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A Class of Reduced-Complexity Viterbi Detectors for 
Partial Response  Continuous  Phase  Modulation 

Abstract-Partial  response  continuous  phase  modulation (CPM)  gives 
constant  envelope  digital  modulation  schemes  with  excellent.  power 
spectra.  Both  narrow  main  lobe  and low spectral  tails  can be achieved. 
When  these ,signals are  detected in an  optimum  coherent  maximum 
likelihood  sequence  detectoy  (Viterbi  detector),  power  efficient  schemes 
can also  be  designed,  sometimes  at  the  expense  of  receiver  complexity. 
. This,paper describes  a  general  class of simple  Viterbi  detectors  with 
reduced  complexity  compared  to  the  optimum  case.  The  key  idea is that 
the  approximate  receiver  is  based on a  less  complex CPM scheme  than  the 
transmitted  scheme.  The  asymptotically  optimum  reduced-complexity 
receiver is  found  for  a variety of transmitted  schemes  and  various 
complexity  reduction  factors,  for  a  specific  class  of  receivers  and 
modulation  indexes. A new  distance  measure  is  introduced  for  the 
performance  analysis. Smooth  schemes based on raised  cosine  pulses are 
analyzed  and  simulated for  the  case of simplified  reception. A graceful 
performance  degradation  occurs  with  the  reduction of  complexity. 

D 
I. INTRODUCTION 

UE to  limited  available  radio  frequency  spectrum,  spec- 
trally  efficient  digital  modulation  schemes  have  recently 

gained  increased  attention.  For  some  applications,  notably 
where  nonlinearities  are  present  in  repeaters  and  power  ampli- 
fiers,  it  is  favorable if the signaling scheme  can  be of the 
constant  envelope  type [ 81 . It  has  recently  been  demonstrated 
that  constant  envelope  digital  modulation  methods  with  excel- 
lent  power  spectra  can  be  constructed;  see,  for  example, [ 2 ] ,  
[ 161, [ 181. A wide class of such  schemes  are  contained 
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among  the  continuous  phase  modulation (CPM)  schemes. 
By  using  partial  response  techniques  and  keeping  the  infor- 
mation  carrying  phase  continuous,  the  power  spectra  become 
very attractive;  see  examples  in [ 21 , [ 181 . Partial  response 
digital FM and  correlative  phase  modulation  are  alternative 
notations  for  the CPM schemes. 

It  has  also  been  shown  that  schemes  with  combined  good 
spectral  properties  and  detection  properties  can  be  obtained 
in  the CPM family [ 21 . The  schemes  with  attractive  combined 
spectra a n d  error  probability  often  require  a  maximum  likeli- 
hood  sequence  detector [ 111  implemented  by  means of 
a  Viterbi  detector.  The  optimum receiver  exploits the  struc- 
ture of the  transmitted  phase  trajectories,  and  uses  the  Viterbi 
algorithm to  perform  maximum  llkelihood  sequence  estima- 
tion  (MLSE).  These  receivers  typically  consist of a  filter 
bank  followed  by  a  Viterbi  processor,  where  sometimes 
the  number  of  states is quite  large [ 21, [ 71,  [ 91, [ 171. 

In this  paper  a  new  class of reduced-complexity  Viterbi 
detectors is  considered.  It  is  shown  that  good  performance 
can  be  obtained  with  a  Viterbi  receiver,  where  the  number of 
filters  and  states  is  reduced.  The  key  idea  is to  approximate 
the  phase  tree  (the  ensemble of all  possible  transmitted  phase 
versus time  functions)  with  a  phase  tree  based on a  shorter 
frequency  pulse,  and  use  the  Viterbi  receiver for  this  shorter 
scheme  instead  as  a  receiver.  This  scheme, used by  the  re- 
ceiver,  can  be  optimized  to give the  best  possible  performance. 

Throughout  the  paper,  coherent  detection  and  perfect 
carrier  recovery  and  synchronization  are  assumed.  It  is  also 
assumed  that  the  channel is an  additive  Gaussian  noise  channel. 

