
T rellis-Coded  Modulation  (TCM)  has evolved  over 
the  past  decade  as  a  combined  coding  and 

modulation  technique for  digital  transmission over 
band-limited  channels.  Its  main  attraction  comes  from 
the  fact  that  it  allows  the  achievement of significant 
coding  gains over conventional  uncoded  multilevel 
modulation  without  compromising  bandwidth effi- 
ciency. T h e  first TCM schemes  were  proposed in 1976 
[I].  Following  a  more  detailed  publication [2] in 1982, an 
explosion of research and  actual  implementations of 
TCM  took  place,  to  the  point  where today  there  is  a  good 
understanding of the  theory and  capabilities of TCM 
methods.  In  Part 1 of this  two-part  article,  an  introduc- 
tion  into  TCM is given. The  reasons  for  the  development 
of TCM  are reviewed, and  examples of simple  TCM 
schemes  are  discussed.  Part I1 [I51  provides  further 
insight  into code  design  and  performance,  and addresses . 
recent  advances in  TCM. 

TCM schemes  employ  redundant  nonbinary  modula- 
tion  in  combination  with  a  finite-state  encoder  which 
governs  the  selection of modulation  signals  to  generate 
coded  signal  sequences.  In  the receiver,  the  noisy signals 
are  decoded by a  soft-decision  maximum-likelihood 
sequence  decoder.  Simple  four-state  TCM  schemes  can 
improve.  the  robustness of digital  transmission  against 
additive  noise by 3 dB, compared  to  conventional 

, uncoded  modulation.  With  more  complex  TCM 
schemes,  the  coding  gain  can  reach  6  dB  or  more.  These 
gains  are  obtained  without  bandwidth  expansion  or 
reduction of the effective information  rate  as  required by 
traditional  error-correction schemes. Shannon’s  infor- 
mation theory  predicted  the  existence of coded modula- 
tion  schemes  with  these  characteristics  more  than  three 
decades ago. T h e  development of effective TCM tech- 
niques  and today’s  signal-processing  technology  now 
allow these ,gains  to be obtained  in  practice. 

Signal  waveforms  representing  information  sequences 
~ are  most  impervious  to  noise-induced  detection  errors if 

they are very different  from  each  other.  Mathematically, 
this  translates  into  therequirement  that  signal  sequences 
should have  large  distance  in  Euclidean  signal  space. 

~ T h e  essential  new  concept of TCM  that led  to the  afore- 
1 mentioned  gains  was  to  use  signal-set  expansion  to 
I provide  redundancy  for  coding,  and  to  design  coding  and 
’ signal-mapping  functions  jointly so as  to  maximize 
~ directly  the “free distance”  (minimum  Euclidean  dis- 

tance)  between  coded  signal  sequences. This  allowed  the 
construction of modulation codes whose free distance 
significantly exceeded the  minimum  distance between 
uncoded  modulation  signals,  at  the  same  information 
rate,  bandwidth,  and  signal  power.  The term  “trellis” is 
used  becausethese  schemes  can be described by a  state- 
transition  (trellis)  diagram  similar  to  the  trellis  diagrams 
of binary  convolutional codes. The  difference  is  that in 
TCM schemes,  the  trellis  branches  are  labeled  with 
redundant  nonbinary  modulation  signals  rather  than 
with  binary  code  symbols. 

The  basic  principles of TCM were published  in 1982 
[2]. Further  descriptions  followed in 1984  [3-61, and 
coincided  with  a  rapid  transition of TCM  from the  re- 
search  stage to practical use. In 1984, a TCM scheme 
with  a  coding  gain of 4 dB was  adopted by the Interna- 
tional  Telegraph  and  Telephone  Consultative  Commit- 
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tee (CCITT)  for use in  new  high-speed  voiceband 
modems  [5,7,8].  Prior to TCM,  uncoded  transmission 
at 9.6 kbit/s  over  voiceband  channels was often  con- 
sidered as  a  practical  limit  for  data  modems.  Since 
1984, data  modems have appeared  on the  market 
which  employ  TCM  along  with  other  improvements  in 
equalization,  synchronization,  and so forth, to transmit 
data  reliably  over  voiceband  channels  at  rates of 14.4 
kbit/s  and  higher.  Similar  advances  are  being achieved 
in  transmission over  other  bandwidth-constrained 
channels.  The  common use of TCM  techniques  in  such 
applications,  as  satellite [9-1 I] ,  terrestrial  microwave, 
and  mobile  communications,  in  order to increase 
throughput  rate  or to permit satisfactory operation  at 
lower  signal-to-noise  ratios,  can be  safely  predicted  for 
the  near  future. 

