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using (64) and (66), In particular if Z, is 

E(x(O) = + =z 
i.e., E(Z,Z,,) = 6,,Ro, 

exp 
n m  

( 2ni $  t - 2  R, [?I’) F  (;), 

an uncorrelated random 
(69) takes a simpler form. 
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sequence, 

(67) 
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Complex Gaussian Noise Moments 
W ILLIAM F. MCGEE, MEMBER, IEEE 

Absrracr-The problem of the computat ion of moments of nonzero 
mean  circularly complex Gaussian noise is treated. The  noise need  not be  
symmetric about  the carrier f requency. In particular, the second-order  
moments are computed,  and  expansions are given. The  necessary 
univariate and  bivariate complex Hermite polynomials are discussed. 
The  means  of some rational functions useful in FM theory are given. 
This paper  extends work of Rice, Middleton, and  Zadeh  to complex 
Gaussian noise with nonzero mean  and  nonsymmetrical power  spectrum. 

I. INTR~DLJCTJ~N 

T HE computation of means of Gaussian random pro- 
cesses is very common and has an extensive history. 

The essentials of these computations were given by Rice [ 11, 
and these were further developed by Wang [2], and pre- 
sented in perhaps their greatest detail by Middleton [3]. 
For carrier signals the technique was essentially to treat 
the problem by an extension of the techniques used for real 
signals. Recently it has become clear that the economy of 
thought and writing accompanying the casting of computa- 
tions into ones involving complex signals makes carrier 
system analysis much easier-it is analogous to doing net- 
work analysis using complex numbers as opposed to using 
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sines and cosines. In the process of reinterpreting the usual 
results using the complex representation, it has become 
clear that it is relatively easy to extend many results, and 
furthermore that it is easy to include signals that are not 
placed symmetrically in the noise. 

In this paper, we have summarized the main formulas 
associated with moments of circularly complex Gaussian 
noise processes with nonzero means. However, this moment 
theory omits several parts of the theory of such processes: 
the zero-crossing problem, the problem of the distribution 
of maximums, and error-rate computations. These involve 
means of functions that are not analytic. 

We  first review the Mehler expansions for a  pair of 
correlated variables and the associated complex Hermite 
polynomials. The generalization to Hermite functions is 
made to allow means of rational functions. This work was 
presented earlier in [4]. Then certain expansions of func- 
tions that converge in the Gaussian norm are given. The 
complex Grad polynomials are derived. 

The problem of the computation of the means of func- 
tions involving bivariate complex Gaussian random vari- 
ables is then given. These lead, for moments, to generalized 
Hermite polynomials, similar to those treated by Appell 
and KampC de Feriet [14]. The Reed [5] and Middleton [3] 
expansions for these polynomials are presented. Some 
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special rational functions useful in FM theory are derived. 
In this paper, we have attempted to present the results. 

There are indications of the derivations of the more im- 
portant formulas. The techniques used are either symbolic 
calculus or integration using Watson [6]. No use is made 
of contour integration. The rest of the Introduction sum- 
marizes the elementary properties of complex Gaussian 
noise. 

The carrier signal s(t) may be written as the real part of 
a complex function 

s(t) = Re [z(t) exp (j27c@)]. 

In this representation, we have used the complex carrier 
signal z(t) and the carrier frequencyf,. Noise that is band- 
pass in nature may be represented by using the circularly 
complex Gaussian noises zi. These noises are characterized 
by their means zi, their covariances 

A, = E[(Zi - Zi)(Zj - Zj)*/2], (1) 

the property of being circularly complex, i.e., that 

E[(z, - Zi)(Zj - Zj)/2] = 0 (2) 

(henceforth we drop the adverb circulatly), and with 
a characteristic function 

II, = exp (- ptAp/2 + j Re ptF) (3) 

where, as usual, * indicates (usually) complex conjugation, 
t is the Hermitian conjugation of a vector or matrix. A is 
the positive definite matrix with elements the covariances, 
z and p are vectors with elements zi = xi + jy, and pi = 
Ui + jai, and Zi is the expectation of the random variable 
zi. The density function itself is 

PC%,* * * ,y,) = exp [-(z - .Z)tA-i(z - 5)/2]/(2n)” det A. 
(4) 

Miller, in a review paper [ 171, has presented a discussion 
of the representation theorems, of generating functions, 
certain moments, and 32 references about complex Gaussian 
noise. 

