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Sequential  Coding  Algorithms: A Survey  and Cost Analysis 
JOHN B .  ANDERSON, SENIOR MEMBER, IEEE, AND SESHADRI MOHAN, MEMBER, IEEE 

Absrracr-The cost  of  a number  of  sequential  coding  search algo- 
rithms is analyzed in a  systematic  manner.  These  algorithms search 
code  trees,  and  find  use in data  compression,  error  correction, and 
maximum  likelihood  sequence  estimation. The  cost  function is made 
up of  the  size  of  and  number  of  accesses  to  storage. It is found that 
algorithms  that  utilize  sorting  are much  more  expensive to use than 
those  that  do  not;  metric-first  searching  regimes  are  less efficient  than 
breadth-first  or  depth-first  regimes.  Cost  functions  are  evaluated 
using  experimental  data  obtained from  data  compression  and  error 
correction  studies. 

I.  INTRODUCTION 

C ODES  with  a  tree  structure  find  wide  use  in  data  compres- 
sion  and  error  correction.  They  are  implicit  as  well in t h e  

equalization  of  band-limited  nonlinear  communication  channels 
by  sequence  estimation.  Generally,  a  tree  code is a  code  whose 
words  may  be  graphed  on  a  perfectly  regular  tree  structure 
having  a  group  of u symbols or a  piece of a  waveform o n  each 
branch  and b branches  out  of  each  node.  Each  code  word  cor- 
responds  to  a  path  through  the  tree  made  up  of  these  branches. 
In  channel  transmission, successive data  symbols  guide  the 
path  level  by level deeper  into  the  tree,  and  a  decoder  attempts 
to  find  this  path  in  noise.  In  data  compression,  successive  data 
are  compared  to  branches level by  level  in  an  attempt t o  find  a 
codeword  path  close  to  the  data.  In  equalization,  digital  data 
symbols  presented  to  a  channel  cause  a  set  of  responses  that 
can  be  organized  in  a  tree  structure. 

Any  usable  tree  code  is  a  trellis  code.  A  practical  tree  code 
is generated  by  a  finite-state  machine,  and as a  result  a  pattern 
of  tree  nodes  can  be  merged  with  other  nodes  to  form  a  trellis 
structure.  Whether  the  code  is  viewed  as  a  tree  or  a  trellis,  it 
is generally  impractical  to view and  weigh  all  the  branches  in  a 
code, so a  search  algorithm  must  be  employed  which  con- 
siders  some  but  not  all  in  a  predetermined  fashion. 

The  efficiency  of  these  “sequential  coding”  algorithms  has 
traditionally  been  measured  by  the  number of branches 
searched  for  a given level of performance.  It  has  become  increas- 
ingly  clear  that  this  measure  does  not  indicate  the  true  consump- 
tion of resources.  In  this  paper  we  survey  the  different  types 
of algorithms  that  are  possible  and  explain  their  features. We 
also  develop  more  accurate  measures  of  cost  based  on  access 
cycles  and  storage  size,  and  use  these  to  compare  in  a  system- 
atic  way  many of the  procedures  that  are  in use. 

The  Viterbi  algorithm is not  a  selective  search  but  an  ex- 
haustive  one,  the  most  efficient  one  possible given t h e  finite- 
state  machine  description  of  the  code  generation or intersym- 
bo1 interference  mechanism.  The  algorithm  has  been  used  with 
great  success  in  certain  channel  coding  problems  where  simple 
codes give acceptable  performance.  But  in  other  channel  prob- 
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lems  and  in  analog-to-digital  conversion of sources  like  speech, 
codes  with  many  states  are  required,  and  at  the  same  time  only 
a  few  code  paths  need to be  pursued.  In  sequence  estimation, 
the  effect  of  heavy  band  limiting is to  create  a  highly  complex 
state  description, so that  in  intersymbol  interference  rejection 
and  in  similar  problems  like  adaptive  reception  over  the H F  
channel,  an  effective  Viterbi  algorithm  must  be  very  complex. 
For  all  of  these  problems,  a  properly  designed  search  algorithm 
will  be  effective.  Search  procedures  have  proven  useful  in  other 
applications,  including  identification  of  image  contours [ 191, 
and  text  and  speech  recognition [ 2 1 ] and  digitizing  of  images 

Code  searching  schemes  may  be classified as  sorting  or  non- 
sorting,  and  as  depth-first,  breadth-first,  or  metric-first,  where 
the  “metric” is some  measure  of  fidelity  or  likelihood.  A  num- 
ber  of  schemes  are  summarized  in  Table I. Among  algorithms 
which  sort,  the  well-known  stack  algorithm  (see [ 11 or  [ 3  1 for  
channel  decoding  or [ 2 ]  for  source  encoding)  extends  code 
tree  paths  in  a  purely  metric-first  manner,  meaning  that  the 
next  path  extended is always the  one  with  the best  metric 
among  those  presently  stored.  Sorting is used t o  single out   the 
best  path.  The  usual  method is an  ordering  procedure,  but  we‘ 
shall  also  analyze  a  merging  procedure  which  has  significantly 
lower  cost.  A  purely  breadth-first  algorithm  that sorts is  the 
M-algorithm.  This  algorithm  views  all  branches  at  once  that  it 
will  ever  view at  a given depth,  then  sorts  out  and  drops  paths 
ending  in certa’in branches  before  continuing  on.  Another 
sorting  scheme  that is not  purely  either  metric  or  breadth-first 
is the  bucket  algorithm [ 1 ] . 

A  second class  of algorithms  does  not,sort;  that is, paths  are 
never  compared  with  one  another.  The  simplest  such  methodis 
the  single stack  algorithm,  a  purely  depth-first  method sug- 
gested  by  Gallager [ 41.  This  scheme  simply  pursues  a  path  un- 
til  its  metric  falls  below  a  discard  criterion,  and  at  a_ny.one 
time  it  stores  the  identity  of  only  one  path.  A  direct  imple- 
mentation is a  single  push-down  stack.  (It  should  be  mentioned 
that  the  more  widely  known  “stack  algorithm”  cited  above  in 
fact  contains  no  stack,  but  only  a  “list.”)  A  familiar  variation 
of  the  single  stack  method is the  Fano  algorithm;  the  peculiar 
character  of  this  search  stems  from  its  method  of  computing 
the  discard  criterion.  A  more  sophisticated  nonsorting  pro- 
cedure  is t o  set  aside  certain  good  paths  for  later  attention  as 
they  appear  in  the  depth-first  search.  This  method  stores  a 
number  of  paths,  but  they  are  known  to  be  good  ones;  an 
example is the  two-cycle  algorithm [ 5 ] .  Uddenfeldt  and  Zet- 
terberg [ 71  have  discussed  a  depth-limited  exhaustive  search. 