Classical Error-Correction Coding 
In classical  digital  communication systems, the  func- 

tions of modulation  and  error-correction  coding  are 
separated.  Modulators  and  demodulators  convert  an 
analog waveform channel.  into  a discrete channel, 
whereas  encoders  and  decoders  correct  errors  that  occur 
on the  discrete  channel. 

In  conventional  multilevel  (amplitude  and/or  phase) 
modulation systems, during  each  modulation  interval 
the  modulator  maps  m  binary  symbols  (bits)  into  one of 
M = 2’” possible  transmit  signals,  and  the  demodulator 
recovers the  m  bits by making  an  independent M-ary 
nearest-neighbor  decision  on  each  signal received. 
Figure 1 depicts  constellations of real-  or  complex- 
valued  modulation  amplitudes,  henceforth  called  signal 
sets, which  are  commonly  employed  for  one-  or two- 
dimensional  M-ary  linear  modulation.  Two-dimen- 
sional  carrier  modulation  requires  a  bandwidth of 1/T 
Hz around  the  carrier  frequency to transmit  signals  at  a 
modulation rate of 1/T signals/sec (baud)  without 
intersymbol  interference.  Hence,  two-dimensional 2‘”- 
ary modulation systems  can  achieve  a  spectral efficiency 
of about  m  bit/sec/Hz.  (The  same  spectral efficiency  is 
obtained  with  one-dimensional  2m/2-ary  baseband 
modulation.) 
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Fig. 1 .  Signal sefs for one-dimensional  amplifude  modulation, 
and two-dimensional  phase and ampliiudelphase  modulaiion. 
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Conventional  encoders  and  decoders  for  error correc- 
tion  operate  on  binary,  or  more  generally  Q-ary,  code 
symbols  transmitted  over  a  discrete  channel.  With  a  code 
of rate  k/n < 1, n - k  redundant check  symbols  are 
appended to every k  information symbols.  Since  the 
decoder  receives only  discrete  code  symbols, Hamming 
distance  (the  number of symbols  in whi.ch two  code 
sequences  or  blocks  differ,  regardless of how these 
symbols  differ) is the  appropriate  measure of distance  for 
decoding  and  hence  for  code  design. A minimum 
Hamming distance  dii,,  also  called  “free  Hamming 
distance”  in  the case of convolutional codes,  guarantees 
that  the  decoder  can  correct  at  least  [(dii,  -1)/2]  code- 
symbol  errors. If low  signal-to-noise  ratios  or  non- 
stationary  signal  disturbance  limit  the  performance of 
the  modulation system,  the  ability to correct  errors  can 
justify  the  rate  loss  caused by sending  redundant  check 
symbols.  Similarly,  long  delays  in  error-recovery 
procedures  can be a  good  reason  for  trading  transmission 
rate  for  forward  error-correction  capability. 

Generally,  there  exist  two  possibilities to compensate 
for  the  rate loss: increasing  the  modulation  rate if the 
channel  permits  bandwidth  expansion,  or  enlarging  the 
signal set of the  modulation system if the  channel  is 
band-limited.  The  latter necessarily  leads to the use of 
nonbinary  modulation  (M > 2). However,  when 
modulation  and  error-correction  coding  are  performed 
in  the classical  independent  manner,  disappointing 
results  are  obtained. 

As an  illustration,  consider  four-phase  modulation 
(4-PSK)  without  coding,  and  eight-phase  modulation 
(8-PSK) used with  a  binary  error-correction  code of rate 
2/3.  Both  systems  transmit  two  information  bits  per 
modulation  interval  (2  bit/sec/Hz). If the 4-PSK  system 
operates  at  an  error  rate of  lo-’, at  the  same  signal-to- 
noise  ratio  the  “raw”  error  rate  at  the 8-PSK demodulator 
exceeds IO-’ because of the  smaller  spacing  between  the 
8-PSK signals.  Patterns of at least  three  bit  errors  must  be 
corrected to reduce  the  error  rate to that of the  uncoded 
4-PSK  system. A rate-2/3  binary  convolutional  code  with 
constraint  length u = 6  has  the  required  value of dii, = 7 
[12]. For  decoding,  a  fairly  complex  64-state  binary 
Viterbi  decoder  is  needed.  However,  after all  this  effort, 
error  performance  only  breaks  even  with  that of uncoded 

Two  problems  contribute to this  unsatisfactory 
4-PSK. 

situation. 