It will be useful to define certain complex derivatives in 
terms of real derivatives. 

a/iYz = (a/ax - jalayy2 

a/az* = (a/ax + jajayy2. (5) 

These derivatives satisfy &/az* = dz*/& = 0 and also 
the relationship 

a(pyaz* = a(i/z*)/az = n qx) 6~~). (6) 

We occasionally use the following integration by parts 
formula 

co 

s s 
dx O” dYd z,z*)(a/a2~(a/az*)mh(Z,z*) 

--a, 

= (- l)i+t Irn dx jm dyh(2,z*)(a/az>“(a/az*)mg(z,Z*) 
-CO -05 
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satisfied by functions that vanish appropriately at infinity. 
To be consistent with the usual definition of charac- 

teristic function, we have used the following Fourier series 
mates. 

g(p) = O” . . * 
s s 

co 
dx,* * * dy,f(z) exp 0 Re P+Z) @a> 

-03 -00 
and 

f(z) = Irn -j- du,.. * dung(p) exp (-j Re ptz)/(2n)‘“. 
-03 -Co 

(8b) 

The Parseval formula is 
co 

s s 

m  
. . . du,** * d~,s~(p)sz*(p>/(2~)‘” 

-co -co 
co m  

= . . . 
s s 

dx,. . * dy,f,(z)f,*W (9) 
-CC -CC 

The Fourier transform of l/z is 2nj/p. The symbolic proof 
is interesting; we have 

co 03 

s s 
dx dy exp [j(xu + yu)]/z 

-m -co 

ZZ 2 [a rrn dx dy/z(a/az*){exp (j Re p*z)/jp} 
J-m J-, 

cc co 

= 2jlP 
s s 

dx dy exp (j Re p*z) iT/&*(l/z) = 2nj/p 
-m -co 

using the earlier results for derivatives and integrating by 
parts. 

Similarly, the transform of z itself is the operator 

2j(27c)2 6(u) 6(u) ajap*. (10) 

Application of the Parseval formula to the mean of the 
function f with Fourier transform g yields Rice’s method 
for the computation of means of Gaussian random pro- 
cesses 

m  

s 1 

m  
. . . dx, . . . dy,f(z) Ax 1, . - * 9 Y,) 

-m c--m 
m  

= 
s s 

. . . m  du,.. * dw@) ew C-j Re (P% 
-cc --co 

- p+Ap/2]/(27~)~“. (11) 

The advantage of this method is that the computation in 
this form is often easier. 

In what follows, we will make occasional use of the 
Fourier-Gauss transform of a function 

f(z) = exp (z+A-‘z/2) det A(2rc)” 
s 

du, 9 * * du, 

x g(p) exp [-j(ptz + ~‘p)i2~--- ptAp/2]/(2n)2” 
(12) 

and, in this connection, we will use the following result. If 
the functionfis only a function of the variables z1 and zl*, 