The  usual  measure  of  efficiency  for  code  searching algo- 
rithms  has  been  the node computation, the  number  of  branches 
visited  during the progress of the  scheme  divided  by  the 
branches  released  as  output,  for  a given  level of  source  encoder 
fidelity  or  decoder  probability of error. As the  algorithms  have 
come  into  more  use,  however,  it  has  become  clear  that  this is 
not  a  sufficient  measure.  Several  authors [ 8 ] ,  [ 151  have  found 
that  stack  algorithm  source  encoding is no  faster  than  other 
methods,  even  though  it  has  the  least  node  computation  of 
any  known  method.  Experience  with  M-algorithm  hardware 
speech  encoders [ 101  shows  that  this  method is efficient  de- 
spite  a  poorer  node  computation.  In  sequential  channel  de- 
coding  and  in  sequence  estimation,  the  situation is similarly 
confused.  The  Viterbi  algorithm  finds  wide  use  despite  its  ex- 
haustive  nature,  even  though  supposedly  more  efficient 
schemes  exist.  What  seems  to  be missing here is a  factor  to  ac- 
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TABLE I 

ALGORITHMS 
SEARCH  RATIONALES FOR CERTAIN  SELECTIVE SEARCH 

M e t r i c - F i r s t   B r e a d t h - F i r s t   D e p t h - F i r s t  

Sartin4 M-Alg. Stack  A lg.  

Merge A1 g . 
Bucket  Alg.  

( r o u g h l y )  

- -Haccoon’s  Alg.   (both)--  

x x d  Mu l t .   S tack  Alg.>xx 
I 

Non-Sort inq Simmons-Wit tke  Single  Stack 1 Alg .  

, Fano Alg.  

- -Z-Cycle  A lg.   (both)- -  
I 
I 

count  for  the  size  and  complexity of the  required  information 
structures,  in  addition  to  the  intensity  of  their  use. 

11. A DEFINITION O F  ALGORITHM COST 

A  more  realistic  measure  of  algorithm  cost  can  be  based  on 
the  number  of  storage  elements  in  a  scheme  and  the  number  of 
accesses to  them.  The space complexity of  an  algorithm is the  
size  of  resources  that  must  be  reserved  for  its  use,  while  the 
time  complexity counts  the  number of accesses to this  resource. 
The  product of these  two,  the space-time complexity, and  the 
sum  of  these  two  are  both  useful  measures  of  overall  cost. 

A  space-time  product  cost  measure  assumes  that  storage 
blocks  “wear  out”  after  a  certain  number  of  accesses  and  that 
the  cost  of  blocks is proportional  to  their  speed,  assumptions 
that  are  roughly  true  for  physical  devices.  Parallel  processing is 
of  no  benefit  under  this  measure,  since  there is no gain  in 
trading  space  for  time.  A  second  measure  of  cost,  more  suited 
to  software  implementations, is the  space + time  complexity. 
The  sum of space  and  time,  this  measure  stresses  more  the  op- 
portunity  cost  foregone  by assigning resources t o  a  user.  Dif- 
ferent  constants  are  often  placed  before  the  two  components, 
but  these will have  no  asymptotic  significance. We shall list 
results  for  both  measures,  but  go  into  detail  only  for  the  prod- 
uct  measure. 

A perhaps  more  traditional  measure  of  complexity  for  sort- 
ing  methods is the  number of comparisons,  but  this  measure 
does  not  account  for  both  space  and  time,  and  as  mentioned 
previously,  not  all  code  search  algorithms  sort. 

Other  measures  of  coding  algorithm  cost  could  be  proposed 
than  the  space  and  time  cost of storage  blocks,  but  this  kindof 
measure  relates  closely to  the  nature  of  such  algorithms.  Code 
search  algorithms  basically  move  in  and  out  of  storage  data 
about  code  tree  paths.  Other  tasks,  such  as  computing  metrics, 
checking  for  ambiguous  output  symbols,  and  generating  code 
word  letters,  form  a  constant  multiplier  on  the  cost  of  storage 
access. The  major  determinants of cost  remain  the  storage size 
and  the  pattern  of  accesses  called  for  by  the  steps  of,the  algo- 
rit  hm . 

A  simple  building  block  for  search  algorithms is the  ran- 
dom-access  memory  (RAM),  although  many  algorithms  relate 
more  naturally to  another  structure,  the  push;down  stack. 
Building  algorithms  out  of  push-down  stacks  instead  of RAM’S 
leads to  the  same  asymptotic  complexity  in  all  the  cases  we 
discuss  except  theM-algorithm. 

Three  variables  dominate  the  asymptotic  cost  of  the  algo- 
rithms  we  analyze,  the  length  of  path  an  algorithm  can  retain. 
L ,  the  number  of  paths  it  can  retain, S, and  the  expected  node 
computation  already  defined, E [ C ] .  We assume  that L and S 

TABLE I1 
ASYMPTOTIC  COST  OFCERTAIN  ALGORITHMS IN THE LIMIT OF 

SPACE IN b-ARY  SYMBOLS,  TIME  IN  ACCESSES TO STORAGE. 
C = BRANCHES  VISITED/OUTPUT  SYMBOL  RELEASED, L = 

RETAINED  PATHS. 

INTENSIVE SEARCHING, PER OUTPUT SYMBOL RELEASED. 

LENGTH O F  RETAINED PATHS, s = NUMBER OF 

Algorithm (Space) (Time) (Space)+(Time) 

Single Stack %LEICSSI %L+EICSSl 

Fano %LEICFAl %L+E [ CFA I 

2-Cycle ”.LE[C2Cl %LL +E[CZC] 

Stack %LSZEICSAl %LS+SE[CSA] 

Merge %L(S4’3E[CsA]+S2) %LS+(S+S2’3E[CSA]) 

pd 

Bucket %L(SEICSAI+S )+H 2 %LS+(S+EICSAl)+H 

M- %LS2 %LS+S 

are  finite  and  fixed  in  value.  It is important  to  realize  that al- 
gorithms  differ  significantly  when  these  are so constrained; 
when  the  number of paths  exceeds S,  for  instance,  some 
mechanism  must  delete  excess  paths,  and  whenever  a  path  ex- 
ceeds  length L ,  its  oldest  branch  must  be  checked  to  ensure 
that  it is consistent  with  other  paths  kept  to  this  depth.  These 
routines  may  change  the  asymptotic  cost. 