Soft-Decision  Decoding  and  Motivation for 
New Code Design 

One  problem  in  the coded  8-PSK system just described 
arises  from  the  independent  “hard”  signal  decisions 
made  prior to decoding  which  cause  an irreversible  loss 
of information  in  the receiver. T h e  remedy for  this 
problem is soft-decision  decoding,  which  means  that  the 
decoder  operates  directly on  unquantized  “soft”  output 
samples of the  channel.  Let  the  samples be r, = a, 4- w, 
(real-  or  complex-valued,  for  one-  or  two-dimensional 
modulation, respectively),  where  the a, are  the  discrete 
signals  sent by the  modulator,  and  the w, represent 
samples of an  additive  white  Gaussian  noise  process. 
T h e  decision  rule of the  optimum  sequence decoder  is to 
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determine,  among  the set  C of all coded signal  sequences 
which  a  cascaded  encoder and  modulator  can  produce, 
the  sequence {%} with  minimum  squared  Euclidean 
distance  (sum of squared  errors)  from {r"], that  is,  the 
sequence {&,} which satisfies 

The  Viterbi  algorithm,  originally  proposed  in 1967 
[I31  as  an  "asymptotically  optimum"  decoding  tech- 
nique for  convolutional codes, can be  used to determine 
the  coded  signal  sequence {^aIl)  closest  to  the received 
unquantized  signal  sequence {r,,} [12,14],  provided that 
the  generation of coded  signal  sequences  {a&C  follows 
the  rules of a  finite-state  machine.  However,  the  notion 
of "error-correction" is then  no  longer  appropriate, since 
there  are no  hard-demodulator  decisions to be corrected. 
T h e  decoder  determines  the  most  likely  coded  signal 
sequence  directly  from  the  unquantized  channel  outputs. 

The  most  probable  errors  made by the  optimum 
soft-decision  decoder  occur  between  signals  or  signal 
sequences  {aIl} and {b"}, one  transmitted  and  the  other 
decoded,  that  are  closest  together  in  terms of squared 
Euclidean  distance. The  minimum  squared  such dis- 
tance  is  called  the  squared "free  distance:" 

When  optimum  sequence  decisions  are  made  directly 
in terms of Euclidean  distance,  a  second  problem 
becomes apparent.  Mapping of code  symbols of a  code 
optimized  for  Hamming  distance  into  nonbinary  modu- 
lation  signals  does not guarantee that a good  Euclidean 
distance  structure  is  obtained.  In  fact,  generally  one 
cannot even  find  a  monotonic  relationship between 
Hamming  and  Euclidean  distances,  no  matter  how code 
symbols  are  mapped. 

For  a  long  time,  this  has been the  main  reason  for  the 
lack of good  codes  for  multilevel  modulation.  Squared 
Euclidean  and  Hamming  distances  are  equivalent  only 
in the case of binary  modulation  or  four-phase  modula- 
tion,  which merely corresponds to two  orthogonal 
binary  modulations, of a  carrier.  In  contrast to coded 
multilevel systems, binary  modulation systems with 
codes optimized  for  Hammingdistance  and  soft-decision 
decoding  have been  well established  since  the  late 1960s 
for  power-efficient  transmission  at  spectral  efficiencies 
of less than  2  bit/sec/Hz. 

The  motivation of this  author  for  developing  TCM 
initially  came  from  work  on  multilevel systems that 
employ  the  Viterbi  algorithm to improve  signal  detection 
in  the presence of intersymbol  interference. This  work 
provided  him  with  ample evidence of the  importance of 
Euclidean  distance  between  signal  sequences.  Since 
improvements over the  established  technique of adaptive 
equalization to eliminate  intersymbol  interference  and 
then  making  independent  signal  decisions  in  most cases 
did  not  turn  out to be very significant,  he  turned  his 
attention  to  using  coding to improve  performance.  In 
this  connection,  it was clear to him  that codes should be 
designed  for  maximum free Euclidean  distance  rather 
than  Hamming  distance,  and  that  the  redundancy 

necessary  for coding  would have to come  from  expanding 
the  signal set  to avoid  bandwidth  expansion. 