(7) then the bivariate Fourier-Gauss transform f2 may be 
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expressed in terms of the univariate Fourier-Gauss trans- whereas if m  = n 
formf, by the following rule: 

~~~~~~~~~~~~~~~~~~~~~~~~~ 
E[(Zi, - Zil)* ’ ’ ’ (Zi, - Zi,)*(Zj, - Zj,) ’ ’ ’ (Zjn - “jn)] 

= .f,(All - A,,A,,-lA,,,z, - A,J22-1z2, 
= 2” C ‘.il,i,(l) ’ * * Ajn,in,n,3 all permutations (17b) 

zl+ - z~+A,,-~A,,) (13) where n is a permutation of the set of integers (1,2; * *,n). 
Thus for a  zero-mean process, 

where 

s 
O” fi(A,z,zt) = exp (z*A-iz/2) det A(271) 

-Q,*z,*w4) = 4(b,A,2 + Ad,,). 

du du/(27Q2 Not all complex Gaussian noise is circularly complex, 

x g(pJ exp [-j($z + i;“p W  - ptAp/2]. 
e.g., a  carrier AM modulated with Gaussian noise. 

Lack of correlation implies independence. Suppose a set of 
Gaussian random variables is partitioned into the two 
vectors 2, = (z1,z2;* .,z,,) and 2, = (z,+~;*.,z~), with 
similar partitioning of the correlation matrix A into A,,, 
Aab, AbO, and A,,. Then the best mean-square estimate of 
the vector Z, conditioned on the vector Z, is Z, + 
A,,&- ‘(Z, - -%> and Z, less this latter vector is un- 
correlated with any of the elements of the vector Z,. The 
conditioned (on Z,) covariance matrix of the elements of 
the vector Z, - z, - A,,A,,-l(Z, - z,) is A,, - 
&Am - 1hm. 

There are two general results on the dependence of means 
of functions of complex Gaussian random variables often 
used in practice-the Bonnet theorem and the Price theorem. 
The Bonnet theorem relates the derivative of a  mean with 
respect to a mean value, and the Price theorem relates the 
derivative of a  mean with respect to a covariance, to means 
of first and second partials of the function whose average 
is being evaluated. 

Bonnet’s Theorem [7] 

aqfyazi = qaf/azi) 
aE(fyazi* = E(af/azi*). 

Price’s Theorem [8] 

(144 
U4b) 

aqfyaAij = 2E(a2f/azi aZjy. (15) 

These theorems are proved for complex Gaussian noise in 
exactly similar ways to ordinary Gaussian noise, by ex- 
pressing the mean using the characteristic function and 
integrating by parts. 

The moments of Gaussian noises may be computed by 
taking partial derivatives of the characteristic function and 
then setting the variables equal to zero. Thus we have 

Miller’s Formula [9] 

qz,*“l . . . Zk*n*Z,ml . . . Zkmk) 

=  (-2j) nr + ... +ya/ap,yt . . . (ajapk*ywp, = zpk*=o. 
(16) 

Reed [IO] has given an explicit formula for the moments, 

E[(zi, - Zi,)*. . .(zi,, - Zi,)*(zj, - Fj,). . .(zj, - Fj,)] = 0 
(174 

if m  # n, where ik and j, are integers from the set (1,2,. . .,); 

II. UNIVARIATE COMPLEX HERMITE POLYNOMIALS 

We define the Hermite functions by the integral [4] 

H,,(z,z*) = 271 exp (zz*/2) /:a du/2x /Im dv/27c 

x (jp*Y(jpYexp [-.Xp*z + z*P)/~ - PP*/~], 
n - m  = integer. (18) 

Because of the quadratic in the exponent, this integral is 
defined whether or not z* is really the complex conjugate 
of z. Helstrom [ 161 mentions-this. If the notation of having 
z* the complex conjugate of z is followed, we will omit 
explicit representation of the variables or use the notation 
Hn,(z) alone. If z* is not the complex conjugate of z, then 
we indicate both arguments explicitly, as in the definition. 
Thus we will refer to the Hermite functions H,,,(z, -z*) 
and to Hnm(jz,jz*), and the second argument is clearly not 
the conjugate of the first. We  always have n - m  an integer 
in our work. 

By means of a  simple change of variable, we have the 
following alternative representation 

cc m  
H,,(z,z*) = 27-c 

s s 
du du(jp* + z*>“(jp + z)” 

-cc -m 
exp (- ~~*/2)/(2771)~. (19) 

This representation is valid for n  and n?  positive integers. 
The Hermite functions admit the following representation. 

I 
~Az,z”> = 

(n rm)! 
Z*wm)(-2)m 

x M(- m, n - m  + I, zz*/2), 
n  2 m, n 2 0 (20a) 

H,,(z,z*) = 
m  ! 

(m - n)! 
,Wd( - 2)” 

x M(-n, m  - n  + 1, zz*/2), 
m  2 n, m  2 0. (20b) 

This is derived by changing to polar coordinates and using 
the infinite integral formulas in Watson [6]. A4 is the 
confluent hypergeometric function 1 F,. Thus, the Hermite 
functions are proportional to Laguerre functions. 

We  can derive a recurrence formula for the Hermite 
functions by differentiating the integral (I 8). These formulas 
