
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-32, NO. 2 , FEBRUARY 1984 169

Sequential Coding Algorithms: A Survey and Cost Analysis
JOHN B . ANDERSON, SENIOR MEMBER, IEEE, AND SESHADRI MOHAN, MEMBER, IEEE

Absrracr-The cost of a number of sequential coding search algo-
rithms is analyzed in a systematic manner. These algorithms search
code trees, and find use in data compression, error correction, and
maximum likelihood sequence estimation. The cost function is made
up of the size of and number of accesses to storage. It is found that
algorithms that utilize sorting are much more expensive to use than
those that do not; metric-first searching regimes are less efficient than
breadth-first or depth-first regimes. Cost functions are evaluated
using experimental data obtained from data compression and error
correction studies.

I. INTRODUCTION

C ODES with a tree structure find wide use in data compres-
sion and error correction. They are implicit as well in t h e

equalization of band-limited nonlinear communication channels
by sequence estimation. Generally, a tree code is a code whose
words may be graphed on a perfectly regular tree structure
having a group of u symbols or a piece of a waveform o n each
branch and b branches out of each node. Each code word cor-
responds to a path through the tree made up of these branches.
In channel transmission, successive data symbols guide the
path level by level deeper into the tree, and a decoder attempts
to find this path in noise. In data compression, successive data
are compared to branches level by level in an attempt t o find a
codeword path close to the data. In equalization, digital data
symbols presented to a channel cause a set of responses that
can be organized in a tree structure.

Any usable tree code is a trellis code. A practical tree code
is generated by a finite-state machine, and as a result a pattern
of tree nodes can be merged with other nodes to form a trellis
structure. Whether the code is viewed as a tree or a trellis, it
is generally impractical to view and weigh all the branches in a
code, so a search algorithm must be employed which con-
siders some but not all in a predetermined fashion.

The efficiency of these “sequential coding” algorithms has
traditionally been measured by the number of branches
searched for a given level of performance. It has become increas-
ingly clear that this measure does not indicate the true consump-
tion of resources. In this paper we survey the different types
of algorithms that are possible and explain their features. We
also develop more accurate measures of cost based on access
cycles and storage size, and use these to compare in a system-
atic way many of the procedures that are in use.

The Viterbi algorithm is not a selective search but an ex-
haustive one, the most efficient one possible given t h e finite-
state machine description of the code generation or intersym-
bo1 interference mechanism. The algorithm has been used with
great success in certain channel coding problems where simple
codes give acceptable performance. But in other channel prob-

Paper approved by the Editor for Signal Processing and Communica-
tion Electronics of the IEEE Communications Society for publication
after presentation at the International Conference on Communications,
Boston, MA, June 1979. Manuscript received October 8, 1982; revised
June 10, 1983. This work was supported by the National Research
Council of Canada under Grant A8828.

J. B. Anderson is with the Department of Electrical, Computer,
and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY
12181.

S. Mohan is with the Department of Electrical and Computer Engi-
neering, Clarkson College of Technology, Potsdam, NY 13676.

lems and in analog-to-digital conversion of sources like speech,
codes with many states are required, and at the same time only
a few code paths need to be pursued. In sequence estimation,
the effect of heavy band limiting is to create a highly complex
state description, so that in intersymbol interference rejection
and in similar problems like adaptive reception over the H F
channel, an effective Viterbi algorithm must be very complex.
For all of these problems, a properly designed search algorithm
will be effective. Search procedures have proven useful in other
applications, including identification of image contours [191,
and text and speech recognition [2 1] and digitizing of images

Code searching schemes may be classified as sorting or non-
sorting, and as depth-first, breadth-first, or metric-first, where
the “metric” is some measure of fidelity or likelihood. A num-
ber of schemes are summarized in Table I. Among algorithms
which sort, the well-known stack algorithm (see [11 or [3 1 for
channel decoding or [2] for source encoding) extends code
tree paths in a purely metric-first manner, meaning that the
next path extended is always the one with the best metric
among those presently stored. Sorting is used t o single out the
best path. The usual method is an ordering procedure, but we‘
shall also analyze a merging procedure which has significantly
lower cost. A purely breadth-first algorithm that sorts is the
M-algorithm. This algorithm views all branches at once that it
will ever view at a given depth, then sorts out and drops paths
ending in certa’in branches before continuing on. Another
sorting scheme that is not purely either metric or breadth-first
is the bucket algorithm [1] .

A second class of algorithms does not,sort; that is, paths are
never compared with one another. The simplest such methodis
the single stack algorithm, a purely depth-first method sug-
gested by Gallager [41. This scheme simply pursues a path un-
til its metric falls below a discard criterion, and at a_ny.one
time it stores the identity of only one path. A direct imple-
mentation is a single push-down stack. (It should be mentioned
that the more widely known “stack algorithm” cited above in
fact contains no stack, but only a “list.”) A familiar variation
of the single stack method is the Fano algorithm; the peculiar
character of this search stems from its method of computing
the discard criterion. A more sophisticated nonsorting pro-
cedure is t o set aside certain good paths for later attention as
they appear in the depth-first search. This method stores a
number of paths, but they are known to be good ones; an
example is the two-cycle algorithm [5] . Uddenfeldt and Zet-
terberg [71 have discussed a depth-limited exhaustive search.

The usual measure of efficiency for code searching algo-
rithms has been the node computation, the number of branches
visited during the progress of the scheme divided by the
branches released as output, for a given level of source encoder
fidelity or decoder probability of error. As the algorithms have
come into more use, however, it has become clear that this is
not a sufficient measure. Several authors [8] , [151 have found
that stack algorithm source encoding is no faster than other
methods, even though it has the least node computation of
any known method. Experience with M-algorithm hardware
speech encoders [101 shows that this method is efficient de-
spite a poorer node computation. In sequential channel de-
coding and in sequence estimation, the situation is similarly
confused. The Viterbi algorithm finds wide use despite its ex-
haustive nature, even though supposedly more efficient
schemes exist. What seems to be missing here is a factor to ac-

[201.