T o  understand  the  potential  improvements to  be 
expected by this  approach, he computed  the  channel 
capacity of channels  with  additive  Gaussian  noise  for  the 
case of discrete  multilevel  modulation  at  the  channel 
input  and  unquantized  signal  observation  at  the  channel 
output.   The results of these calculations [2] allowed 
making  two  observations:  firstly,  that  in  principle 
coding  gains of about 7-8 dB over conventional  uncoded 
multilevel  modulation  should be achievable, and 
secondly,  that  most of the  achievable  coding  gain  could 
be obtained by expanding  the  signal sets  used  for 
uncoded  modulation  only by the  factor of two. The  
author  then  concentrated  his  efforts  on  finding  trellis- 
based signaling schemes  that use signal sets of size 2"'" 
for  transmission of m  bits  per  modulation  interval.  This 
direction  turned  out to be succesful and today's TCM 
schemes  still  follow  this  approach. 

The  next  two  sections  illustrate  with  two  examples 
how  TCM schemes  work.  Whenever  distances  are 
discussed,  Euclidean  distances  are  meant. 

Four-State Trellis Code for 8-PSK Modulation 
The  coded  8-PSK  scheme  described  in  this  section was 

the  first  TCM  scheme  found by the  author  in 1975 with  a 
significant  codinggain over  uncoded  modulation.  It was 
designed  in  a  heuristic  manner,  like  other  simple  TCM 
systems shortly  thereafter.  Figure 2 depicts  signal sets 
and  state-transition  (trellis)  diagrams  for  a)  uncoded 
4-PSK modulation  and  b) coded  8-PSK modulation  with 
four  trellis  states. A trivial  one-state  trellis  diagram is 
shown  in Fig. 2a only to illustrate  uncoded 4-PSK from 
the  viewpoint of TCM. Every connected  path  through  a 
trellis  in  Fig. 2 represents  an  allowed  signal  sequence.  In 
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Redundant [I-PSK signal set 

Four-state trellis 

Fig. 2. (a )  Uncodedfour-phasemodulation(4-PSK),(b)Four-siale 
trellis-coded eighi-phase modulaiion (8-PSK).  
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both systems, starting  from  any  state,  four  transitions  can 
occur,  as  required to encode  two  information  bits  per 
modulation  interval  (2  bit/sec/Hz).  For  the  following 
discussion,  the  specific  encoding of information  bits  into 
signals  is  not  important. 

The  four  “parallel”  transitions  in  the  one-state  trellis 
diagram of Fig. 2a for  uncoded  4-PSK do  not restrikt  the 
sequences of 4-PSK  signals  that  can be transmitted,  that 
is,  there  is no  ‘sequence  coding.  Hence,  the  optimum 
decoder  can  make  independent  nearest-signal  decisions 
for  each  noisy  4-PSK  signal received. T h e  smallest 
distance  between  the 4-PSK signals  is a, denoted  as A,,. 
We call  it  the  “free  distance” of uncoded 4-PSK 
modulation to use common  terminology  with  sequence- 
coded  systems.  Each  4-PSK signal  has  two  nearest- 
neighbor  signals  at  this  distance. 

In  the  four-state  trellis of Fig. 2b  for  the  coded  8-PSK 
scheme,  the  transitions  occur  in  pairs of two  parallel 
transitions.  (A  four-state  code  with  four  distinct  transi- 
tions  from  each  state  to  all  successor  states was also 
considered;  however,  the  trellis  as  shown  with  parallel 
transitions  permitted  the  achievement of a  larger free 
distance.)  Fig.  2b  shows  the  numbering of the  8-PSK 
signals  and  relevant  distances  between these signals: 
A, = 2 sin(rr/8), A ,  = fi, and A, = 2. The  8-PSK  sig- 
nals  are  assigned to the  transitions  in  the  four-state 
trellis  in  accordance  with  the  following  rules: 

a)  Parallel  transitions  are associated with  signals  with 
maximum  distance A2(8-PSK) = 2 between  them, 
the  signals  in  the  subsets  (0,4),  (1,5),  (2,6),  or  (3,7). 

b) Four  transitions  originating  from  or  merging  in 
one  state  are  labeled  with  signals  with  at  least 
distance  Al(8-PSK)  =@between  them,  that  is,  the 
signals  in  the  subsets  (0,4,2,6)  or  (1,5,3,7). 

c) All  8-PSK  signals  are used in  the trellis  diagram 
with  equal  frequency. 