are not tabulated because they are so easily derived. 
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When n and m  are positive integers, then we achieve the 
complex Hermite polynomials. These polynomials may be 
determined by a Rodrigues formula 

H,,(z,z*) = (-2)“+m exp (zz*/2)(C?/i3z)“(~/~z*>” 
exp (- zz*/2). (21) 

The generating function is 

exp [(uz* + a*z - au*)/21 = C (~~~(“,*/2)” Hnm(z,z*). 
. . 

(22) 

Another recurrence formula may be derived by differenti- 
ating this generating function. 

The Hermite polynomials satisfy an orthogonality rela- 
tionship. 

e,(x) = 1 + x + a* * + Y/n! 

is the truncated exponential function, and n is a non- 
negative integer. In particular, 

Ho,-, 7 (1 - exp (zz*/~))/z. 

The complex Hermite polynomials may be related to the 
ordinary Hermite polynomials He,(x) by the following 
relation obtained from the generating function 

2kHek[(z + z*)/21 = j. (3 Hn,k-.(Z,Z*). (28) 

We define the complex Grad polynomials H by the for- 
mula 

m  

ss 
dx dy exp (- zz*/2)H,,(z)H,,*(z) 

-30 

H(i,j)(n,m) = 
zil * . . . Zi,*Zj, ’ ’ ’ z.im 

- 2(Z,1* “‘Zi,_l*Zj, “‘Zjm-lGi,,j, + “‘), 

= 2n6,,6,, n! m! 2”+m. (23) 

The Mehler expansion for the bivariate Gaussian dis- 
tribution constitutes a bivariate generating function for the 
complex Hermite polynomials 

exp [-(zlzl* + z2z2* - AZ1z1z2* 
- 42w,*M1 - ~A1M242(1 - LA,,) 

n m  o( 1 1 1 terms 

= l/(271)’ 2 A12”A21mHn,(zl)H,,(zz)/(2”‘m  n! m!) 
n,m=O 

exp [-(zlzl* + z2z2*)/2]. (24) 
For Gaussian noise with mean Z and variance 02, the 

Hermite polynomials have the following ‘mean values. 

E(H,,(Az/o)) = (1 - 1~12)‘“+m)‘2H,,(nz/a(l - 1L12)1’2). 
(25) 

+ 4(Zi1*" ’ Zi,_**Zj::” ’ 

x z. 6. . 6. 
Jm-2 hJm h-l,h7I-l + ***), 

n m  
o( 1 

2 2 terms 

- 8( 1, etc., 
i = (il; - * A>, j = (jl,- . ~J,). (29) 

These occur in the complex Volterra series representation 
for nonlinear functionals. All the properties [ 1 l] of Grad 
polynomials may be extended to the complex Grad poly- 
nomials. 

Particular cases using this identity are obtained by setting 
I equal to infinity and unity and using the limiting values 
for the Hermite polynomials for large values of the argu- 
ments. Thus we have the following result for the mean of 
the variable 

In this section, we have introduced the Hermite functions. 
They arise in several natural ways by means of power of z 
and z*, the Mehler expansion, etc. These functions are 
proportional to confluent hypergeometric functions. The 
use of the notation H,,, yields formulas analogous to the 
usual formulas for Hermite polynomials, and usually with 
more simplicity than if the M( , ) notation is used. 

E(z*‘zm) = ( -j~~+mH,,(jZ/o,jZ*/o). (26) III. EXPANSIONS IN HERMITE POLYNOMIALS 

This holds for arbitrary n and m  since it is derivable from 
the integral definition of the Hermite functions. The mean 
of the Hermite polynomial itself is 

E(H”,(Z/O)) = (~*/o>“(z/a)“. (27) 

The limiting behavior is that as zz* approaches infinity, 
the Hermite function approaches z*‘zm, For small z we 
have H approaching ( -2)m~*(n-m) 1 n./(n - m)! if n 2 m  
whereas”“fit approaches (- 2)“zcmMn)m !/(m - n) ! if m  2 n. 
(More can be obtained from further examination of the 
behavior of the confluent hypergeometric function.) 

Nonpositive integral values of n and m  may be considered. 
Thus we have the following result 

It is useful to consider expansions of functions in Hermite 
polynomials, because the Hermite polynomials are orthog- 
onal. (In this section, we consider noise with zero mean 
and unit variance.) In the expansion, 

f(z,z*> - 2 ~mnfLn(zL (30) 

that choice of coefficients that minimizes the mean-square 
error is 

m  

a mn = 
ss 

exp (- zz*/2)f(z,z*)H,,(z) dx dy/(2x n! m! 2”+7. 
-00 

(31) 
Suppose the function f, when expressed in terms of R 

and 8 [z = R exp (je)] is Rkg(8), and assume that gn is 
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where the function 

H,,-l(z,z*) = 2”n!/z”+l [e,(zz*/2) - exp (zz*/2)] 
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defined by 

s 

2n 
S” = g(e) exp (- jne) dtI/2n. (32) 

0 

Then, if n  is an integer larger than m, we have 

a mn = (-lyg _ $k-m-n)/2 m  n 
r k+n-m+l 

( 1  i 
r m+n-k 

2 2 
X 1, 

nlmlr ‘-m-k . . 
( 2  1 

n 2 m. (33a) 

This formula may be found by expressing the Hermite 