’ 0090-6778/84/0200-0169$01.00 O 1984 IEEE

170 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-32, NO. 2 , FEBRUARY 1984

TABLE I

ALGORITHMS
SEARCH RATIONALES FOR CERTAIN SELECTIVE SEARCH

M e t r i c - F i r s t B r e a d t h - F i r s t D e p t h - F i r s t

Sartin4 M-Alg. Stack A lg.

Merge A1 g .
Bucket Alg.

(r o u g h l y)

- -Haccoon’s Alg. (both)--

x x d Mu l t . S tack Alg.>xx
I

Non-Sort inq Simmons-Wit tke Single Stack 1 Alg .

, Fano Alg.

- -Z-Cycle A lg. (both)- -
I
I

count for the size and complexity of the required information
structures, in addition to the intensity of their use.

11. A DEFINITION O F ALGORITHM COST

A more realistic measure of algorithm cost can be based on
the number of storage elements in a scheme and the number of
accesses to them. The space complexity of an algorithm is the
size of resources that must be reserved for its use, while the
time complexity counts the number of accesses to this resource.
The product of these two, the space-time complexity, and the
sum of these two are both useful measures of overall cost.

A space-time product cost measure assumes that storage
blocks “wear out” after a certain number of accesses and that
the cost of blocks is proportional to their speed, assumptions
that are roughly true for physical devices. Parallel processing is
of no benefit under this measure, since there is no gain in
trading space for time. A second measure of cost, more suited
to software implementations, is the space + time complexity.
The sum of space and time, this measure stresses more the op-
portunity cost foregone by assigning resources t o a user. Dif-
ferent constants are often placed before the two components,
but these will have no asymptotic significance. We shall list
results for both measures, but go into detail only for the prod-
uct measure.

A perhaps more traditional measure of complexity for sort-
ing methods is the number of comparisons, but this measure
does not account for both space and time, and as mentioned
previously, not all code search algorithms sort.

Other measures of coding algorithm cost could be proposed
than the space and time cost of storage blocks, but this kindof
measure relates closely to the nature of such algorithms. Code
search algorithms basically move in and out of storage data
about code tree paths. Other tasks, such as computing metrics,
checking for ambiguous output symbols, and generating code
word letters, form a constant multiplier on the cost of storage
access. The major determinants of cost remain the storage size
and the pattern of accesses called for by the steps of,the algo-
rit hm .

A simple building block for search algorithms is the ran-
dom-access memory (RAM), although many algorithms relate
more naturally to another structure, the push;down stack.
Building algorithms out of push-down stacks instead of RAM’S
leads to the same asymptotic complexity in all the cases we
discuss except theM-algorithm.

Three variables dominate the asymptotic cost of the algo-
rithms we analyze, the length of path an algorithm can retain.
L , the number of paths it can retain, S, and the expected node
computation already defined, E [C] . We assume that L and S

TABLE I1
ASYMPTOTIC COST OFCERTAIN ALGORITHMS IN THE LIMIT OF

SPACE IN b-ARY SYMBOLS, TIME IN ACCESSES TO STORAGE.
C = BRANCHES VISITED/OUTPUT SYMBOL RELEASED, L =

RETAINED PATHS.

INTENSIVE SEARCHING, PER OUTPUT SYMBOL RELEASED.

LENGTH O F RETAINED PATHS, s = NUMBER OF

Algorithm (Space) (Time) (Space)+(Time)

Single Stack %LEICSSI %L+EICSSl

Fano %LEICFAl %L+E [CFA I

2-Cycle ”.LE[C2Cl %LL +E[CZC]

Stack %LSZEICSAl %LS+SE[CSA]

Merge %L(S4’3E[CsA]+S2) %LS+(S+S2’3E[CSA])

pd

Bucket %L(SEICSAI+S)+H 2 %LS+(S+EICSAl)+H

M- %LS2 %LS+S

are finite and fixed in value. It is important to realize that al-
gorithms differ significantly when these are so constrained;
when the number of paths exceeds S, for instance, some
mechanism must delete excess paths, and whenever a path ex-
ceeds length L , its oldest branch must be checked to ensure
that it is consistent with other paths kept to this depth. These
routines may change the asymptotic cost.

We turn now to a space and time cost analysis of a number
of algorithms. For clarity, we emphasize sequential source en-
coding schemes throughout, although the analysis applies as
well to channel decoding and sequence estimation. The algo-
rithms chosen for exposition are those which differ from each
other in fundamental ways, or which demonstrate a principle
in pure form. Often, a variation or a scheme combining several
principles will be most effective in applications. Results are
summarized in Table 11. It is clear that there are dramatic dif-
ferences among the algorithms; all depend linearly on L , but
some, like the single stack algorithm, have no dependence on
S, while others range as high as S 2 . As has been shown in
earlier work, there are also wide variations in the node compu-
tation E [C] at a given S, L , and performance level. TheM-al-
gorithm has no separate dependence on E [C] because C de-
pends only on S.

It is not our intention to optimize over the choice of the
three major cost factors, or over the many lesser factors and
parameter settings, but only to establish the cost functions.
An accurate optimization is an immense task.

111. BASIC FEATURES O F SEARCHING ALGORITHMS

It will be convenient first to define features which are com-
mon t o all algorithms.

The aim of the search is to find a path.with distortion or
likelihood metric as good as possible. Searching begins at a
root node and continues until some path reaches depth L .
The algorithm then decides once and for all which first branch
t o release as output; the end node of this branch becomes the
new root node. Searching resumes until some path again reaches
total length L branches. The procedure continues indefinitely
in this “incremental” fashion, releasing some branch at depth I
and accepting a new data group at depth I + L . An older at-
titude toward searching is the “block” search, in which an

ANDERSON AND MOHAN: SEQUENTIAL CODING ALGORITHMS 171

L-branch path is released all at once and the search begins
anew at the path’s end node. We give no separate analysis for
this alternative, although most of our conclusions apply.