Any two  signal  paths  in  the  trellis of Fig. 2(b) that 
diverge in  one  state  and  remerge  in  another  after  more 
than  one  transition  have  at least squared  distance 
A: + & + A: = At + & between  them.  For  example,  the 
paths  with  signals 0-0-0 and2-1-2  have  this  distance. The  
distance  between  such  paths is greater  than  the  distance 
between  the  signals  assigned to parallel  transitions, 
A2(8-PSK) = 2, which  thus  is  found  as  the free distance 
in  the  four-state  8-PSK  code:  dflcr = 2. Expressed in 
decibels,  this  amounts to an  improvement of 3  dB over 
the minimum distance 42 between  the  signals of 
uncoded  1-PSK  modulation.  For  any  state  transition 
along  any  coded  8-PSK  sequence  transmitted,  there 
exists  only  one  nearest-neighbor  signal  at free distance, 
which is the 180’ rotated  version of the  transmitted 
signal.  Hence,  the  code is invariant to a.signal  rotation 
by 180”, but to no  other  rotations  (cf.,  Part 11). Figure 3 
illustrates  one  possible  realization of an  encoder-modu- 
lator  for  the  four-state  coded 8-PSK  scheme. 

Soft-decision  decoding is accomplished  in  two  steps: 
In  the first  step,  called  “subset  decoding”,  within  each 
subset of signals  assigned  to  parallel  transitions,  the 
signal closest to the received channel  output is deter- 
mined.  These  signals  are stored  together  with  their 
squared  distances  from  the  channel  output.  In  the  second 
step,  the  Viterbi  algorithm  is  used to find  the  signal  path 
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through  the code  trellis  with  the  minimum  sum  of 
squared  distances  from  the  sequence of noisy channel 
outputs received. Only  the  signals  already  chosen by 
subset  decoding  are  considered. 

Tutorial  descriptions of the, Viterbi algorithm  can be 
found  in several  textbooks,  for  example, [12]. T h e  
essential  points  are  summarized  here  as  follows:  assume 
that  the  optimum  signal  paths  from  the  infinite  past to 
all  trellis  states  at  time  n  are  known;  the  algorithm 
extends  these  paths  iteratively  from  the  states  at  time  n to 
the  states  at  time  n + 1 by choosing  one best path to each 
new  state  as  a  “survivor” and  “forgetting”  all  other  paths 
that  cannot be extended  as  the best paths  to  the  new 
states; looking  backwards  in  time,  the  “surviving”  paths 
tend  to  merge  into  the  same  “history  path”  at  some  time 
n - d; with  a  sufficient  decoding  delay D (so that  the 
randomly  changing  value of d is highly  likely to be 
smaller  than D), the  information associated with  a 
transition  on  the  common  history  path  at  time n - D can 
be selected  for output. 

Let  the received signals be disturbed by uncorrelated 
Gaussian  noise  samples  with  variance u’ in each  signal 
dimension.  The  probability  that  at  any  given  time  the 
decoder  makes  a wrong  decision  among  the  signals 
associated with  parallel  transitions,  or  starts to make  a 
sequence o f  wrong  decisions  along  some  path  diverging 
for more  than  one  transition  from  the  correct  path, is 
called  the  error-event  probability. At high  signal-to- 
noise  ratios,  this  probability  is  generally well approxi- 
mated by 

W e )  N,,,, Q[d,,d(Pu)l, 

where, a(.) represents  the  Gaussian  error  integral 

Q ( x )  = - J2rr JEp(-y’/2)dy, 

and Nfrrr denotes  the  (average)  number  of  nearest- 
neighbor  signal  sequences  with  distance dlrrr that  diverge 
at  any  state  from  a  transmitted  signal  sequence,  and 
remerge with  it  after  one  or  more  transitions.  The  above 
approximate  formula expresses  the  fact  that  at  high 
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Fig. 3.  Illushales  an  encoder  for the four-slate 8-PSK code 



signal-to-noise  ratios  the  probability of error  events 
associated  with  a  distance  larger  then d,,,.,. becomes 
negligible. 