polynomials as a confluent hypergeometric function, and 
then using the formula [12, 6.10.61 for the Laplace trans- 
form of the product of a  hypergeometric function and a 
power of the argument. The alternate result is 

a  mn = (- 1)“gm-n2(k-“-W 

r k+m-n+l 
( 1  ( 

r m+n-k 
2 2 

X 1, 

n!m!T - 
( 

m-n-k 
2 1 

m  2 n. (33b) 

Examples 
1) z = R exp (je). 
In this case g,, = 6,,,. Thus the only nonzero terms occur 

when m  - n = 1 and here we have, according to the 
above formula, 

an+ 1,n = (- 1)“2-“I(2)I(n)/I(O)n! (n + l)!. 

Now I(0) is infinite, and so the coefficients vanish except 
when n is zero, in which case we have a,., = 1. Thus 
z = Ho,. 

2) l/l’,\ = R-l. 
Here we have k equal to - 1  and g,, vanishing except for 

n  equal to zero. On application of the above formulas, we 
have the representation 

1114 = J 4  j. (-yJ)n H,,(z). (34) . . 

3) z/lzl = exp (je). 
Here k = 0, and gn vanishes except when n is 1. This 

leads to the representation 

z//z1 = $Jqs-f (-*~w H”,,+l(z). 
n=o n! (n + l)! 

(35) 

4) l/z = R-l exp (-je). 
In this example, gn vanishes except when n is equal to 

- 1, and so we have m  - n = 1. Thus we have the repre- 

5) IzI = R. 
Application of the above rules leads to 

IzI = -&/4 f ““,,-,“(-+)“H,,(z). (37) 
n=O . . 

6) exp (- I4W l. 
This example has been carefully chosen to exploit a  

formula of Erdelyi [12], thus, 

exp (- Izls)/lzl = 1142 2 (3 U(+, $ - n; s2/2)H,,(z). 
n=~ n! 

(38) 

The function U is the other confluent hypergeometric func- 
tion. This result agrees with that of 2) by considering the 
behavior of the coefficients when s becomes small. 

7) exp (-~1~1~). 
This has the representation 

exp ( -slz12) = “go (s2)” $ (l!$Q&, s 2 0, s real. 

(39) 

Another common technique to derive expansions in 
Hermite polynomials is to use integration by parts, that is, 
to use the formula for a,,,” in the form 

a mn = (- 1)n+m Sa f(z)(a/az)“(a/az*) 
--Xl 

exp (- zz*/2) dx dy/2n n ! m  !. (40) 

But this does not appear to be as useful as one might expect. 
There is, of course, the obvious representation for the 

impulse functions given by 

%4&Y) = & go y H,,(z). 
n  

(41) 

It is possible to give an alternative derivation for these 
formulas that is sometimes useful. It makes use of the for- 
mula 

f m  H,,(z) exp (- Iz - F12/2) dx dy/2n = ?“Z*“. (42) 
J-m 

To derive the expansions indicated above, form the expecta- 
tion of the function,f(z) where z is a unit variance Gaussian 
noise with nonzero mean Z; then expand the expectation as 
a power series in z and z -* ; then to determine the expansion 
of f(z) replace Z*“?” with H,,(z). This observation allows 
the straightforward derivation of the following expansions, 

Z*nZm - - (n “& 2” 2 (-m)k(-“k f&,+k,k(z,z*), 
(n - m  + l)k k! 

and 
n 2 m, n 2 0 (43a) 

sentation 
z**zm = 

l/z = 3 i (- H,+l,,(z). (36) 

(m “_! n>! 2” k$o (m’- Tyf;;z f&m-n+khZ*h 

n=o (n + l)! m  2 n, m  2 0. (43b) 
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If we have an expansion in Hermite polynomials then the 
computation of the mean is elementary using (27). 

The probability density of the phase p(0) is periodic in 8 
with period 2rt, and hence has a Fourier representation 
2 a, exp (jk0). The coefficient ak is given by 

ak = 
s 

2n 

exp (-jke)p(e) de/271 = E(z*~/~z-~/~) 
0 

and representation of Hk,2,-k,2(jZ/~, jF*/a) yields the for- 
mula 

p(e) = C Hki2,-ki2tjz/0,jz*/O) w WV 

This appears in Middleton [3]. 

(44) 

IV. BIVARIATE COMPLEX HERMITE POLYNOMIALS 

In many computations in noise theory, it is required to 
compute second moments, and for this purpose we must 
consider the bivariate complex Hermite polynomials. Al- 
though it is possible to generalize to n-variate polynomials 
following a program laid out by Appell and KampC de 
Feriet [14], we have found it more useful to consider only 
the bivariate polynomials in detail. 

The bivariate Hermite polynomial is defined by the 
integral 

H n,m (2)(z,z*) = (27~)~ exp (ztA-‘z/2) det A 

where 

. . . . 
s s 

du, do, du, du2(jpl*)“‘(jp2*~ 

x (iZYWp2Y w C-.G+z + z+p>P 
- P’APPI. (45) 

n = h,n2) 

m = (m1,m2) 

z = (z*,zz) 

z* = (z 1*,z29 

p = (ul + .h, u2 + ju,) 

ni - ml = integer 

n2 - m2 = integer. 

The matrix A in the exponent is the second-order covariance 
matrix. The Hermite polynomial is a function of eight 