Paths are described by path maps made up of b-ary sym-
bols, (0, -., b - l}, one for each branch. The code word let-
ters on a path’s terminal branch are somehow computable
from its path map. Associated with each map is a metric p,
either a likelihood of the path or a measure of its distortion,
and sometimes an indication of the path’s length or pointers
to other storage locations. For source encoding, the metric
is given by p(zaz, j a l) = alD* - d(z“l, ;a l) , where d(za l , 201)
is an additive distortion measure, z and i are vectors of source
data and code word letters of length 01, and D* is a target dis-
tortion the algorithm hopes to achieve. For channel decoding
and sequence estimation another constant, called the bias, re-
places D*, and d(,) becomes the negative of the log likeli-
hood of the path.

The following actions are performed by all algorithms and
will be denoted throughout by the italicized expressions.

Extend Path: The algorithm extends a path one branch for-
ward, “viewing” the branch. Viewing includes calculating the
code word symbols on the branch, fetching the input data
group corresponding to its depth (source symbols to be en-
coded or channel symbols to be decoded), calculating the
metric increment for the branch, and forming the new metric
total for the path. Branches. are viewed either singly or in
groups of b , depending o n t h e algorithm. In the former case,
only a single branch, say the zeroth is viewed during the first
visit to the original path’s end node; if there is a later visit t h e
first will be viewed, and so on until all b branches are viewed.
Other algorithms extend b paths, and view all b at once.

Ambiguity Check: The algorithm checks all eldest path map
symbols to determine if they are consistent with the symbol
released asoutput. If a symbol is not, the path must be deleted.
Ambiguity checks are necessary for two reasons. If a path fails
the check but is kept in storage, it may later be released as out-
put even though its antecedent does not match earlier output.
The encoder and decoder will then not develop the same path.
Ambiguity checks also prevent the accidental storage of two
paths with the same symbols. If two path maps once differ (as
they do initially), they can become identical only when the
differing symbols are dropped and this is forewarned by the
check. Actually, this clogging of storage can be detected in
more timely fashion by checking the subset of path symbols
that determine the code generator state. Two paths with these
subsets identical lead to identical subtrees. But this method re-
quires comparison of a subset of symbols rather than a single
symbol. Hang and Woods [22] have studied the effect of iden-
tical and nearly identical paths in analog source coding.

A separate ambiguity check is unnecessary in nonsorting
algorithms, which store only a single path.

Delete Path: The algorithm deletes an entire path map. A
deletion must occur whenever the number of paths stored
exceeds S , and whenever a path fails an ambiguity check.

Release Output Symbol: The algorithm releases as output
the earliest symbol of the best path map it has. In sorting al-
gorithms, this triggers an ambiguity check to make certain
that all path maps have the same symbol at this depth.

In nonsorting algorithms the possibility exists that no path
satisfies the constraints of the algorithm, an event we call al-
gorithm failure. The cost of recovering from this event is small.
The easiest method is to move one branch forward of the root
node, declare the branch’s end node t o b e t h e new root node,
and start again.

The ambiguity check has been the source of some debate
among those who have used search algorithms. It can be argued
that its possibly significant cost is not worth a small per-
formance gain. The authors, however, have calculated that
with some channel codes and with small S and L , failure t o
check for path ambiguity can lead to large performance loss

when the channel SNR is high. When t h e SNR is low, on the
other hand, ignoring the ambiguity check can actually improve
performance.

IV. NONSORTING ALGORITHMS

The distinguishing feature of nonsorting schemes is that
,,they store only a single path, extending or backtracking along
the path in response to the value of the path metric.

A.’ The Single Stack Algorithm

This algorithm proceeds depth-first directly through the
code tree until the path metric falls below a discard criterion
B ; the search then backtracks to the first untried branch and
proceeds depth-first again. The symbols of the path map are
stored in a push-down stack, and in the steady-state operation
of the algorithm, an output path map symbol is forced out the
bottom whenever a depth is visited for the first time.

By convention we assume that on first visiting a node,
branch 0 out of the node is viewed, o n t h e second visit branch
1, and so on unti l all branches are viewed, at which time the
search must backtrack. An example of this routine appears in
Fig. 1 for b = 2 ; X’s indicate a path that has fallen below the
discard criterion. It is more straightforward to think of the dis-
card criterion B as a constant, although Davis and Hellman [1 1]
show that B probably must be a function of the input data.

Using a single push-down stack and a comparison t o a dis-
card criterion, the single stack algorithm is the simplest of all
search algorithms.

Algorithm S S (The Single Stack Algorithm):
SSO) Insert root node into stack. Set i f 0.
S S l) (View branch.) Extendpath whose map is in the stack,

viewing branch i out of its end node.
SS2) (Check discard criterion.) If p > B , go t o SS3; else go

to ss4.
SS3) (Advance forward.) Stack new branch symbol i and re-

lease output symbol at stack bottom if not null. Set i f 0. Go
back to SS l .

SS4) (Switch to sister branch.) Set i + i + 1 .
S S 5) (More sisters?) If i < b , go back to SS1.
S S 6) (Stack empty?) If stack empty, declare algorithm fail-

SS7) (Backtrack.) Pop stack. Set i + popped symbol. Go

A flow chart appears in Fig. 2.
The space cost of the single stack algorithm is L b-ary sym-

bols (plus a small overhead for side registers and code letter
generation). The time cost is overbounded by two accesses per
branch viewed, since the algorithm passes through SS1 once
per branch and SS7 at most once. The space-time product
cost is.thus

ure.

back to SS4.