We turn  now  to  a  space  and  time  cost  analysis  of  a  number 
of  algorithms.  For  clarity,  we  emphasize  sequential  source  en- 
coding  schemes  throughout,  although  the  analysis  applies  as 
well to  channel  decoding  and  sequence  estimation.  The  algo- 
rithms  chosen  for  exposition  are  those  which  differ  from  each 
other in fundamental  ways,  or  which  demonstrate  a  principle 
in  pure  form.  Often,  a  variation  or  a  scheme  combining  several 
principles will be  most  effective  in  applications.  Results  are 
summarized  in  Table 11. It is clear  that  there  are  dramatic  dif- 
ferences  among  the  algorithms;  all  depend  linearly on L ,  but 
some,  like  the  single  stack  algorithm,  have  no  dependence on  
S, while  others  range as high  as S 2 .  As  has  been  shown  in 
earlier  work,  there  are  also  wide  variations  in  the  node  compu- 
tation E [ C ]  at  a given S, L ,  and  performance level. TheM-al- 
gorithm  has no separate  dependence  on E [ C ]  because C de- 
pends  only on S. 

It is not  our  intention  to  optimize  over  the  choice  of  the 
three  major  cost  factors, or over  the  many lesser factors  and 
parameter  settings,  but  only  to  establish  the  cost  functions. 
An  accurate  optimization is an  immense  task. 

111. BASIC FEATURES O F  SEARCHING ALGORITHMS 

It will be  convenient  first  to  define  features  which  are  com- 
mon   t o  all  algorithms. 

The  aim of the  search  is  to  find  a  path.with  distortion  or 
likelihood  metric  as  good  as  possible.  Searching  begins  at  a 
root  node  and  continues  until  some  path  reaches  depth L .  
The  algorithm  then  decides  once  and  for  all  which  first  branch 
t o  release  as output;   the  end  node of this  branch  becomes  the 
new  root  node.  Searching  resumes  until  some  path  again  reaches 
total  length L branches.  The  procedure  continues  indefinitely 
in  this  “incremental”  fashion,  releasing  some  branch  at  depth I 
and  accepting  a  new  data  group  at  depth I + L .  An  older  at- 
titude  toward  searching is the  “block”  search,  in  which  an 
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L-branch  path  is  released  all  at  once  and  the  search begins 
anew  at  the  path’s  end  node. We give no  separate  analysis  for 
this  alternative,  although  most  of  our  conclusions  apply. 

Paths  are  described  by path  maps made  up of b-ary sym- 
bols, (0, -., b - l}, one  for  each  branch.  The  code  word let- 
ters  on  a  path’s  terminal  branch  are  somehow  computable 
from  its  path  map.  Associated  with  each  map is a  metric p, 
either  a  likelihood of the  path  or  a  measure  of  its  distortion, 
and  sometimes  an  indication  of  the  path’s  length  or  pointers 
to  other  storage  locations.  For  source  encoding,  the  metric 
is  given by p(zaz, j a l )  = alD* - d(z“l, ;a l ) ,  where d(za l ,  201) 
is an  additive  distortion  measure, z and i are  vectors  of  source 
data  and  code  word  letters  of  length 01, and D* is a  target dis- 
tortion  the  algorithm  hopes  to  achieve.  For  channel  decoding 
and  sequence  estimation  another  constant, called the  bias,  re- 
places D*, and d( , ) becomes  the  negative  of  the  log  likeli- 
hood  of  the  path. 

The  following  actions  are  performed  by  all  algorithms  and 
will  be  denoted  throughout  by  the  italicized  expressions. 

Extend  Path: The  algorithm  extends  a  path  one  branch  for- 
ward,  “viewing”  the  branch.  Viewing  includes  calculating  the 
code  word  symbols  on  the  branch,  fetching  the  input  data 
group  corresponding  to  its  depth  (source  symbols  to  be  en- 
coded  or  channel  symbols  to  be  decoded),  calculating  the 
metric  increment  for  the  branch,  and  forming  the  new  metric 
total  for  the  path.  Branches.  are viewed either singly or  in 
groups of b ,  depending o n   t h e  algorithm.  In  the  former  case, 
only  a  single  branch,  say  the  zeroth is viewed  during  the  first 
visit to  the  original  path’s  end  node; if there is a  later visit t h e  
first will be  viewed,  and so on  until  all b branches  are  viewed. 
Other  algorithms extend  b  paths, and view all b at  once. 

Ambiguity  Check: The  algorithm  checks  all  eldest  path  map 
symbols  to  determine if they  are  consistent  with  the  symbol 
released  asoutput. If a  symbol is not,  the  path  must  be  deleted. 
Ambiguity  checks  are  necessary  for  two  reasons. If a  path  fails 
the  check  but is kept  in  storage,  it  may  later  be  released  as  out- 
put  even  though  its  antecedent  does  not  match  earlier  output. 
The  encoder  and  decoder will then  not  develop  the  same  path. 
Ambiguity  checks  also  prevent  the  accidental  storage of two 
paths  with  the  same  symbols.  If  two  path  maps  once  differ  (as 
they  do  initially),  they  can  become  identical  only  when  the 
differing  symbols  are  dropped  and  this is forewarned  by  the 
check.  Actually,  this clogging of  storage  can  be  detected  in 
more  timely  fashion  by  checking  the  subset  of  path  symbols 
that  determine  the  code  generator  state.  Two  paths  with  these 
subsets  identical  lead to  identical  subtrees.  But  this  method  re- 
quires  comparison  of  a  subset  of  symbols  rather  than  a  single 
symbol.  Hang  and  Woods [22]  have  studied  the  effect  of  iden- 
tical  and  nearly  identical  paths  in  analog  source  coding. 

A  separate  ambiguity  check is unnecessary  in  nonsorting 
algorithms,  which  store  only  a  single  path. 

Delete  Path: The  algorithm  deletes  an  entire  path  map.  A 
deletion  must  occur  whenever  the  number  of  paths  stored 
exceeds S ,  and  whenever a path  fails  an  ambiguity  check. 

Release Output  Symbol: The  algorithm  releases  as  output 
the  earliest  symbol  of  the  best  path  map  it  has.  In  sorting  al- 
gorithms,  this  triggers  an  ambiguity  check  to  make  certain 
that  all  path  maps have the  same  symbol  at  this  depth. 

In  nonsorting  algorithms  the  possibility  exists  that  no  path 
satisfies the  constraints  of  the  algorithm,  an  event  we  call al- 
gorithm  failure. The  cost of recovering  from  this  event is small. 
The easiest method is to  move  one  branch  forward  of  the  root 
node,  declare  the  branch’s  end  node t o   b e   t h e  new  root  node, 
and  start  again. 