11. THE MODULATION SCHEME AND THE COMPLEXITY 
REDUCTION CONCEPT 

CPbl  is  a  digital  modulation  scheme  with  constant  envelope 
and  continuous  phase.  The  transmitted  sequence  is  an  infinite 
sequence of statistically  independent  M-ary  data  symbols 
with  equal  probability. All the  information is  contained  in 
the  transmitted  phase.  The  instantaneous  frequency is a 
linear  sum  of  overlapping  frequency  pulses,  where  the  am- 
plitude of the  pulses  depends  on  the  data  symbols.  The  length 
in  symbol  intervals  and  the  shape of the  pulses  determines 
the  performance  of  the  modulation  system. In this  paper 
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Fig. 1 .  Transmitter  phase trei (solid) for 3RC and receiver phase tree for 
2REC. C6rrect timing, small  phase offset. 

the  frequency  pulse is  of rectangular  (REC)  or  raised  cosine 
(RC)  shape.  Since  the  frequency  pulse is time  limited,  the 
transmitted  phase  can  be  divided  into  two  terms [2 ]  , [SI, 
[7 ] .  One  term  depends  only  on  the  last L symbols,  where 
LT is. the iength of the  frequency  pulse, a.nd the other  term 
is  the  sum of the previous  symbols.  Both  terms  are  multi- 
plied  by  a  constant  linearly  dependent  on  the  modulation 
index k .  For  rational  values of h,  the  second  term,  taken 
modulo 27r, only  takes  a  finite  number of values. For these 
h-values the  phase  tree  reduces  to  a  phase  trellis.  The  states 
in  the trellis  are  defined  by  the  phase  state  and  the  correlative 
state  vector,  i.e.,  the  prehistory  symbols [21,  [41., [51 ,  171. 
The  phase  state  definition i s ,  however,  not  unique.  The  trans- 
mitted  phase  in,   a specific  'symbol  interval,  only  depends 
on  the  phase  state,  the  correlative  state  ,vector,  and  the  last 
transmitted  data  symbol.  The  total  number. of states  in  the 
trellis  is S = p * A d L - l )  where p is the  number of phase  states, 
M is the  number  of  levels,  and L is  the  length of the  frequency 
pulse  in  symbol  ihtervals. In  [ 2 ] ,  [7]  it is shown  that  the 
log likelihood  function  can  be  calculated,  recursively  by  fil- 
tering  and  can  be  used  as  a  metric  in  a  Viterbi  detector.  The 
receiver  consists  mainly  of  a  bank of filters  and  a  Viterbi 
processor.  The  total  number  of  filters  is F =,2*ML. 

The class o f  coherent  suboptimum  receivers  considered 
in  this  paber  is  also of the  maximum  likelihood  sequence 
estimating  type.  The  principal  idea ik  the  following.  The rt- 
ceiver  uses a shorter  pulse  than  the  transmitter,  thus  approxi- 
mating  the  phase,  tree.  The  receiver  frequency  pulse g R ( t )  
must  be  chosen  in  such  a  way.  that  the  tree  generated  by 
g ~ ( t )  is  a  reasonably  good  approximation of the  phase  tree 
generated  by  the  transmitter  frequency  pulse g T ( t ) .  The  re- 
ceiver  based on g R ( t )  is  built  according to  the  optimum  re- 
ceiver  principles.  It  is, of course,  the  optimum  receiver  for 
the  case.of g r ( t )  = g R ( t j .  If the  transmitter  pulse  length  in 

then  the  complexity  reduction  factor is M @ T P L R )  in  terms 
of both  the  number of receiver  states  and  that of receiver 
filters. 

Fig. 1 shows  a  transmitter  tree based on  3RC,and.a  simpli- 
fied  receiver  with a phase  tree  based  on  the  shorter  2REC 
pulse.  The  two  trees  are  shown  with  a  small  phase  offset 
relative to  the  best  alignment.  Thus,  the  .complete  t.rees  can be 
seen.  From  Fig. 1 it is ciear that  the  2REC  tree,  with  properly 
chosen  phase  and  time  offset ( T / 2  in  this  case),  approximates 
the  3RC  scheme  fairly well. The  quality of this  approximation 
is analyzed in  the  following  sections  of  this  paper.  The  com- 
plexity  reduction  in  this  example is  a  factor of two. 