LE[Css] access-symbols/output branch (1)

where CSS denotes the node computation of the single stack
algorithm, and here and throughout X 2 Y means that log
X/log Y tends asymptotically to 1.

The Fano algorithm is a variant of the single stack procedure
in which the discard criterion varies up and down as a function
of the path metric. Searching proceeds depth-first until a path
falls below B , but B is raised in increments whenever possible
during visits to new nodes, and is lowered when necessary dur-
ing returns to previously visited nodes. The cost of the Fano
algorithm is again of the form L E [C F A] , but it is not clear
in particular applications which of CFA and C ~ S is the larger.
The opportunistic changing of B undoubtedly reduces the set
of nodes visited, but ‘the algorithm may visit certain of the
nodes many times. Nonetheless, if CFA can be measured, then
the form (1) gives the total cost.

172 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL: COM-32, NO. 2, FEBRUARY 1984

-.
\-hit discard criterion

Fig. 1. Push-down stack search, b = 2. Downward branch (zeroth)
taken first, then upward branch (first); numbers show order of visit-
ing, X means path metric hits discard criterion.

BEGIN
I
1

lSS1 View branch

4 J-
(3 2 p >-- no

SS3 Advance forward;
i yes

I
release output symbol.

I I

1
FAIL

Fig. 2. Single stack algorithm.

B. The Two-Cycle Algorithm
Algorithms similar to the single stack procedure search

depth-first, backtracking only when the path falls below the
discard criterion. Another method which uses the same stack
structure is to search all paths lying above the criterion and
having length 1 < L . Of these, only a much smaller set of
“good” paths, say those with metric p 2 A , are saved for later
attention. We have called this procedure the two-cycle algo-
rithm [S I .

The two-cycle algorithm illustrates a nonsorting search that
is not purely depth first. Such a mixed-regime search may be
better in a given application. Table I1 lists some complexity
data for this algorithm.

V. SORTING ALGORITHMS
Sorting schemes compare paths on the basis of metric in

order to decide which to extend and which to delete. These
algorithms view fewer branches than nonsorting algorithms,
but the cost of sorting is often very high.

A. The Stack Algorithm
As mentioned before, the stack algorithm is based not on a

stack, but on a list of code tree paths. The usual view is that
this is an ordered list; the next path extended is always the
best in terms of p, and sufficient worst paths are deleted to
keep the list at length S paths. An alternate view is that new
paths are simply appended, and that the list is probed for its
best entry prior to each extension and for its worst entry prior
to each deletion, The cost is similar in either case, and we shall
take as the defining attributes for the stack algorithm simply a
single list and metric-first extensions and deletions.

Since a path’s metric indicates the likelihood that ‘the best
path in the code tree lies ahead of it, it comes as no surprise
that this metric-first procedure appears to find a path at a
given metric level with the least node computation of any
scheme (see [1] or [2]). Despite this, the space-time cost of
the stack algorithm seems to exceed that of any other scheme.

In the stack algorithm’s list, paths’vary in length. Once the

-L - logL+p--

Fig. 3. Example of stack algorithm list, showing paths, length indica-
tors, and metrics. The top path is about to penetrate a new depth,
causing an ambiguity check; the fourth path will be deleted if its
earliest symbol does not pass.

algorithm reaches a steady state, an ambiguity check must be
performed whenever the length of a path in storage exceeds&.
One can show that this occurs whenever a tree depth is reached
for the first time. Fig. 3 shows a list data structure in which
each entry consists of three subwords, a path metric (precision
p) , an indication of path length, and a path map. The path
maps are left justified, and to find an end node, the length sub-
word must be consulted. All paths end on the left at a point L
branches before the deepest tree penetration; during an am-
biguity check all these earliest branch symbols must be checked
to see if they agree with the symbol released as output.

Algorithm SA (The Stack Algorithm):,
SAO) Obtain root node.
SA1) (New penetration?) If the next extension will visit a

SA2) (Ambiguity check.) Perform ambiguity check and re-

SA3) (View branches.) Extend b paths from the best path

SA4) (Reorder list.) Order into the list t h e b new paths.
SA5) (Delete paths.) Delete paths, worst first, until S re-

A flow chart appears in Fig. 4.
Most of the cost of the algorithm resides in step SA4. This

reorder step can be done simply by reading one RAM into
another until the place appears for the new path; the new path
is then written and the reading continues until the second
RAM is full. An alternative that requires less storage is t o have
just one RAM like Fig. 3, plus a list of pointers of size S log
S; to reorder the list, only these pointers are manipulated. The
ordering may also be done by push-down stacks. All three
methods have the same asymptotic space cost, S(L 4- logbL +
p) b-ary symbols.

The time cost is an average S accesses per branch viewed in
allthree cases, although the cost of an access may be “cheaper”
in one of the implementations. SA1 and SA3 form a constant
overhead, and the’ambiguity check SA2 occurs only once with
each depth penetration rather than each path extension, and
so has a lower order’cost.

Total space-time complexity is thus about S2(L + logL
p) E [c s ~] , or since p is small, s~ S2E[CsA] asymptotically,
where CsA is the node computation of the stack algorithm.

Unless E [C ~ A] is very small, the added S2 factor will make
this cost much larger than that of the nonsorting algorithms.
All research studies on the stack algorithm have reported com-
putational difficulties in its use. Jelinek [1] suggests a chained
storage scheme for the path maps which would eliminate the
blank regions in Fig. 3, but it does not change the asymptotic
cost [171. He also suggests alternative algorithms, a combining
of the Fano and stack algorithms [1, pp. 682 ff.] , and a bucket
algorithm. The latter is a basically new scheme to which we re-
turn in Section v-C.

B. The Merge Algorithm
The cost of the stack algorithm can be greatly reduced while

still retaining the strictly metric-first feature if two ordered

depth for the first time, continue to SA2; else go to SA3.

lease output symbol.

in the list. Delete this path.

main. G.0 back t o S A l .