The  ambiguity  check  has  been  the  source  of  some  debate 
among  those  who  have  used  search  algorithms.  It  can  be  argued 
that  its  possibly  significant  cost is not  worth  a  small  per- 
formance  gain.  The  authors,  however,  have  calculated  that 
with  some  channel  codes  and  with  small S and L ,  failure t o  
check  for  path  ambiguity  can  lead  to  large  performance  loss 

when  the  channel  SNR is high.  When t h e  SNR is low,   on  the 
other  hand,  ignoring  the  ambiguity  check  can  actually  improve 
performance. 

IV. NONSORTING ALGORITHMS 

The  distinguishing  feature of nonsorting  schemes is that 
,,they  store  only  a  single  path,  extending or backtracking  along 
the  path  in  response  to  the  value of the  path  metric. 

A.’ The Single  Stack  Algorithm 

This  algorithm  proceeds  depth-first  directly  through  the 
code  tree  until  the  path  metric falls below  a  discard  criterion 
B ;  the  search  then  backtracks  to  the  first  untried  branch  and 
proceeds  depth-first  again.  The  symbols of the  path  map  are 
stored  in  a  push-down  stack,  and  in  the  steady-state  operation 
of  the  algorithm,  an  output  path  map  symbol is forced  out  the 
bottom  whenever  a  depth is visited  for  the  first  time. 

By convention  we  assume  that  on  first visiting a  node, 
branch 0 out  of  the  node is viewed, o n   t h e  second visit branch 
1,  and so on  unti l  all  branches  are  viewed,  at  which  time  the 
search  must  backtrack.  An  example  of  this  routine  appears  in 
Fig.  1  for b = 2 ;  X’s indicate  a  path  that  has  fallen  below  the 
discard  criterion.  It is more  straightforward  to  think  of  the  dis- 
card  criterion B as  a  constant,  although Davis and  Hellman [ 1  1 ] 
show  that B probably  must  be  a  function of the  input  data. 

Using  a  single  push-down  stack  and  a  comparison t o  a dis- 
card  criterion,  the  single  stack  algorithm  is  the  simplest of all 
search  algorithms. 

Algorithm S S  (The Single  Stack  Algorithm): 
SSO) Insert  root  node  into  stack.  Set i f  0. 
S S l )  (View  branch.) Extendpath whose  map is in  the  stack, 

viewing  branch i out  of  its  end  node. 
SS2) (Check  discard  criterion.) If p > B ,  go t o  SS3; else go 

to ss4. 
SS3) (Advance  forward.)  Stack new branch  symbol i and re- 

lease output  symbol at  stack  bottom if not  null.  Set i f 0. Go 
back to   SS l .  

SS4) (Switch  to  sister  branch.)  Set i + i + 1 .  
S S 5 )  (More  sisters?)  If i < b ,  go  back  to  SS1. 
S S 6 )  (Stack  empty?)  If  stack  empty,  declare algorithm  fail- 

SS7) (Backtrack.)  Pop  stack.  Set i + popped  symbol. Go 

A flow  chart  appears  in Fig. 2. 
The  space  cost  of  the  single  stack  algorithm is L b-ary  sym- 

bols  (plus  a  small  overhead  for  side  registers  and  code  letter 
generation).  The  time  cost is overbounded  by  two  accesses  per 
branch  viewed,  since  the  algorithm passes through  SS1  once 
per  branch  and SS7 at  most  once.  The  space-time  product 
cost  is.thus 

ure. 

back  to SS4. 

LE[ Css] access-symbols/output  branch ( 1 )  

where CSS denotes  the  node  computation  of  the  single  stack 
algorithm,  and  here  and  throughout X 2 Y means  that  log 
X/log Y tends  asymptotically  to 1. 

The  Fano  algorithm is a  variant  of  the single stack  procedure 
in  which  the  discard  criterion varies up  and  down  as  a  function 
of the  path  metric.  Searching  proceeds  depth-first  until  a  path 
falls  below B ,  but B is raised  in  increments  whenever  possible 
during  visits  to  new  nodes,  and is lowered  when  necessary  dur- 
ing  returns  to  previously visited nodes. The cost  of the  Fano 
algorithm is again  of the  form L E [ C F A ] ,  but  it is not  clear 
in  particular  applications  which of CFA and C ~ S  is the  larger. 
The  opportunistic  changing  of B undoubtedly  reduces  the  set 
of  nodes  visited,  but  ‘the  algorithm  may visit certain of the  
nodes  many  times.  Nonetheless, if CFA can  be  measured,  then 
the  form (1) gives the  total  cost. 
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-. 
\-hit discard  criterion 

Fig. 1. Push-down stack search, b = 2. Downward branch (zeroth) 
taken first, then upward branch (first); numbers show order of  visit- 
ing, X means path metric hits discard criterion. 

BEGIN 
I 
1 

lSS1 View  branch 

4 J- 
( 3 2  p >-- no 

SS3 Advance forward; 
i yes 

I 
release output symbol. 

I I 

1 
FAIL 

Fig. 2.  Single stack algorithm. 

B. The  Two-Cycle  Algorithm 
Algorithms  similar to the single stack  procedure  search 

depth-first,  backtracking  only  when  the  path  falls  below  the 
discard  criterion.  Another  method  which  uses  the  same  stack 
structure  is  to  search all paths  lying  above  the  criterion  and 
having  length 1 < L .  Of these,  only  a  much  smaller set of 
“good”  paths,  say  those  with  metric p 2 A ,  are saved for  later 
attention. We have  called  this  procedure  the  two-cycle  algo- 
rithm [ S I .  

The  two-cycle  algorithm  illustrates  a  nonsorting  search  that 
is  not  purely  depth  first.  Such  a  mixed-regime  search  may  be 
better  in  a given application.  Table I1 lists  some  complexity 
data  for  this  algorithm. 

V. SORTING  ALGORITHMS 
Sorting  schemes  compare  paths on the  basis of  metric  in 

order  to  decide  which  to  extend  and  which  to  delete.  These 
algorithms view fewer  branches  than  nonsorting  algorithms, 
but  the  cost  of  sorting is often  very  high. 

A. The  Stack  Algorithm 
As  mentioned  before,  the  stack  algorithm is based  not  on  a 

stack,  but  on  a list of  code  tree  paths.  The  usual view  is that 
this is an  ordered  list;  the  next  path  extended is always  the 
best  in  terms  of p, and  sufficient  worst  paths  are  deleted  to 
keep  the list at  length S paths.  An  alternate view is  that  new 
paths  are  simply  appended,  and  that  the list is  probed  for  its 
best  entry  prior  to  each  extension  and  for  its  worst  entry  prior 
to each  deletion,  The  cost is similar  in  either case, and  we  shall 
take  as  the  defining  attributes  for  the  stack  algorithm  simply  a 
single  list  and  metric-first  extensions  and  deletions. 