Several  interesting  observations  can  be  made  by  studying 
Fig. 1:For example,  in  the  general case  a  certain  transmitted 
sequence of binary  symbols, e.g., $1, -1,  -1, +l,, ..., does  not 
in general  correspond to  the  same phase  path  in  the  transmit- 
ter  and  receiver  phase  trees.  This  is, of course,  a  consequence 
of the  approximation  made.  Thus,  in  some  cases,  even if there 
is  no  noise  at  all  in  the  transmission  link,  there  is.no  perfect 
match  between  the  transmitted  phase  path  and  the  correct 
phase  path  as  generated  by  the  receiver. We will  say that  the 
transmitter  and  receiver  signal  sets  are  mismatched.  This  mis- 
match  should, of course, not be too  large,  because  then  detec- 
tion  errors  are  also  made  without  noise.'It is also  clear  from 
the  example  above  that  the  phase  synchronization  and  timing 
between  the  transmitter  and  receiver  trees  is of great  impor- 
tance.  This  problem will be  addressed  below. 

111. THE PERFORMANCE MEASURE 
In [ 11; [ 2 ]  the  minimum  normalized  squared  Euclidean 

distance  is  used  as  a  performance  measure.  For  the  optimum 
detector  the  minimum  normalized  squared  Euclidean  distance 
in  the signal  space  is [ 1 I , [ 2 ] 

where s ( t ,  a> is the  transmitted 'CF" signal, -Eb is  the  bit 
energy, NT is the  length of the  observation  interval,  and 
Q and 0 are  data  sequences  which  are  different  in  the  first 
symbol.  The  distance  depends  on  the  difference  sequence 
7 = Q - 0 rather  than  the  individual  data  sequences  them- 
selves.  Assuming 27rf0 T % 1 ~ ( I )  can  be  rewritten 

where q( t ,  7) is the  transmitted  phase, yi = ai - pi, and IM 
is the  number of transmitted levels. Note  that  the  noimaliza- 
tjon is made  in  bit  energy E,. It  is well known  that  the  error 
probability  behavior for large  signal-to-noise  ratios,  (SNR'S) 
is  given by  the  minimum  Euclidean  distance  for  coherent 
detection  and  ,a  Gaussian  channel.  The  computational  effort 
in  computing  the  minimum  distance  with  a  brutezforce  method 
is  unrealistic  even  for  fairly  small  values of M and N.  One of 
the  key  properties of the  minimum  distance 1s thaJ  an  upper 
bound  can  easily  be  calculated [ 11,  [ 21. The  method of cal- 
culating  this  bound is  based on  the  observation  that  merges 
occur  in  the  phase  tree  for  all h-values. 

Let us now  consider  the  reduced-complexity  receiver. 
Here  a  distance  measure  between  mismatched  signal  ,sets is 
introduced [ 61. By using  this  new  minimum  Euclidean  dis- 
tance,  the err?F probability  behavior  for  large  signal-to-noise 
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I DecislrJn boundary 

I 
the  transmitted signals sT into  the  receiver  signal  space  and 
calculate  the  distance  in  this  space  instead.  For  large  signal- 
to-noise  ratios  the  smallest D is of particular  interest,  This is 
the  minimum  Euclidean  distance  for  the  mismatched  signal 
set.  This  parameter  determines  the  eyor  probability  behavior 
for  large  signal-to-noise  ratios. 

Simple  geometry  yields  that [ 6 j 

D = DA 2 / D ~  (6) 
51 -3 

DP 
where 

52 

Fig. 2. Calculated distances in the  signal  space.  (Underbar  corresponds to 
boldface in text.) 

reduced-complexity  receiver.  The  receiver  is  assumed  to  cor- 
relate  the  received  signal  with  all  alternatives  in  the  receiver 
library  of signals and'choose  the  alternative  with  the  largest 
correlation.  The  receiver  principle  and  the  critical  parameters 
aFe illustrated  in  Fig. 2 .  

Let  the  transmitted signal for  a given a be 

Below  we  are  considering  all signals over  a  tiwe  interval of 
length NT.  The  receiver  generates  its  library of possible  signal 
alternatives  (where 9 is varying) 

is the  Euclidean  distance  between  the  receiver  alternatives  and 
I I is a  norm  in  the  Euclidean  space; Cf. (1). This is referred 
to  as  the  receiver  distance  below: 

The  numerator DA * can  be  shown  to  be [ 6 j 

DA2 = I s 1  -ST l 2  - Iso -ST 1 2 .  ( 8 )  