variables in all, z~,z~,z~*,z~*,A~~,A~~,A~~,A~~. As before, 
we treat z and z* in this integral as completely unrelated 
complex numbers and indicate this with explicit representa- 
tion, as in Hn,d2) (z,z*). If this is not the case, and z* is 
indeed the conjugate of z, this is indicated by H,,,,(2)(z) 
or H”‘(z). 

The presentation of the results for this section will 
parallel that for the univariate Hermite polynomials, with 
the exception of the necessity to introduce the G poly- 
nomials. 

In dealing with the bivariate Hermite polynomials, it is 

useful to consider the partials of the quadratic form with 
respect to the variables z. Thus we define 

w1 = (d/~Yz,*)z~A-‘z = (A,,z, - A,,z,)/det A 
wl* = (~/~z,)z+A-~z (46) 

and, in general, w = A-lz, where z = Aw and 

z+A-‘z = z+w = w+z = w+Aw. (47) 

The numbers z may be similarly defined by taking partials 
with respect to w. Thus, 

z1 = (a/aW,*)(W+AW). 

We are now in a position to define the polynomial 
G by the formula 

Gn,m(2)(z,z*) = (27~)~ exp (wtAw/2) det A-l . . . . s s du, du, du, dv2/(2x)4(jp1*)n’ 

x ~~~*YY.ipl)“,(.ipz)m, 
x exp [-j(ptw + wtp)/2 - ptA-‘p/2], 

nl - ml = integer, n2 - m2 = integer, 
pl = ul + jo,, etc. (45b) 

The G polynomial is the same as an H polynomial except 
that z and w are interchanged, as are A and A- ‘. 

The H polynomials allow the following alternative 
representation 

H n,m (2)(z,z*) = (27~)~ det A . . . 
s s 

du, do, du, do2/(2n)4 
--m 

x (jpl* + wl*)n’(jp2* + w2*)n* 

x (jpl + wT’(jp2 + w2Yexp (-P~APP>, 
nl, ml, n2, m2 positive integers. (48) 

The Rodrigues formula for the Hermite polynomials His 

H,,m(2)(z,z*) = exp (z+A-‘z/2)(-2 c~/c?z,)“~ * . . 
x (-2 L?/~z,*)“~ exp (- z+A-‘z/2). (49) 

The generating function is 

exp {[-(z - a)+A-‘(z - a)/21 + ztA-‘z/2) 
= exp [(utw + wtu - atA-‘a)/21 

Analogous formulas may be written for the polynomials G. 
It is possible to compute recurrence formulas by dif- 

ferentiating the defining integral with respect to the variables 
zi and zi*, and also by differentiating the generating function 
with respect to the variables a,, etc. 

The orthogonality formula is more complicated than that 
for the univariate Hermite polynomials in that it involves 
both the H and the G polynomials. This orthogonality 
formula is 
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s 
cc 

dx, dx, dy, dy, exp (- z+A-~z/~)H,,,(~)(z) 
-m 

x G,,,(2)*(z)/(2n)2 det A 
=s 6 6 6 ",,Yl rni,Wl n2,yz rnl,Pl 

p+mr+nz+m2nl! II 2! m,! m,!. (51) 

It may be derived in the usual way, integration by parts. 
It is necessary to use the result that the polynomial His of 
degree n, in wl*, m, in wi, n, in w2*, and m2 in wz and that 
the polynomial G is of degree n1 in zl*, m, in zi, n2 in z2*, 
and m2 in z2. 

The Mehler expansion (quadrivariate generating func- 
tion) is determined in the following way. Suppose that the 
4 x 4 matrix A be decomposed into the 2 x 2 matrices 
Aa and A,,, and that the off-diagonal matrices have their 
diagonal terms vanishing, as indicated by the chart. 

0 A32 

A 0 41 
i AI, = [;:: ;::] 

The density function corresponding to Gaussian noise is 
then expanded with this covariance matrix in terms of the 
coefficients Ai4, A,,, A,,, and A,,. The result is the Mehler 
expansion, 

exp (- ztA-‘z/2)/(2rc)” det A 
= exp (-ZEAL- ‘z,/2)/(2~)~ det A, 

x exp (- ~~~A~-~z~/2)/(271)~ det Ab 

. c (~~/2)m’(~,~/2)“‘(~2~/2)m2(~~~/2)”2 
ml. In 1! m,! n,! 

x H,,,n~;m~,m~(2)(~,,~,*)Hm~,m~;,,,nl(2)(~~,~~*). (52) 

For Gaussian noise with mean Z  and covariance A, the 
mean value of the Hermite polynomial H(‘) is determined 
by the formula 

s 
m  H,,,(2)(Az) exp [-(z - ,%)+ 
-LX’ 

x A-‘(z - Z)/2] dx, dx, dy, dy,/(2~)~ det A 
= (1 _ ~2)(nl+ml+nz+m2)/2 

x H,,,“‘(l?/Jl - A2, L%*/Jl - L2) (53a) 

and the mean value of the G polynomial is 

s 
O” G,,m(2)(/Zz) exp [I-(z - 2)’ 
-CO 

x A-‘(z - 2)/2] dx, dx, dy, dy2/(2n)4 det A 
= (1 _ ~2)h+ml+nz+m2)/2 

x G,,m’2’(A5/~~, Az*/Jm). (53b) 

The four results that are obtained by setting 1 equal to 1 
and a3 are 

EfHn,m *It,- *n*- m*- m2 “‘(Z)} = w1 w2 w1 w2 (544 
E{W1*~lW2*~2Wl*lW2*2} = j-(~l+*l+~z+*2)Hn,,‘2’(j~,j~*) 

(554 

E(Gn,m’2’(z)) = Zl*“1Z2*nzZlm’Z2m2 Pb) 
E{zl*~l~2*~2~l*l~2*2} = j-(“l’*l+nZ+*2)Gn,m(2)(jz,jz*) 

(55b) 

Equations (55a) and (55b) are valid for arbitrary n, etc. 