Since  a  path’s  metric  indicates  the  likelihood  that  ‘the  best 
path  in  the  code  tree  lies  ahead  of  it,  it  comes  as  no  surprise 
that  this  metric-first  procedure  appears  to  find  a  path  at  a 
given  metric  level  with  the  least  node  computation  of  any 
scheme  (see [ 1  ] or [2]).  Despite  this,  the  space-time  cost of 
the  stack  algorithm  seems  to  exceed  that of any  other  scheme. 

In the  stack  algorithm’s  list,  paths’vary  in  length.  Once  the 

-L - logL+p--  

Fig. 3. Example  of  stack algorithm list,  showing paths, length indica- 
tors, and  metrics. The top path is about to penetrate a new depth, 
causing  an ambiguity check; the  fourth path will be deleted if its 
earliest symbol does not pass. 

algorithm  reaches  a  steady  state,  an  ambiguity  check  must  be 
performed  whenever  the  length  of  a  path  in  storage  exceeds&. 
One  can  show  that  this  occurs  whenever a tree  depth is reached 
for  the first  time.  Fig. 3 shows  a  list  data  structure  in  which 
each  entry  consists  of  three  subwords,  a  path  metric  (precision 
p ) ,  an  indication  of  path  length,  and  a  path  map.  The  path 
maps  are  left  justified,  and  to  find  an  end  node,  the  length  sub- 
word  must  be  consulted.  All  paths  end on the  left  at  a  point L 
branches  before  the  deepest  tree  penetration;  during  an  am- 
biguity  check  all  these  earliest  branch  symbols  must  be  checked 
to see if they  agree  with  the  symbol  released  as  output. 

Algorithm SA  (The Stack  Algorithm):, 
SAO) Obtain  root  node. 
SA1)  (New  penetration?) If the  next  extension will  visit a 

SA2)  (Ambiguity  check.)  Perform ambiguity  check and re- 

SA3)  (View  branches.) Extend b paths from  the  best  path 

SA4)  (Reorder  list.)  Order  into  the list t h e  b new  paths. 
SA5)  (Delete  paths.) Delete  paths, worst  first,  until S re- 

A  flow  chart  appears  in  Fig.  4. 
Most of the  cost of the  algorithm  resides in step SA4. This 

reorder  step  can  be  done  simply  by  reading  one  RAM  into 
another  until  the  place  appears  for  the  new  path;  the  new  path 
is then  written  and  the  reading  continues  until  the  second 
RAM is full.  An  alternative  that  requires less storage is t o  have 
just  one  RAM  like Fig. 3, plus  a  list  of  pointers  of  size S log 
S; to  reorder  the  list,  only  these  pointers  are  manipulated.  The 
ordering  may  also  be  done  by  push-down  stacks.  All  three 
methods  have  the  same  asymptotic  space  cost, S(L  4- logbL + 
p )  b-ary  symbols. 

The  time  cost is an average S accesses  per  branch  viewed  in 
allthree cases, although  the  cost  of  an  access  may  be  “cheaper” 
in  one  of  the  implementations.  SA1  and  SA3  form  a  constant 
overhead,  and  the’ambiguity  check  SA2  occurs  only  once  with 
each  depth  penetration  rather  than  each  path  extension,  and 
so has  a  lower  order’cost. 

Total  space-time  complexity  is  thus  about  S2(L + logL 
p ) E [ c s ~ ] ,  or  since p is small, s~ S2E[CsA]  asymptotically,  
where  CsA is the  node  computation  of  the  stack  algorithm. 

Unless E [ C ~ A ]  is very  small, the  added S2 factor will make 
this  cost  much  larger  than  that  of  the  nonsorting  algorithms. 
All  research  studies on the  stack  algorithm  have  reported  com- 
putational  difficulties  in  its  use.  Jelinek [ 1 ] suggests  a  chained 
storage  scheme  for  the  path  maps  which  would  eliminate  the 
blank  regions  in  Fig.  3,  but  it  does  not  change  the  asymptotic 
cost [ 171.  He  also  suggests  alternative  algorithms,  a  combining 
of  the  Fano  and  stack  algorithms [ 1,  pp. 682 ff.] , and  a  bucket 
algorithm.  The  latter is a  basically new scheme  to  which  we  re- 
turn  in  Section  v-C. 

B. The Merge Algorithm 
The  cost  of  the  stack  algorithm  can  be  greatly  reduced  while 

still  retaining  the  strictly  metric-first  feature if two  ordered 

depth  for  the first  time,  continue  to  SA2; else  go to  SA3. 

lease output symbol. 

in  the list. Delete this  path. 

main. G.0 back t o   S A l .  
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BEGIN 

[SA3 View branches 1 
lSA4 Reorder l ist I 
ISA5 Delete paths I 

i 

1 

I 
Fig. 4. The stack algorithm. 

lists  are  jointly  maintained.  The  strategy will be  to  conduct  a 
metric-first  search  with  a  short  auxiIiary  list  and  occasionally 
merge  the list into  the  main  list. We call  such  a  procedure  the 
merge  algorithm. 

Consider  a  main list of  size S entries  and  an  auxiliary list of 
size  T.  A  succession  of  T  new  paths  are  searched  metric  first 
just  as  in  the  stack  algorithm,  requiring  about T 2 / 2  compari- 
sons  between  paths.  After  this,  the  two list9 are  merged.  The 
merge  operation  requires S f T comparisong [ 12,  ch. 51,  and 
the  worst  Tpaths  are  deleted  in  the  process. &r branch  viewed. 

term gives a  total  product  cost  of  about 

( L  + log L + p ) [  (2.38)S4I3E[ CsA] -t (S + (fiS)2’3)2] 

access-symbolsJbranch  released  (2) 

which  is  asymptotically L(S4/3 E [ C S A ]  4- S 2 ) .  We have used 
thG-fact  that  the  node  computation will be close to  that  of the 
stack  algorithm.  It  is  no  longer  clear  that  the  cost of ambiguity 
checks is insignificant,  although it is likely  that  it is, since 
E[CSA] is probably  of  order S or larger. 