This is by  definition  a  positive  quantity.  In  the  following 
the  normalized  squared  distances will be  used,  i.e., 

d 2  = D2/2E ,  = ( D A ~ / D R ) ~ / ~ E ~  = d A 4 / d R 2  (9) 

where d~~ = D R ~ / ~ E ,  and dA2  = D A ~ / ~ E ~ .  
For  comparisons  between  multilevel  systems,  the  normali- 

zation  in (9) will be  made  with  the.bit  energy E,. 
From  the analysis  above,  the  receiver  performance  for 

large SNR's is determined  by  the  minimum  distance dmin2 
where  the  minimization is carried  out  both  over  transmitter 
sequences  and  receiver  sequences.  Note  that  for  the  special 
case of no  mismatch, Le., p(t, a) = $ ( t ,  a) ,  we  have dA2- = 
d~~ and,  thus, d 2  = d ~ ~ .  In  this  case,  the  error  probability 
is determined!  by  the  minimum  distance  in  the  signal  set, 
i.e., d ~ ~ .  Using (1)-(3) in (9) and  assuming u o T %  1 gives 

These signals are, of course,  also viewed over  the  same  time 
interval  as  the  transmitted  signal. q( t ,  a )  and $ ( r ,  a) are cal- 
culated  from g T ( t )  and g R ( t ) ,  respectively. $ ( t ,  a )  is based 
o n a  shorter  freqyency  response  than q( t ,  a). 

Both  the  transmitter  and  the  receiver signals are  represented 
in  one signal  vector  space. ST denotes  the  transmitted  signal 
point in this  context.  Let so represent  the  receiver  alternative 
which  corresponds  to  'the  correct  sequence a, Le., the  trans- 
mitted  data  sequence.  Let sl, s 2 ,  s3, ... represent  other  receiver 
alternatives.  Let  the  signal  alternative s1 correspond  to  the 
signal 

The  receiver  selects  the  signal  alternative  which  corresponds 
to   the largest  correlation.  This  corresponds  to  the  signal  point 
which  has  the  smallest  distance  to  the  received  signal  point. 
Fig. 2 shows  the'situation  in  the  noiseless  case.  With  additive 
white'  Gaussian  noise,  the signql point sT. is  added  to  a  noise 
vector.  When  the  magnitude of the  noise  vector is such  that 
the  received  signal  point  is  located  on  the  other  side of the 
decision  bounctary,  an  error  occurs.  Thus,  the  distance  param- 
eter D is of interest  for  all  pairs of receiver signals (so, s,) 
j = 1 ,  ... for  a given transmitted  signal ST. Note  that D is the 
distance  in  the s, - so direction,  which  is  a  vector  in  the  re- 
ceiver  signal  space.  Alternatively, it is  possible to  project 

N T  

- il cos [ d t .  a)  - $ ( t 3  611 d t  
T 1 

d R 2  = ' 0 % 2 ( M ) - T ~  1 NT ( 1  -cos($( t ,c i ) -  $ ( t , Q ) ) ) d t .  

and 

( 1  1) 
Equations  (9)-(11)  are  the  key  to  the  analysis of the  behavior 
of  mismatched  signal  'sets  and,  thus,  reduced-complexity 
Viterbi  receivers  for  large SNR's. d,in2, the  minimum  of 
d2, gives the  asymptotic  performance of the  considered 
signal  with  the given receiver.  Thus,  for  large  signal-to-noise 
ratios,  the  error  probability  behavior is given by 

pe N Q (JT) (12) 

where e(*)  is the  error  function  associated  with  the  normal 
distribution given by [ 81 

Q(x) = lw -&- e - y 2 ' 2  dY .  (13) 
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By studying (10) and  (1 1) we  note  that dA and d R 2  Can be 
calculated  recursively  when N i s  increased [ 1 1 ,  [ ' I ,  [ 4 ] .  This 
can  be  used  for  computing d2 efficiently. 

It is clear  that  the  above  reduced-complexity receiver  is 
suboptimum. An optimum  receiver is matched  to  the  pulse 
g ~ ( t ) ,  and  thus,  the  squared  Euclidean  distance is 

d T 2  = lO&(M) N - - COS [cp(t,a) - cp(t, p)]  d t  . { X N T  I 
(14) 

The  minimum  Euclidean  distance  for  the  suboptimum  receiver 
cannot  be  larger,  since  in  that  case  the  suboptlmum receiver 
performs  better  than  the  optimum  receiver  for  large signal- 
to-noise  ratios.  Thus,  we  have  the  inequality 

min ( 4 2 )  = min ( d A  4 / d R 2 )  < min ( d T 2 ) .  (15) 

It is interesting  to  note  that  it is possible t o  have 

min ( d 2 )  = min (d, 4 / d R  2, > min (dR  ') * d ,  > d R  

for  that  specific a and 0. (16) 

This  implies  that  by  starting  from  an  optimum  scheme  with 
matched  receiver  and  transmitter,  it is possible to  obtain  a 
larger  minimum  Euclidean  distance  by  exchanging  the  trans- 
mitter  for  another  one  with  a  larger dT2  ..The  resulting  distance 
is, of course,  smaller  than dT2 but  the  reduction  depends  upon 
the  receiver.  The  inequality  in  (1 5 )  has  been  motivated  by  the 
discussion  above.  The  inequality  seems  difficult t o  prove 
strictly  mathematically,  since  it is an  inequality  between  two 
minima. 

