice 

the BER.   

bγ

 

o Independently Gray coded MQAM has exactly the same BER as 

-PAMM for the same . bγ

 

o If you add another bit to PAM (two more bits to QAM), but keep the 

error rate of interior points unchanged, you must quadruple the energy 

per symbol sE  - that is, quadruple the transmit power (for same 

symbol rate).   That’s +6 dB.  It doesn’t quite quadruple , because 

the new 

bE

sE  is divided by one more bit (two more bits in QAM). 
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o For 8PSK and above, adding another bit while keeping error rate 

constant requires approximately 6 dB more energy per symbol, hence 6 

dB more transmit power.  Not quite than much increase in energy per 

bit, because there’s an additional bit. 

 

o Adding a bit to an M-orthogonal set lowers the error rate without 

change in , since the exponential drop in pairwise error probability 

is faster than the exponential rise in number of neighbours – provided 

 is more than about 0 dB.     

bγ

bγ

 

 

 

 

    
  