Many  variations  have  been  proposed  on t h e  basic  theme  of 
side  lists.  Themultiple  stack  algorithm of  Chevillat and  Costello 
[ 131  utilizes  a  succession of side  lists to  reduce  sorting  in  the 
main  list,  although  the  search is not  strictly  metric-first  and 
merging is not  used  between lists. Haccoun  and  Ferguson [ 141 
propose  extending K paths  at  once  rather  than  one,  before 
each  ordering.  The  idea  of  merging  seems  to  have  originated 
with  Mohan [ Y  1 .  An  extension  of  this  idea  leads to the  metric- 
first  procedure having the least  possible  asymptotic  cost [ 1 7 ) .  

the  number of comparisons is about SIT + Q -t TJ2,  and mini: TheBucketAlgorithm 
mizing  this  expression  over  the  choice  of T,’we get an  optimal 
auxiliary  list  size of about a, Furthermore,  the  number of A  reduction  in  cost is easy to  obtain  by  resort  to  schemes 
comparisons  per  branch  is  only a + 2,  instead of the  s re-  that  are  not  strictly  metric-first.  Jelinek  proposed  that  the 
quhed  by  the  stack  algorithm,  Total storage increases by  the  range of the  metric  be  quantized  into  segments called ‘‘buckets” 
fraction m, an  asymptotically  insignificant  factor.  and  incoming  paths  be  sorted  only  into  the  correct  bucket. Me 

extend  the  best  path  at  the  top  of  either  list,  and  this will re- The  bucket  approach has a  number  of  subtle  variations 
quire  a  single  comparison  per  path  extended.  The  ambiguity which  have  markedly  different  asymptotic  cost.  Suppose  there 
check  must  also  reference  both  lists.  Both  of  these  provisos are kS buckets,  where k is a  small  but  fixed  fraction  and  each 
make  the  above  estimates  slight  overbounds.  Otherwise  the bucket  is  of  fixed  size;  then  the  metric  range  for  each  bucket 
merge  algorithm is identical  to  the  stack  algorithm. continuously varies, and  the  number of comparisons  required 

Algorithm MG (The Merge Algorithm): to  f ind  the  proper  bucket  for  a  path is asymptotically  still  of 
MGO) Obtain  root  node. order S, just  as  it  was  for  the  stack  algorithm.  An  alternative 
MGI)  (New  penetration?) If the  next  extension will visit a is to  let  the  buckets  vary  in  size  instead  of  metric  range.  In 

depth  for  the first  time,  continue  to MG2 ; else go to  MG3. what  follows  we  show  that  such  an  algorithm  exists  whose 
MG2)  (Ambiguity  check.)  Perform ambiguity check on  time  cost  for  insertion is overbounded  by  a  constant,  regard- 

both lists  and release output symbol. less of  S. 
MG3)  (View  branches.)  Compare  the  top  paths  in  the  two Both  these  variants  are  only  roughly  metric-first. A pure 

lists  and extend b paths from  the  better. Delete this  path. metric-first  algorithm  with  buckets  can  be  obtained  by  order- 
MG4)  (Reorder  aux.  list.)  Order  into  the  auxiliary list the ing  just  the  top  bucket,  as  several  authors  have  proposed.  But 

b new  paths. even if the  fraction of buckets k tends  to  zero  as S ’? e, one 
MG4a)  (Aux. list full?) If the  auxiliary list cannot  accept can  show  that  comparisons  of  at  least  order S1I3 are  required 

another b paths,  continue to MG5 ; else  go back  to  MG1. [ 9 ] .  With  moderate,  practical  storage S, the  issues are less 
MG5)  (Merge  and  delete.) Merge the  auxiliary  and  main clear,  and  modification  to  the basic a!gorithm should  be  useful. 

lists  into  the  main list, and delete  paths that  overflow. Go back Two  principles  are  clear,  however:  bucket  size  should  not  be 
to MG1. fixed  and  whether  the  algorithm is perfectly  or  only  roughly 

cycle  to  include  the  branch viewings required to fill the  We find  it  useful  to view the  bucket  procedure  as  a hashed 
auxiliary  list.  During  a  cycle, MG3 and  MG4  cause  about  T search for  the best  path. Our object is t o  draw  attention  away 
accesses t o  a  storage  of  size LS and  about T + T2/2  accesses  from  sorting,  which  the  procedure  does  not  really  do,  and  to- 
to a  size L T  storage,  where  we  have  idealized  the  eptry  length  ward  a  definition of a  hashing  function h( ), which is the  real 
as L ;  a t   the  cycle’s  end,  MG5  causes S accesses to  LS, T to  LT,  crux  of  the  algorithm. It is best to construe  sorting  as  perfect 
and S f T t o  L(S  + T ) .  The  total  space-time  product is sorting,  a  much  more  costly  Procedure. 
L(T3/2 -I- 4ST f 4T2 + 2S2)  per  cycle. Dividing by  T gives a . Paths  are  places  in  buckets  according to the  function h( ), 
tight  overbound to the  cost  per  branch  viewed,  since  more  which  maps  the  metric p to’ an  integer fi  in  the  set  { 1, ..., Q}, 
than T branches will be  viewed if some  nodes  are  drawn  from  where f i  denotes,  which  one  of Q buckets.  Paths  are  extended 
the  auxiliary  list.  from  the  best  bucket  and  continuously  deleted  from  the  worst, 

Minimizing  this  expression,  we  get  an  optimal list  size of  to  maintain  a  total  of S paths. k( ) identifies  the  quantization 
about T = ( d S ) 2 / 3  for  large S. The  minimized  cost is about  segment of p. Little is known  about  the  optimal  definition Of 
(2.38)CS4/3  per  branch  viewed. As an  example  consider  a h( ) as S grows  very  large;  it is doubtful  that k is simply  a  uni- 
stack  algorithm  with S = 100.  Its  cost  per  branch  viewed is on  form  quantization,  and  it  seems  likely  that  the  storage  must  be 
the  order of 20 000 L ,  while  the  merge  algorithm,  by  adding  a  rehashed  (i.e., h redefined)  from  time  to  time  to  obtain  opti- 
second list of  length  27,  reduces  this  cost  to 1100 L .  ~t is  in-  mal  performance.  The  cost  of  the  latter  may  not  be  insignifi- 
teresting t o  observe  that  the  comparisons-based  optimization  cant [ 12,  sect.  6.41. 
specifies  a  second  list  of  only 16. Since  the  bucket  algorithm  cost will depend  critically  on 

Thus  far  not  considered is the  ambiguity  check  (MGZ),  the  cost of maintaining  the  buckets,  we  investigate  now  a 
which  costs  L(S2 + T 2 )  per  branch  released.  Inserting  this  construction  that  does  this.  To  realize  the  advantage of the  al- 

To  be  sure  that  it  proceeds  metric-first,  the  algorithm  must  called this Procedure  the  bucket  algorithm. 

In  computing  the  cost  of  algorithm MG, define  a  merge  metric  first  has  a  critical  asymptotic  effect. 
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Next  path  extended 

Next "ernptf  cell 

I 

to B I  to B+11 to WI 

Best  Bucket next Bucket - - - Worst Bucket 

Fig. 5 .  Chained storage of buckets for bucket algorithm. W = worst 
bucket, B = best bucket. An empty bucket contains only the  bot- 
tom cell. 

gorithm,  the  construction  must  insert  a  path  with  a  fixed  num- 
ber  of  accesses,  independent  of S. 