ANDERSON AND MOHAN: SEQUENTIAL CODING ALGORITHMS 173

BEGIN

[SA3 View branches 1
lSA4 Reorder l ist I
ISA5 Delete paths I

i

1

I
Fig. 4. The stack algorithm.

lists are jointly maintained. The strategy will be to conduct a
metric-first search with a short auxiIiary list and occasionally
merge the list into the main list. We call such a procedure the
merge algorithm.

Consider a main list of size S entries and an auxiliary list of
size T. A succession of T new paths are searched metric first
just as in the stack algorithm, requiring about T 2 / 2 compari-
sons between paths. After this, the two list9 are merged. The
merge operation requires S f T comparisong [12, ch. 51, and
the worst Tpaths are deleted in the process. &r branch viewed.

term gives a total product cost of about

(L + log L + p) [(2.38)S4I3E[CsA] -t (S + (fiS)2’3)2]

access-symbolsJbranch released (2)

which is asymptotically L(S4/3 E [C S A] 4- S 2) . We have used
thG-fact that the node computation will be close to that of the
stack algorithm. It is no longer clear that the cost of ambiguity
checks is insignificant, although it is likely that it is, since
E[CSA] is probably of order S or larger.

Many variations have been proposed on t h e basic theme of
side lists. Themultiple stack algorithm of Chevillat and Costello
[131 utilizes a succession of side lists to reduce sorting in the
main list, although the search is not strictly metric-first and
merging is not used between lists. Haccoun and Ferguson [141
propose extending K paths at once rather than one, before
each ordering. The idea of merging seems to have originated
with Mohan [Y 1 . An extension of this idea leads to the metric-
first procedure having the least possible asymptotic cost [1 7) .

the number of comparisons is about SIT + Q -t TJ2, and mini: TheBucketAlgorithm
mizing this expression over the choice of T,’we get an optimal
auxiliary list size of about a, Furthermore, the number of A reduction in cost is easy to obtain by resort to schemes
comparisons per branch is only a + 2, instead of the s re- that are not strictly metric-first. Jelinek proposed that the
quhed by the stack algorithm, Total storage increases by the range of the metric be quantized into segments called ‘‘buckets”
fraction m, an asymptotically insignificant factor. and incoming paths be sorted only into the correct bucket. Me

extend the best path at the top of either list, and this will re- The bucket approach has a number of subtle variations
quire a single comparison per path extended. The ambiguity which have markedly different asymptotic cost. Suppose there
check must also reference both lists. Both of these provisos are kS buckets, where k is a small but fixed fraction and each
make the above estimates slight overbounds. Otherwise the bucket is of fixed size; then the metric range for each bucket
merge algorithm is identical to the stack algorithm. continuously varies, and the number of comparisons required

Algorithm MG (The Merge Algorithm): to f ind the proper bucket for a path is asymptotically still of
MGO) Obtain root node. order S, just as it was for the stack algorithm. An alternative
MGI) (New penetration?) If the next extension will visit a is to let the buckets vary in size instead of metric range. In

depth for the first time, continue to MG2 ; else go to MG3. what follows we show that such an algorithm exists whose
MG2) (Ambiguity check.) Perform ambiguity check on time cost for insertion is overbounded by a constant, regard-

both lists and release output symbol. less of S.
MG3) (View branches.) Compare the top paths in the two Both these variants are only roughly metric-first. A pure

lists and extend b paths from the better. Delete this path. metric-first algorithm with buckets can be obtained by order-
MG4) (Reorder aux. list.) Order into the auxiliary list the ing just the top bucket, as several authors have proposed. But

b new paths. even if the fraction of buckets k tends to zero as S ’? e, one
MG4a) (Aux. list full?) If the auxiliary list cannot accept can show that comparisons of at least order S1I3 are required

another b paths, continue to MG5 ; else go back to MG1. [9] . With moderate, practical storage S, the issues are less
MG5) (Merge and delete.) Merge the auxiliary and main clear, and modification to the basic a!gorithm should be useful.

lists into the main list, and delete paths that overflow. Go back Two principles are clear, however: bucket size should not be
to MG1. fixed and whether the algorithm is perfectly or only roughly

cycle to include the branch viewings required to fill the We find it useful to view the bucket procedure as a hashed
auxiliary list. During a cycle, MG3 and MG4 cause about T search for the best path. Our object is t o draw attention away
accesses t o a storage of size LS and about T + T2/2 accesses from sorting, which the procedure does not really do, and to-
to a size L T storage, where we have idealized the eptry length ward a definition of a hashing function h(), which is the real
as L ; a t the cycle’s end, MG5 causes S accesses to LS, T to LT, crux of the algorithm. It is best to construe sorting as perfect
and S f T t o L(S + T) . The total space-time product is sorting, a much more costly Procedure.
L(T3/2 -I- 4ST f 4T2 + 2S2) per cycle. Dividing by T gives a . Paths are places in buckets according to the function h(),
tight overbound to the cost per branch viewed, since more which maps the metric p to’ an integer fi in the set { 1, ..., Q},
than T branches will be viewed if some nodes are drawn from where f i denotes, which one of Q buckets. Paths are extended
the auxiliary list. from the best bucket and continuously deleted from the worst,

Minimizing this expression, we get an optimal list size of to maintain a total of S paths. k() identifies the quantization
about T = (d S) 2 / 3 for large S. The minimized cost is about segment of p. Little is known about the optimal definition Of
(2.38)CS4/3 per branch viewed. As an example consider a h() as S grows very large; it is doubtful that k is simply a uni-
stack algorithm with S = 100. Its cost per branch viewed is on form quantization, and it seems likely that the storage must be
the order of 20 000 L , while the merge algorithm, by adding a rehashed (i.e., h redefined) from time to time to obtain opti-
second list of length 27, reduces this cost to 1100 L . ~t is in- mal performance. The cost of the latter may not be insignifi-
teresting t o observe that the comparisons-based optimization cant [12, sect. 6.41.
specifies a second list of only 16. Since the bucket algorithm cost will depend critically on

Thus far not considered is the ambiguity check (MGZ), the cost of maintaining the buckets, we investigate now a
which costs L(S2 + T 2) per branch released. Inserting this construction that does this. To realize the advantage of the al-

To be sure that it proceeds metric-first, the algorithm must called this Procedure the bucket algorithm.