For  uncoded  4-PSK, we have = &?and N,,cc = 2, 
and for  four-state  coded  8-PSK we found d,,,,. = 2  and N,,ce 
= 1 .  Since  in  both  systems free distance  is  found  between 
parallel  transitions,  single  signal-decision  errors  are  the 
dominating  error  events.  In  the  special case of these 
simple systems,  the  numbers of nearest  neighbors do  not 
depend  on  which  particular  signal  sequence  is  trans- 
mitted. 

Figure 4 shows  the  error-event  probability of the  two 
systems  as  a  function of signal-to-noise  ratio.  For 
uncoded  4-PSK,  the  error-event  probability  is  extremely 
well approximated by the  last  two  equations  above.  For 
four-state  coded 8-PSK, these equations  provide  a  lower 
bound  that is  asymptotically  achieved at  high  signal-to- 
noise  ratios.  Simulation  results  are  included  in  Fig. 4 for 
the  coded  8-PSK  system to illustrate  the effect of error 

probability of occurrence  is  not  negligible  at  low  signal- ulilh a signal-lo-noue rnlio of E,No = 12.6 dB. 
to-noise  ratios. 

Figure  5  illustrates a noisy  four-state  coded  8-PSK 
signal as observed at  complex  baseband before sampling 

wi th  distance larger than free distance* whose Fig. 5. Nor.q~ four-slale coded 8-PSK signal ai complex baseband 
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in the receiver of an  experimental 64 kbit/s  satellite 
modem [9]. At a signal-to-noise  ratio of E,/No = 12.6 dB 
(E,: signal  energy, No: one-sided  spectral  noise  density), 
the  signal is decoded  essentially  error-free. At the  same 
signal-to-noise  ratio,  the  error  rate wit.h uncoded  4-PSK 
modulation  would be around 

In  TCM schemes  with  more  trellis  states and  other 
signal sets, d,,<.? is not necessarily found between  parallel 
transitions,  and N,,,,, will  generally be an average number 
larger  than  one,  as  will be shown by the  second  example. 

Eight-State Trellis Code for 
Amplitude/Phase  Modulation 

T h e  eight-state  trellis  code  discussed in this  section 
was  designed  for  two-dimensional  signal sets whose 
signals  are  located on  a  quadratic  grid,  also  known as a 
lattice of type “22”. T h e  code  can be used with  all of the 
signal sets depicted  in  Fig. 1 for  amplitude/phase 
modulation. To transmit  m  information  bits  per  modula- 
tion  interval, a signal set with 2”’+’ signals  is  needed. 
Hence,  for  m = 3  the  16-QASK  signal set is  used,  for  m = 
4 the  32-CROSS  signal set, and  soforth.  For  any  m, a 
coding  gain of approximately 4 dB is  achieved  over 
uncoded  modulation. 

Figure  6  illustrates a “set partitioning” of the 16- 
QASK and  32-CROSS  signal sets into  eight subsets. T h e  
partitioning of larger  signal sets  is done  in  the  same  way. 
The  signal set chosen  is  denoted by  AO, and  its  subsets by 
DO, Dl ,  . . . D7. If the  smallest  distance  among  the 
signals  in A0 is A,,, then  among  the  signals  in  the  union 
of the  subsets DO,D4,D2,D6 or  Dl,D5,D3,D7  the  mini- 
mum distance  is fi A,,, in  the  union of the  subsets 
DO,D4; D2,D6; Dl,D5;  or D3,D7  it  is & &, and  within 
the  individual  subsets  it  is fib. (Aconceptually  similar 
partitioning of the  8-PSK  signal set into  smaller  signal 
sets with  increasingintra-set  distances.wasimplied  in  the 
example of coded  8-PSK. The  fundamental  importance 
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Slgnal sets: 1bPASK and 32-CROSS 

A 0  

Signal subsets 

I I I I 
DO D4 D2 D6 Dl D5 D3 0 7  

Fig.6. Selparlilioningofll~e16-QASKnnd3-3-CROSSsignalsels. 

of this  partitioning  for  TCM codes  will be explained  in 
Part 11.) 