as long as the limitation that n, - ml and n2 - m2 be 
integers is maintained, since they may be deduced from the 
defining integrals for the functions H and G. 

ErdClyi [12] has indicated how to express ordinary 
Hermite polynomials in terms of the Hermite polynomials; 
the result is 

Hek[(ztA-‘a + a’h-‘z)/(2JatA-‘a)] 
**I = k!/(atA-‘u)k/22k c al”‘;;“2al ‘2 **2 

?I, +m, +nz+mz=k n, . 2! m,! m,! 

H ‘2’(z). n,* (56) 

This is derived by setting a = ta in the generating formula, 
where t is a  real number, and then using the generating 
formula for the Hermite polynomials. We  may also express 
the univariate complex Hermite polynomials in terms of the 
bivariate polynomials by the substitution a = ua, with u 
complex; the result is 

= (utA-la)-(m+"v2 C (F) (7) ul”-*ul*m-sa2*a2*s 

x Hn-*,r;m-s,s(‘)(z,z*). (57) 

It is straightforward to derive analogous formulas for the 
G polynomial. 

The Taylor series for the G polynomial is 

Gn,m(2)(~ + Sz, z* + Sz*) 

= li .,gs*& "3'*"f;;s;;i::'f"'"' (~1)~I+sI+rz+s2 

, , 9 Pl. 

x (-nl>,,(-n2>,,(-ml>,,(-m2>,, 

xG - n, *‘,"2-~2;ml-sl,*2-s2 (2)(z,z*) (58) 

and this may be derived by using the recurrence formula for 
the G polynomial derived by taking a derivative of the 
expression analogous to (51) for the G polynomial. 

The analogous formula for the H polynomial is 

Hn,m(2)(~ + 6w, w* + 6~“) 

x (-nl>,,(-n2>,,(-ml>,,(-m2>,, 
xH - “1 rl,n2-*2;ml-sl,ml-S2 C2)(w,w”). (59) 

The peculiarity of this formula is that the diminution of 
order of the H polynomials is effected by taking partials 
with respect to w and not z. 

It is possible to derive some formulas for the complex 
Hermite polynomials in terms of simpler functions by 
expanding the factors in the exponent of the defining 
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integral. Expansion in the covariances AL2 and A,, leads 
to the formula 

= r go (i\12/fy2)’ (A,,iSv,)” 

x Hn, +r,ml +s (1)(Zl/~l,Zl*/~1)Hn2+~,~*+~(z2/~2,ZZ*/bZ) 

x exp (ztAW1z/2 - v1*/2~11 - z2~2*/2A22) 

x det A/o~*~“‘%~“‘~~~~, al2 = All, 022 = A22. 
(60) 

Expansions in the variables zl, etc. yields the representa- 
tions 

G n,* ‘2’tz) = c z~~::s~~:r~z:“’ (-n,>,,(- m,),,(-n2),, 
2’ 2. 

x (-m2)s2%- rl,nz-m;*l-sl.m2-~2 ‘2’(O). (61) 

H” m(2)(z,z*) 

= c wl*r~~;y2;r~;“2 
rl. 

t-nl>,,(-ml>,,t-n2>~,t-m2>,, 
2. 

xH - nl n.~2-*2;*~-s~.m3--s2 “‘(0). (62) 

Reed [5] has computed the bivariate Hermite polynomials 
when the argument z vanishes. His result, modified to our 
notation, follows. 

Ifn, - ml = Y > 0 then 

K,,m’2’tO> = ~,,-m,,,,-,,(-2)“‘+m2t~2~/2~~~~22)”’-m’ 

X 

X 

! m,! det A 
(n:‘- ml)! AllA,, A11-m1A22-n2 

2F,(n, + 1, in2 + 1; n, - ml + 1; 

A12A21/AllA22). t6W 

If nl - m, = Y > 0 then 

G,,,‘2’(O> = S,,-m,,m2-n2t-2)mi+“12t~2~/~~~~22)n’-m’ 
n,! m,! 

x (nl _ ml)! A11m2A22ni 2ht-ml, -n2; 

nl - ml + 1; bWA11M. WI 

Ifm, -n, =r>Othen 

Hn,m’2’tO> = ~m~-n~,n~-m~t~2)m1tn2(~~2/2~~1~22)m~~n’ 

n,! ml! 

x (ml - 
det A I\ -WA -*2 

nlY AllA 
11 22 

x ,F,(m, + 1, n2 + 1; ml - nl + 1; 

&2A21/AllA22). (644 

If m, - nl = r > 0 then 

Gn,mc2)(0) = ~m~-~,,~~-m~(-2)“‘i”2(~12/~11~22)m*-”’ 

x n2. 1 ml! 
(ml - n,)! 

Al ln2A 22 *’ 2Fl(-nl, -m,; ~ 

ml - nl + 1; A12A21/A11A22). t64b) 

IEEE TRANSACTIONS ON INFORMATION THEORY, MARCH 1911 

For example 

EUlzl*z2) = -/2A2l ln (1 - A12A21/A11A22) 
= G-, o.o,- 1'2'(O) 

for zero mean processes z1,z2. 
The two expansions given, the expansion in the covariance 

leading to confluent hypergeometric functions and the 
Taylor-series expansion leading to hypergeometric functions, 
correspond to two of the cases given by Middleton for the 
computation of moments. Middleton gives a third expan- 
sion that we have not been able to extend to the more 
general problem considered in this paper [3, p. 4161. 

The bivariate complex Hermite polynomials may be ex- 
tended to nonpositive-integer values of n, etc. in the same 
way as the extension is made for the univariate complex 
Hermite functions. Two of particular interest for FM 
problems are H- 1; e,e,- l(2) and H- 1, - 1; e,eC2). The results 
are 

H-I,-I;O,O C2) = 1/w,*w,* 
- exp (wl*wl det A/2A22)A22/w,“z2* 
- exp (w2*w2 det A/2All)All~w2*zl* 
+ exp (wtAw/2) det A/z,*z,” (65) 

and 

H- 1,0;0, - 1 (2) = -exp (-w2wl * det A/2A21) det A/2A,, 
x [-Ei(w,w,* det A/2A,& 