In computing the cost of algorithm MG, define a merge metric first has a critical asymptotic effect.

174 I E E E TRANSACTIONS ON COMMUNICATIONS, VOL. COM-32, NO. 2 , FEBRUARY 1984

Next path extended

Next "ernptf cell

I

to B I to B+11 to WI

Best Bucket next Bucket - - - Worst Bucket

Fig. 5 . Chained storage of buckets for bucket algorithm. W = worst
bucket, B = best bucket. An empty bucket contains only the bot-
tom cell.

gorithm, the construction must insert a path with a fixed num-
ber of accesses, independent of S.

Let the storage consist of cells containing a path (map,
length, p) and a link address to another cell. Buckets are con-
structed as shown in Fig. 5. Cells { 1, .-, Q } are bucket heads
and are permanently reserved in storage; their links point to
the most recently added cell in the bucket. The other cells
each link to the cell which arrived before them. Path exten-
sions take place always from the best bucket, and new cells
are obtained from the worst bucket, which functions as a list
of unoccupied (or expendable) cells.

We can now redefine some of the basic operations of 111
in terms of this chaining regime. The variables BSTBKT and
WSTBKT give the location of the best and worst bucket
heads.

Extend Path:
i) Find top of best bucket by accessing cell BSTBKT.

ii) Remove top path, form extensions, and add pathfsj

iii) Link top cell to empty cell list.
iv) Link cell BSTBKT to next-to-top cell.
v) If best bucket empty, BSTBKT f BSTBKT -t 1 (re-

t o buckets.

peat as necessary).
Add Path:

i) Compute h(p) ; if h(p) > WSTBKT, WSTBKT f h.
ii) Find top of bucket h(p) by accessing cell h(p) .

iii) Obtain empty cell.
iv) Replace link field of cell h(p) with address of this cell.
v) Place new path in this cell; place old top cell address

in link field.
Obtain Empty Cell:

i) Access bucket WSTBKT; if empty, WSTBKT +

ii) Take cell pointed to by link field of cell WSTBKT;
WSTBKT - 1 (repeat as necessary).

replace cell WSTBKT link field with address of next-to-top cell.
Ambiguity Check:

i) View each path.
ii) Link ambiguous paths to worst bucket, using Add

Path iv and v.
Algorithm BA (The Bucket Algorithm):
BAO) Place root node in bucket 1. Set BSTBKT f 1 'and

BAl) (New penetration?) If the next generation will visit a

BA2) (Ambiguity check.) Perform ambiguity check and re-

BA3) (View branches.) Extend b paths from top path of

BA4) (Update buckets.) Add paths to proper buckets, using

A flow chart of algorithm BA will be similar t o Fig. 4. ex-

WSTBKT f Q. Link all cells except the first Q to bucket Q.

depth for the first time, continue to BA2; else go to BA3.

lease output symbol.

best bucket. Delete this path.

h(). Go back to BA1.

BEGIN

output

MA3 Find best M

MA4 Delete the rest

u
Fig. 6 . TheM-algorithm.

The cost of algorithm BA is

time cost: k' accesses/branch viewed, plus

k"S accesses/branch released, for ambig. ch.

space cost: S(L -I- log L + p f logb S) b-ary symbols.

We have assumed that Q is small compared to S. The log$
term accounts for the link field; k' depends on the precise se-
quence of reads and writes in BA3 and BA4, but is close to 5 ,
and k" is less than 2. Asymptotically, one gets

-= LS(E[CsA] + S) f H access symbols/branch released

(3)

for the total space-time cost, assuming the node computation
is close to that of the stack algorithm. A factor H takes account
of the hash function cost. We have deleted the space cost term
logbS in (3) on the assumption that L dominates logbS. Of t h e
three metric-first procedures we have studied, the bucket algo-
rithm has the lowest order dependence on S-only S instead of
, 913 or ~ 2 .

D. The M-Algorithm
We conclude with breadth-first sorting algorithms. In gen-

eral, such a procedure views all the branches at depth 1 that it
will ever view, deletes paths according to some criterion, and
then moves on to the n.ext depth. The M-algorithm deletes all
paths except a fixed number M . Breadth-first searches are syn-
chronous (that is, all paths have the same length) and they are
effective at low intensities of searching; they are thus good
candidates for practical application [10 1 , [16] .

In its specific operation, the M-algorithm moves forward by
extending the M paths it has retained to form bM new paths.
All the terminal branches are compared to the input data cor-
responding to this depth, metrics computed, and the (b - l) M
poorest paths deleted. The heart of the algorithm is the sorting
procedure which deletes these paths.

Algorithm MA (The M-Algorithm):
MAO) Obtain root node.
MA1) (Ambiguity check.) Perform ambiguity check and re-

MA2) (View branches.) Extend b paths from each retained

MA3) (Find best M.) Order the list to find the best M paths.
MA4) (Delete the rest.) Delete the remaining paths. Go

back to MAl .
Observe that MA1 may reduce the number of retained paths

below M , so that MA4 may delete fewer than (b - 1)M. A
flow chart appears in Fig. 6.