In  the  eight-state trellis  depicted  in  Fig. 7, four 
transitions  diverge  from  and  merge  into  each  state. T o  
each  transition,  one of the  subsets DO, . . . D7 is 
assigned. If  A0 contains 2”’” signals,  each of its  subsets 
will  comprise 2‘”-’ signals.  This  means  that  the  transi- 
tions  shown  in  Fig. 7 in fact  represent 2‘“-‘ parallel 
transitions  in  the  same  sense  as  there were two  parallel 
transitions  in  the  coded  8-PSK  scheme.  Hence, 2’” signals 
can be sent  from  each  state,  as  required to encode  m  bits 
per  modulation  interval. 

The  assignment of signal  subsets to transitions 
satisfies  the  same  three  rules  as  discussed  for  coded 8- 
PSK,  appropriately  adapted to the  present  situation. T h e  
four  transitions  from  or to the  same  state  are  always 
assigned  either  the  subsets DO,D4,D2,D6 or Dl  ,D5,D3,D7. 
This  guarantees  a  squared  signal  distance of at least 2& 
when  sequences  diverge  and  when they remerge. If paths 
remerge  after  two  transitions,  the  squared  signal  distance 
is  at least 4Ai between  the  diverging  transitions,  and 
hence  the  total  squared  distance  between  such  paths  will 
be at  least 6Ai. If paths  remerge  after  three  or  more 
transitions,  at  least  one  intermediate  transition  con- 
tributes  an  additional  squared  signal  distance &, so the 
squared  distance between  sequences  is at least & &. 

Hence,  the free distance of this  code is 6 &. This  is 
smaller  than  the  minimum  signal  distance  within  in  the 
subsets DO, . . . D7, which is fib. For  one  particular 
code  sequence DO-DO-D3-D6, Fig. 6 illustrates  four  error 
paths  at  distance 6 & from  that  code  sequence;  all 
starting  at  the  same  state  and  remerging  after three  or 
four  transitions.  It  can be shown  that for  any  code 

Fzg. 7 .  Eight-stale  frellis  code for nmplitudelphnse  modulation 
w i f h  “Zz”-type  srgnal  sets; dlrr. = 641. 
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sequence  and  from  any  state  along  this  sequence, there 
are  four  such  paths,  two of length  three  and  two of length 
four.  The  most likely  error events will  correspond  to 
these error  paths,  and  will  result  in  bursts of decision 
errors of length  three  or  four. 

The  coding  gains  asymptotically achieved at  high 
signal-to-noise  ratios  are  calculated  in  decibels by 

G, = 10 loglo [ (d~~, , , , /d~~, , , , , ) /E, , , - /~ . , , , , ) l ,  
where d:,??,< and d:r,.,.,,, are  the  squared free distances,  and 
E,,< and E,,,, denote  the  average  signal  energies of the  coded 
and  uncoded  schemes,  respectively.  When  the  signal sets 
have  the  same  minimum  signal  spacing &, dylrr,c/ 
d:l,,,,, = 5, and E,JE,,,, 2: 2 for  all  relevant  values of m. 
Hence,  the  coding  gain is 10 lOgl0(5/2) = 4 dB. 

The  number of nearest  neighbors  depends  on  the 
sequence of signals  transmitted,  that is N,,,, represents  an 
average  number.  This is easy to see for  uncoded 
modulation,  where  signals  in  the  center of a  signal set 
have  more  nearest  neighbors  than  the  outer  ones.  For 
uncoded 16-QASK, N,,,, equals 3.  For  eight-state  coded 
16-QASK, Nc,,.,, is around 3.75. In  the  limit of large 
“Z,”-type signal sets,  these  values  increase  toward 4 and 
16 for  uncoded  and  eight-state  coded systems,  re- 
spectively. 

Trellis Codes of Higher  Complexity 
Heuristic  code  design  and  checking of code  properties 

by hand,  as was done  during  the early  phases  of  the 
development of TCM schemes,  becomes  infeasible for 
codes  with  many  trellis  states.  Optimum codes must  then 
be found by computer  search,  using  knowledge of the 
general  structure of TCM codes and  an efficient  method 
to  determine free distance. T h e  search  technique  should 
also  include  rules  to reject  codes with  improper  or 
equivalent  distance  properties  without  having  to  evalu- 
ate free distance. 