+ Ei(z,w,* det A/2A,,A,,) 
+ Ei(z,*w, det A/2A,,A,,) 

- Eitz,z,*PA2,>1, 

Ei(x) = 
s 

x exp (u) f&/u. (66) 
--a, 

The derivation of the first formula is performed by integra- 
tion by parts. The second is derived by integration with 
respect to z1 and z2* of 

I~~H~,~;~,-~(~) exp (-ztA-‘z/2)/8z, az2*. 

In this section we have presented the bivariate complex 
Hermite functions and shown their properties. Recurrence 
formulas may be obtained in the ways indicated. The Taylor 
series expansions using Reed’s formula (useful for small 
signals) and the expansion in confluent hypergeometric 
functions (useful for small correlation coefficient) have been 
presented. In addition, explicit formulas for two special 
rational functions have been determined. 

Recently a note by BCdard [15] showed the same type of 
generalized Hermite polynomials that are discussed here. 
However, his discussion is not for circularly complex noises 
explicitly, and so there is a doubling of the number of 
variables used. Also, his discussion is related to poly- 
nomials through the generating function and Rodrigues’ 
formula, whereas we have used the integral definition 
because of its possibilities of generalization of the numbers 
n,, etc. to numbers that are not positive integers. 
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How Does a Porcupine Separate 
Its Qu ills? 
HENRY J. LANDAU 

Abstract-Sets of unit vectors in N-dimensional Eucl idean vector 
space whose constituent vectors are separated one  from another by  at 
least a  fixed distance d, prescr ibed once  for all and  independent  of N, 
are of interest in theory and  practice; they have  fondly been  called 
“porcupine codes.” Although an  elegant constructive proof of Gilbert 
shows that the number  of vectors in a  porcupine code (of given d) can 
increase exponential ly with N, no  systematic method is yet known for 
generat ing porcupine codes of this cardinality. 

Corresponding to a  collection of M  vectors, we can partition the space 
into maximum-likel ihood regions, the jth of which consists of those 
vectors that lie closer to thejth than to any  other element of the collection. 
Each maximum-likel ihood region is bounded  by at most (M - 1) hyper-  
planes, and  we denote by  K the total number  of these bounding 
hyperplanes. Collections for which K is small may be  expected to have  
greater symmetry than those for which K is large. 

In this paper  we show that, for porcupine codes,  K 2  (M/2)““, with 
s depending only on  d, the minimum separat ion of the code vectors. 
Hence,  for the number  of vectors of a  porcupine code to increase ex- 
ponentially with dimension, the number  of separat ing hyperplanes must 
do  so as  well. W e  conclude with, an  application to the permutat ion codes 
introduced by Slepian, showing that the number  of vectors of a  porcupine 
code which is of permutat ion-modulat ion type can not increase 
exponential ly with N. 

Manuscript received May 11, 1970.  
The  author is with Bell Te lephone Laboratories, Inc., Murray Hill, 

N.J. 07974.  

I. INTRODUCTION 

A. Porcupine Codes 

I N THE geometr ic view of coding theory for a  time- 
continuous channel, a  message of fixed energy is repre- 

sented as a unit vector in a space whose dimension is 
proportional to the bandwidth of the communication sys- 
tem. The sender, with M  possible messages to transmit, 
fixes a set of M  distinct unit vectors, called a “code,” to 
represent them; the code is assumed known to the receiver. 
However, as transmission entails error, the received vector 
corresponding to a particular sent message from this code 
set does not necessarily coincide with one of the code 
vectors agreed upon, so that the receiver must guess which 
message had been intended, We  suppose the perturbations 
of transmission to be such that his best strategy consists 
of choosing that one of the possible sent vectors which lies 
nearest to the received vector; this procedure is termed 
“maximum-likelihood decoding.” Knowledge of the de- 
coding strategy in turn influences the choice of code; in 
particular, it suggests unit vectors separated one from 
another by at least a  prescribed distance d > 0, fixed 
independently of dimension. Sets of such vectors owe to 
J. H. VanLint the fond name of “porcupine codes.” 