We are indebted to a reviewer for observing that the time
cost of the M-algorithm is only of order S. Let VAn) denote

lease output symbol.

path; save these in a list.

cept that there is no step SA5 to delete paths.
- ,

the number of comparisons required to find the t ih largest of

ANDERSON AND MOHAN: SEQUENTIAL CODING ALGORITHMS 175

n elements. Thenalgorithmsexist [12, pp. 216-2171 for which TABLE 111
EVALUATION OF’COST FOR CERTAIN ALGORITHMS, TAKEN

E[Vt(n)] . = n 4- t -I- f (n) where lim f (n) /n = 0. FROM EXPERIMENTAL DATA. BINARY i.i.d. SOURCE WITH
n-t- HAMMING DISTORTION. RATE 1/2 OUTPUT BIT PER

INPUT BIT, ENCODED DISTORTION 0.125 (SHANNON
;LIMIT = 0.110).

Branches Viewed Paths Stored Space*Time Space+Time
E[Cl S c o s t c o s t

Using such an algorithm, one can find the Mth best path out
of bM paths with only

E[VM(bM)] = bM + M + f (b M)

comparisons. Once the metric of the Mth best path is known,
one can choose the M best paths with at most bM comparisons.

The M-algorithm’s time cost is then (with S = M) , (2b +
1) s -f f (b S) comparisons per branch released, Hence, the
asymptotic space-time product cost of the M-algorithm is

= L S 2 access symbols/branch released. L = 200-300, all c a s e s (200 used for c o s t) .

Another breadth-first procedure has been suggested by Sim- * About 150 p a t h s Of a v e r a g e l e n g t h 50 Were in the Save stack.

mons and Wittke [181 for channel decoding. Their method ** 2 x 1 0 ~ w i t h Merge AIg.; 7x107+ h with Bucket f i g .

deletes all paths at a given depth whose distance from the re-

Stack 200 ,500 1010** 200K

M- 500 250 7 ~ 1 0 ~ 51K

2-Cycle 1000 1” 200K 8500

S i n g l e S t a c k 1500 1 300K 1700

ceived sequence exceeds some constant co. Thus, a varying
number of Paths are retained at each level but the procedure The space complexl~y of this algorithm is about LbK, where
is still Purely breadth-first. Excellent results, free of erasures, is the constraint length of the code, while to this

about the same decoded error probability -

were reported for an application to phase modulation codes. storage are required per branch as output. using hard

VI. SOME IMPLICATIONS
To choose the best algorithm for a given situation, one must

determine the combination of L , S, and the node computation
that optimizes the cost function for the desired encoding dis-
tortion or error probability. This is a most difficult task. Ex-
perimentation has been done, and some conclusions are pos-
sible. The results g,enerally favor algorithms that do not sort,
and point away from metric-first searching.

We first consider sequential source encoding. Table I11 re-
produces simulations done by the authors for the stack, M-,
two-cycle, and single stack algorithms used with random tree
codes. The source is the binary letter, i.i.d. source with “Ham-
ming” distortion measure (unit penalty for mismatched let-
ters, zero penalty otherwise), the encoder rate is 1/2 output
bit/source bit, and all the algorithms achieve an average distor-
tion of about 0.1 25, 15 percent above the distortion-rate func-
tion. The formulas from Table I1 are used t o evaluate cost, and
because of the asymptotic nature of these and the uncertainties
associated with simulation, only orders of magnitude are sig-
nificant in the results. Still, it is clear the two nonsorting algo-
rithms have greatly reduced cost compared to the stack or
M-algorithms under either the space-time or space-plus-time
cost evaluation. Even the merge and bucket algorithms (bor-
rowing the same L , S, and E[C] as the stack algorithm) fall
well short, and in fact perform only as well as the M-algo-
rit hm .

Turning now to sequential channel decoding, we consider
the case of rate 1/2 convolutional codes and a binary sym-
metric channel with crossover probabilities in the range 0.02-
0.045. The 0.045 error rate corresponds to R c o m p = 1/2; for
higher error rates than this, the node computation lacks a
first moment, Jelinek’ [1, pp. 680 ff.] reports E [CSA] increas-
ing from 2 up to about 4 through this error range, while Chevil-
lat and Costello [13, p. 14691 report anE[C] of about 2.8 at
error probability 0.025 for their multiple stack algorithm. The
storage factor S reported by both lies in the range 1000-3000.
The Fano algorithm, on the other hand, requires up to seven
times as much node computation as the stack schemes. None-
theless, if we assume that all algorithms have about the same
L , the cost evaluation of the Fano algorithm is less by a fac-
tor of 1 0 3 .

It is of interest to compare the cost of these methods with
that of the Viterbi algorithm, using a code which achieves

decisions, a K of at least 8 is needed to achieve the above er-
ror range at a crossover probability of 0.025 [13, p. 14691.
K = 4 is sufficient for soft decisions. At K = 8, the Viterbi
algorithm space-time cost is on the order of 5 12 L , versus
only about 3 L for the Fano algorithm; a similar difference
holds for space-plus-time cost. The Viterbi algorithm is still
much cheaper than the sorting procedures. For decoded error j’

rates below 10W5, Viterbi coding becomes very costly, but it
does have the advantages of being synchronous and erasure
free.

Erasure of output data caused b y noise-induced computa-
tional overload can occur in many decoding search algorithms
and thwarting this problem is a factor in their design. Our cost
measures make no explicit mention of erasures, but to the ex-
tent that erasures stem from exhaustion of resources, the esti-
mates of Table I1 indicate susceptibility to erasures.

Research into the application of search procedures to se-
quence estimation for band-limited channels has only just be-
gun. There should be interesting results here, since the Viterbi
algorithm estimator would seem to have limited applicability
t o severely band-limited channels.

REFERENCES
[l] F. Jelinek, “A fast sequential decoding algorithm using a stack,”

IBM J . Res. Develop., vol. 13, pp. 675-685, Nov. 1975.
[2] J . B . Anderson, “A stack algorithm for source coding with a

fidelity criterion,” IEEE Trans. Inform. Theory, vol. IT-20, pp.
21 1-226, Mar. 1974.