In  Part 11, the  principles of TCM code  design  are 
outlined,  and tables of optimum  TCM codes given  for 
one-,  two-,  and  higher-dimensional  signal sets. TCM 
encoder/modulators  are  shown to exhibit  the  following 
general  structure:  (a) of the  m  bits to be transmitted  per 
encoder/modulator  operation,  m I m  bits  are  expanded 
into fi + 1 coded  bits by a  binary  rate-i%/(i%+l) 
convolutional  encoder;  (b)  the ii~ + 1 coded  bits  select one 

subsets of a  redundant 2’”+’-ary signal set; (c)  the 
remaining m-x% bits  determine  one of  2”-’ signals 
within  the selected  subset. 

New Ground Covered  by Trellis-Coded 
Modulation 

of 2,Gi+l 

TCM schemes  achieve  significant  coding  gains at  
values of spectral efficiency for  which  efficient  coded- 
modulation schemes  were not  previously  known,  that  is, 
above  and  including 2 bit/sec/Hz.  Figure  8  shows  the 
free distances  obtained by binary  convolutional  coding 
with 4-PSK modulation  for  spectral efficiencies smaller 
than 2 bit/sec/Hz,  and by TCM schemes with  two- 
dimensional  signal sets  for spectral efficiencies equal to 
or  larger  than 2 bit/sec/Hz. T h e  free distances of 
uncoded  modulation  at  the  respective  spectral effi- 
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BINARY  CONVOLUTIONAL CODES 
WITH CPSK MODULATION 

I (4 - 256 stater) I /  I I I t 

1 2 3 4 5 b4-uA: 

Spectral efficiency [bit/sec/Hz] 

Fig. 8. Free distance of binary  co~tuolutional codes wi th  f - P S K  
modulation, and TChf with a unrirty of two-dimenszonal  modula- 
tzon .scheme.s, for  spectral  efficiencies from 213 to 6 b i t l s ec lHz .  

ciencies are  also  depicted. The  average  signal  energy of 
all  signal sets is  normalized to unity. Free distances are 
expressed in decibels  relative  to  the  value  dfrct, = 2 of 
uncoded 4-PSK modulation.  The  binary  convolutional 
codes of rates 113, 1/2, and 314 with  optimum  Hamming 
distances  are  taken  from  textbooks,  such  as, [12]. The  
TCM codes and  their  properties  are  found  in  the  code 
tables  presented in  Part I1 (largely  reproduced  from  [2]). 

All coded  systems  achieve significant  distance  gains 
with  as few as 4, 8, and 16 code  states. Roughly  speaking, 
it is possible to gain  3  dB  with 4 states, 4 dB with  8 states, 
nearly 5 dB  with 16  states, and  up to 6 dB  with 128 or 
more states. The  gains  obtained  with two-state  codes 
usually  are very modest. With  higher  numbers of states, 
the  incremental  gains become smaller.  Doubling  the 
number of states  does  not  always  yield  a  code  with  larger 
free distance.  Generally,  limited  distance  growth  and 
increasing  numbers of nearest  neighbors,  and  neighbors 
with  next-larger  distances,  are  the  two  mechanisms  that 
prevent  real  coding  gains  from  exceeding  the  ultimate 
limit set by channel  capacity.  This  limit  can be 
characterized by the  signal-to-noise  ratio  at  which  the 
channel  capacity of a modulation system with a 2””-ary 
signal set equals  m  bit/sec/Hz [2] (see also  Fig. 4). 

Conclusion 
Trellis-coded  modulation was invented  as  a  method  to 

improve  the noise immunity of digital  transmission 
systems without  bandwidth  expansion  or  reduction of 
data  rate.  TCM  extended  the  principles of convolutional 

coding to nonbinary  modulation  with  signal sets of 
arbitrary size. It  allows  the  achievement of coding  gains 
of 3-6 dB  at  spectral efficiencies equal to or larger than 2 
bit/sec/Hz.  These  are  the  values  at  which  one  wants  to 
operate  on  many  band-limited  channels.  Thus,  a  gap  in 
the  theory  and  practice of channel  coding  has been 
closed. 
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