Let  the  storage  consist of  cells containing  a  path  (map, 
length, p) and  a  link  address  to  another  cell.  Buckets  are  con- 
structed  as  shown  in  Fig. 5. Cells { 1, .-, Q }  are  bucket  heads 
and  are  permanently  reserved  in  storage;  their  links  point  to 
the  most  recently  added  cell  in  the  bucket.  The  other cells 
each  link  to  the  cell  which  arrived  before  them.  Path  exten- 
sions  take  place  always  from  the  best  bucket,  and  new  cells 
are  obtained  from  the  worst  bucket,  which  functions  as  a list 
of  unoccupied (or expendable) cells. 

We can  now  redefine  some  of  the  basic  operations  of 111 
in  terms of this  chaining  regime.  The  variables  BSTBKT  and 
WSTBKT give the  location  of  the best  and  worst  bucket 
heads. 

Extend Path: 
i)  Find  top  of  best  bucket  by  accessing cell BSTBKT. 

ii)  Remove  top  path,  form  extensions,  and add pathfsj 

iii)  Link  top  cell  to  empty  cell  list. 
iv) Link  cell  BSTBKT to  next-to-top cell. 
v) If best  bucket  empty,  BSTBKT f BSTBKT -t 1  (re- 

t o  buckets. 

peat  as  necessary). 
Add Path: 

i)  Compute h(p) ;  if h(p )  > WSTBKT,  WSTBKT f h.  
ii)  Find  top  of  bucket h(p )  by  accessing  cell h(p) .  

iii) Obtain empty cell. 
iv) Replace  link  field of cell h(p)  with  address  of  this cell. 
v) Place  new  path  in  this  cell;  place  old  top  cell  address 

in  link  field. 
Obtain Empty Cell: 

i)  Access  bucket  WSTBKT; if empty,  WSTBKT + 

ii)  Take  cell  pointed  to  by  link  field  of  cell  WSTBKT; 
WSTBKT - 1  (repeat  as  necessary). 

replace  cell  WSTBKT  link  field  with  address  of  next-to-top cell. 
Ambiguity  Check: 

i)  View  each  path. 
ii)  Link  ambiguous  paths  to  worst  bucket,  using Add 

Path iv and v. 
Algorithm BA  (The  Bucket  Algorithm): 
BAO) Place  root  node  in  bucket  1.  Set  BSTBKT f 1  'and 

BAl)  (New  penetration?) If the  next  generation will  visit a 

BA2)  (Ambiguity  check.)  Perform ambiguity  check and re- 

BA3)  (View  branches.) Extend  b  paths from  top  path  of 

BA4)  (Update  buckets.) Add  paths to  proper  buckets,  using 

A  flow  chart  of  algorithm  BA will be  similar t o  Fig.  4.  ex- 

WSTBKT f Q. Link  all cells except  the  first Q to  bucket Q. 

depth  for  the  first  time,  continue  to  BA2; else go  to  BA3. 

lease output  symbol. 

best  bucket. Delete this  path. 

h( ). Go back to BA1. 

BEGIN 

output  

MA3 Find best M 

MA4 Delete the rest 

u 
Fig. 6 .  TheM-algorithm. 

The  cost  of  algorithm  BA is 

time  cost: k' accesses/branch  viewed,  plus 

k"S accesses/branch  released,  for  ambig.  ch. 

space  cost: S(L -I- log L + p f logb S )  b-ary  symbols. 

We have  assumed  that Q is small  compared to S. The log$ 
term  accounts  for  the  link  field; k' depends   on   the  precise se- 
quence  of  reads  and  writes  in  BA3  and  BA4,  but  is  close  to 5 ,  
and k" is  less  than 2. Asymptotically,  one  gets 

-= LS(E[CsA]  + S )  f H access  symbols/branch  released 

(3) 

for  the  total  space-time  cost,  assuming  the  node  computation 
is close to  that  of  the  stack  algorithm.  A  factor H takes  account 
of  the  hash  function  cost. We have  deleted the  space  cost  term 
logbS  in (3)  on  the  assumption  that  L dominates  logbS. Of t h e  
three  metric-first  procedures  we  have  studied,  the  bucket  algo- 
rithm  has  the  lowest  order  dependence  on  S-only S instead  of 
, 913  or  ~ 2 .  

D. The M-Algorithm 
We conclude  with  breadth-first  sorting  algorithms. In gen- 

eral,  such  a  procedure  views  all  the  branches  at  depth 1 that  it 
will  ever view,  deletes  paths  according to  some  criterion,  and 
then  moves  on  to   the n.ext depth.  The  M-algorithm  deletes  all 
paths  except  a  fixed  number M .  Breadth-first  searches  are  syn- 
chronous  (that is, all  paths  have  the  same  length)  and  they  are 
effective  at  low  intensities  of  searching;  they  are  thus  good 
candidates  for  practical  application [ 10 1 ,  [ 16 ] . 

In  its  specific  operation,  the  M-algorithm  moves  forward  by 
extending  the M paths  it  has  retained  to  form bM new  paths. 
All the  terminal  branches  are  compared  to  the  input  data  cor- 
responding  to  this  depth,  metrics  computed,  and  the ( b  - l ) M  
poorest  paths  deleted.  The  heart  of  the  algorithm  is  the  sorting 
procedure  which  deletes  these  paths. 

Algorithm MA (The  M-Algorithm): 
MAO) Obtain  root  node. 
MA1)  (Ambiguity  check.)  Perform ambiguity  check and re- 

MA2)  (View  branches.) Extend  b  paths from  each  retained 

MA3)  (Find  best M.) Order  the  list  to  find  the  best M paths. 
MA4)  (Delete  the  rest.) Delete the  remaining  paths. Go 

back to MAl .  
Observe  that  MA1  may  reduce  the  number  of  retained  paths 

below M ,  so that  MA4  may  delete  fewer  than ( b  - 1)M. A 
flow  chart  appears in Fig. 6. 

We are  indebted  to  a  reviewer  for  observing  that  the  time 
cost  of  the  M-algorithm  is  only  of  order S. Let VAn) denote 

lease output  symbol. 

path; save these  in  a  list. 

cept  that  there  is  no  step  SA5  to  delete  paths. 
- ,  

the  number  of  comparisons  required  to  find  the t ih  largest  of 
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n elements.  Thenalgorithmsexist  [12,  pp.  216-2171  for  which TABLE 111 
EVALUATION OF’COST FOR CERTAIN ALGORITHMS, TAKEN 

E[  Vt(n)] .  = n 4- t -I- f ( n )  where  lim f (n) /n  = 0. FROM EXPERIMENTAL DATA. BINARY i.i.d. SOURCE WITH 
n-t-  HAMMING  DISTORTION.  RATE 1/2 OUTPUT  BIT PER 

INPUT BIT, ENCODED DISTORTION 0.125 (SHANNON 
;LIMIT = 0.110). 