[3] K. Sh. Zigangirov, “Some sequential decoding procedures,”
Probl. Peredach. Inform., vol. 2, no. 4, pp. 13-25, 1966.

[4] R. G. Gallager, “Tree encoding for symmetric sources with a
distortion measure,” IEEE Trans. Inform. Theory, vol. IT-20, pp.
65-76, Jan. 1974.

[SI J . B . Anderson and F. Jelinek, “A 2-cycle algorithm for source
coding with a fidelity criterion,” IEEE Trans. Inform. Theory, vol.
IT-19, pp. 77-92, Jan. 1973.

[6] A. J . Viterbi, “Error bounds for convolutional codes and an asymp-
totically optimal decoding algorithm,” IEEE Trans. Inform. The-
ory, vol. IT-13, pp. 260-269, Apr. 1967.

[7] J . Uddenfeldt and L. H. Zetterberg, “Algorithms for delayed en-
coding in delta modulation with speech-like signals,” IEEE Trans.
Commun., vol. COM-24, pp. 652-658, June 1976; see also “Adap-
tive delta modulation with delayed decision,” IEEE Trans. Com-
mun. , vol. COM-22, pp. 1195-1198, Sept. 1974.

[8] R. J . Dick, T. Berger, and F. Jelinek, “Tree encoding of Gaussian

176 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-32, NO. 2, FEBRUARY 1984

[I21

r 131

r 151

sources,” IEEE Trans. Inform. Theory, vol. IT-20, pp. 332-336,
May 1974.
S. Mohan, “Analyses and cost evaluation of code tree search
algorithms,” Ph.D. dissertation, McMaster Univ., Hamilton, Ont.,
Canada, Nov. 1979.
J . B. Anderson and C.-W. P. Ho, “Architecture and construction
of a hardware sequential encoder for speech,” IEEE Trans. Com-
mun.. vol. COM-25, pp. 703-707, July 1977.
C. R. Davis and M. E. Hellman, “On tree coding with a fidelity
criterion,” IEEE Trans. Inform. Theory, vol. IT-21, pp. 373-378,
July 1975.
D. E. Knuth, The Art of Computer Programming, Vol. 111: Sorting
and Searching. Reading, MA: Addison-Wesley, 1973.
P. R. Chevillat and D. J. Costello, J r . , “A multiple stack algorithm

Commun., vol. COM-25, pp. 1460-1470, Dec. 1977.
for erasure-free decoding of convolutional codes,” IEEE Trans.

D. Haccoun and M. J. Ferguson, “Generalized stack algorithms for
decoding convolutional codes,” IEEE Trans. Inform. Theory, vol.

S . Mohan and J. B. Anderson, “Speech encoding by a stack algo-
rithm,” IEEE Trans. Commun., vol. COM-28, pp. 825-830, June
1980.
S. G. Wilson and S. Husain, “Adaptive tree encoding of speech at
8000 bits/s with a frequency-weighted fidelity criterion,” IEEE
Trans. Commun.. vol. COM-27, pp. 165-170, Jan. 1979.
S. Mohan and J . B. Anderson, “Computationally optimal metric-
first code tree search algorithms,” to be published.
S. J. Simmons and P. H. Wittke, “Low complexity decoders for
bandwidth efficient digital phase modulations,” presented at the
11th Queen’s Symp. Commun. Signal Processing, Queen’s Univ.,
Kingston, Ont. Canada, May 3CLJune 2, 1982; also available as S.
J . Simmons, M.Sc. thesis, Dep. Elec. Eng., Queen’s Univ., 1982.
G . P. Ashkar and J . W. Modestino, “The contour extraction prob-
lem with biomedical applications,” Comput. Graphics Image Proc-
essing, vol. 7, pp. 331-355, 1978.
J. W. Modestino, V. Bhaskaran, and J . B. Anderson, “Treeencod-
ing of images in the presence of channel errors,” IEEE Trans.
Inform. Theory, vol. IT-27, pp. 677-691, Nov. 1981.
F. Jelinek, L. R. Bahl, and R. L. Mercer, “Design of a linguistic
statistical decoder for the recognition of continuous speech,” IEEE
Trans. Inform. Theory, vol. IT-21, pp. 250-256, May 1975.
H.-M. Hang and J. W. Woods, “Near merging of paths in subop-
timal tree searching,” IEEE Trans. Inform. Theory, to be pub-
lished.

IT-21, pp. 638-651, NOV. 1975.

John B. Anderson (M’72-SM’82) was born in Canandaigua, NY, in
1945. He received the B.S., M.S., and Ph.D. degrees in electrical engi-
neering from Cornell University, Ithaca, NY, in 1967, 1969, and 1972,
respectively.

Seshadri Mohan (S’76-M’80) received the B.E.
(honours) degree from the University of Madras,
Madras, India, in 1972, the M.Tech. degree from
the Indian Institute of Technology, Kanpur,
India, in 1974, and the Ph.D. degree from Mc-
Master University, Hamilton, Ont., Canada, in
1979.

From 1974 to 1975 he was an Assistant Sys-
tems Analyst and Programmer with Tata Consult-
ancy Services, India. In 1979, he joined Bell
Laboratories, Holmdel, NJ, as a member of the

Technical Staff, where he worked on switched network performance
measurement and characterization. In 1980, he joined the Department of
Electrical and Computer Engineering, Wayne State University, Detroit,
MI, as an Assistant Professor. Since September 1983, he has been an
Associate Professor of Electrical and Computer Engineering with Clark-
son College of Technology, Potsdam, NY. His present research interests
include the design and architecture of sequential coding algorithms and the
application of these algorithms to speech coding and data transmission.

Dr. Mohan is a member of the Association for Computing Machinery.