Branches  Viewed  Paths  Stored  Space*Time  Space+Time 
E[Cl S c o s t   c o s t  

Using such  an  algorithm,  one  can  find  the  Mth  best  path  out 
of bM paths  with  only 

E[ VM(bM)] = bM + M + f ( b M )  

comparisons.  Once  the  metric  of  the  Mth  best  path is known, 
one  can  choose  the M best  paths  with  at  most bM comparisons. 

The M-algorithm’s  time  cost is then  (with S = M ) ,  (2b  + 
1 ) s  -f f ( b S )  comparisons per branch  released,  Hence,  the 
asymptotic  space-time  product  cost  of  the  M-algorithm is 

= L S 2  access symbols/branch  released. L = 200-300, all c a s e s  (200 used for c o s t ) .  

Another  breadth-first  procedure  has  been  suggested  by Sim- * About 150 p a t h s  Of a v e r a g e   l e n g t h  50 Were in the Save stack. 

mons  and  Wittke [ 181  for  channel  decoding.  Their  method ** 2 x 1 0 ~   w i t h  Merge AIg.;   7x107+  h  with  Bucket  f i g .  

deletes  all  paths  at  a given depth  whose  distance  from  the  re- 

Stack 200 ,500 1010** 200K 

M- 500 250 7 ~ 1 0 ~  51K 

2-Cycle 1000 1” 200K 8500 

S i n g l e   S t a c k  1500 1 300K 1700 

ceived sequence  exceeds  some  constant co. Thus,  a  varying 
number  of  Paths  are  retained  at  each  level  but  the  procedure The space complexl~y of this algorithm is about LbK,   where  
is still  Purely  breadth-first.  Excellent  results,  free  of  erasures, is the constraint length of the code, while to this 

about  the  same  decoded  error  probability - 

were reported for an  application  to  phase  modulation  codes. storage  are required per branch as output. using hard 

VI. SOME IMPLICATIONS 
To  choose  the  best  algorithm  for  a given situation,  one  must 

determine  the  combination  of L ,  S, and  the  node  computation 
that  optimizes  the  cost  function  for  the  desired  encoding dis- 
tortion  or  error  probability.  This is a  most  difficult  task. Ex- 
perimentation  has  been  done,  and  some  conclusions  are  pos- 
sible.  The  results  g,enerally  favor  algorithms  that do  not  sort, 
and  point  away  from  metric-first  searching. 

We first  consider  sequential  source  encoding.  Table I11 re- 
produces  simulations  done  by  the  authors  for  the  stack, M-,  
two-cycle,  and  single  stack  algorithms  used  with  random  tree 
codes.  The  source  is  the  binary  letter,  i.i.d.  source  with  “Ham- 
ming”  distortion  measure  (unit  penalty  for  mismatched  let- 
ters,  zero  penalty  otherwise),  the  encoder  rate  is  1/2  output 
bit/source  bit,  and all the  algorithms  achieve  an  average  distor- 
tion of about  0.1  25,  15  percent  above  the  distortion-rate  func- 
tion.  The  formulas  from  Table I1 are  used t o  evaluate  cost,  and 
because of the  asymptotic  nature  of  these  and  the  uncertainties 
associated  with  simulation,  only  orders  of  magnitude  are sig- 
nificant  in  the  results.  Still,  it is clear the  two  nonsorting  algo- 
rithms  have  greatly  reduced  cost  compared  to  the  stack  or 
M-algorithms  under  either  the  space-time  or  space-plus-time 
cost  evaluation.  Even  the  merge  and  bucket  algorithms  (bor- 
rowing  the  same L ,  S, and  E[C]  as  the  stack  algorithm)  fall 
well  short,  and  in  fact  perform  only  as  well  as  the M-algo- 
rit  hm . 

Turning  now  to  sequential  channel  decoding,  we  consider 
the  case of rate  1/2  convolutional  codes  and  a  binary  sym- 
metric  channel  with  crossover  probabilities  in  the  range  0.02- 
0.045.  The  0.045  error  rate  corresponds  to R c o m p  = 1/2;  for 
higher  error  rates  than  this,  the  node  computation  lacks  a 
first  moment,  Jelinek’ [ 1,  pp.  680  ff.]  reports E [  CSA] increas- 
ing  from  2  up  to  about 4 through  this  error  range,  while  Chevil- 
lat  and  Costello [ 13,  p.   14691  report   anE[C]  of  about 2.8  at 
error  probability  0.025  for  their  multiple  stack  algorithm.  The 
storage  factor S reported  by  both lies in  the  range  1000-3000. 
The  Fano  algorithm, on the  other  hand,  requires  up  to  seven 
times  as  much  node  computation  as  the  stack  schemes.  None- 
theless, if we  assume  that  all  algorithms  have  about  the  same 
L ,  the  cost  evaluation  of  the  Fano  algorithm is  less by  a  fac- 
tor  of 1 0 3 .  

It is of  interest to  compare  the  cost  of  these  methods  with 
that  of  the  Viterbi  algorithm,  using  a  code  which  achieves 

decisions,  a K of at  least 8 is  needed  to  achieve  the  above  er- 
ror  range  at  a  crossover  probability  of  0.025 [ 13, p. 14691. 
K = 4 is sufficient  for  soft  decisions.  At K = 8,  the  Viterbi 
algorithm  space-time  cost is on the  order of 5  12 L ,  versus 
only  about  3 L for  the  Fano  algorithm;  a  similar  difference 
holds  for  space-plus-time  cost.  The  Viterbi  algorithm is still 
much  cheaper  than  the  sorting  procedures.  For  decoded  error j’ 

rates  below  10W5,  Viterbi  coding  becomes  very  costly,  but  it 
does  have  the  advantages of being  synchronous  and  erasure 
free. 

Erasure of output  data  caused b y  noise-induced  computa- 
tional  overload  can  occur  in  many  decoding  search  algorithms 
and  thwarting  this  problem is a  factor  in  their  design.  Our  cost 
measures  make no explicit  mention of erasures,  but  to  the  ex- 
tent  that  erasures  stem  from  exhaustion  of  resources,  the esti- 
mates of Table I1 indicate  susceptibility to  erasures. 

Research  into  the  application  of  search  procedures  to se- 
quence  estimation  for  band-limited  channels  has  only  just  be- 
gun.  There  should  be  interesting  results  here,  since  the  Viterbi 
algorithm  estimator  would  seem  to  have  limited  applicability 
t o  severely  band-limited  channels. 
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