IV. PROPERTIES OF THE MINIMUM EUCLIDEAN DISTANCE 
FOR MISMATCHED SIGNAL SETS 

The  properties of the  distance  measure  introduced in 
Section I11 will now  be  investigated  more  precisely.  First  we 
will look into  the  usefulness of difference  sequences [ 2 ] .  
Then  upper  bounds d B 2  on  the  minimum  distance  are cal- 
culat  ed. 

For calculation of Euclidean  distances  for  optimum  re- 
ceivers,  only  the  phase  difference cp(r', a )  - p ( t ,  p )  = cp(f, a - p )  
has to  be  considered.  This  simplifies  the  calculations  since 
only  the  difference  sequence y = a - 0 has  to  be  considered. 
It will now  be  investigated if and  when  difference  sequences 
also  can  be  used  for  calculation  of  Euclidean  distances  for 
mismatched  receivers.  The  crucial  quantities  which  have t o  
be  investigated  are cp(t, a )  - $(f, e )  and cp(t, a) - q( t ,  p);  
see ( 1  0). The  first  difference is 

d t ,  a) - !b(t, 9) $? q t ,  a )  

2 n h X  a i [ q ~ ( t  - iT) - q R ( t  - iT)] 
i 

= 2 n h X  a i 4 ~ ( t  - iT) (17) 
i 

where 

qA(t )  = q T ( t )  - q R ( t )  = If [gT(') - gR('))1 d'. o ( 1 8 )  
- m 

The  symbol  timing  between  the  transmitter  and  the  receiver 
is defined  by  letting 

l)gR(t)  occupy  the  interval [ O ,  L R * T ] ,  and 
2 ) g T ( t )  occupy  the  interval [ -LA*T,  (LT -LA)*?-]  

where LT 2 LR and 

L T  ~ LR L A  =-. 
2 

By proper  phase  synchronization $0, this will assure the 
best  fit  between  the  two  phase  trees given by  the  ensemble 
of cp(t, a )  and $ ( t ,  a ) ,  respectively.  The  properties of q R ( t )  
and 4 ~ ( t )  lead t o  q ~ ( t )  E 0 when t < -LAT and f > (LT - 
L A ) T .  Thus,  it  can'be  seen  that  the  dependence of a in ~ ( t ,  a )  
in  the  interval nT < t < (17 + l ) T  lies in  the (2Aa i- L ~ ) - a r y  
vector 

where 

= smallest  integer  larger  than  or  equal  to -- 
L T - L R  

2 

( 2  1) 

Now the  expression q( t ,  a)  - $ ( t ,  0) is  considered. By con- 
straining t to  the  interval nT < t < ( n  + l )T  and  using  the 
properties of 4 ~ ( t )  and q ~ ( t ) ,  we  have 

cp(t> a)  - iL(t, P )  

i=n+ 1 

and  only  the  first  term  depends  on a - p. For  the  other  terms 
the  two (2AA f L ~ ) - a r y  vectors an+nA and  defined 
according t o  ( 2 0 ) ,  must  be  used. 

Thus,  for  an  observation  interval N < LR f A A  symbol 
intervals,  both  the a and 0 sequences  must  be  used  to  obtain 
all  the  Euclidean  distances.  For N > LR f A A  symbol  inter- 
vals, however,  the  phase  separation  created  by  the  initial 
N - LR - A A  data  symbols  can  be  expressed  by  means of the  
sum of the  difference  sequence a - p.  
Upper Bound dB2 (h )  

The  minimum  Euclidean  distance  for  optimum  receivers 
has  been  shown  to  be  upper  bounded [ I ] ,  [ 21 .  This  holds 
for  all  observation  lengths N, including  infinity.  The  upper 
bound is calculated  by  identifying so-called merges in  the 
phase  tree. 

For  mismatched  receivers,  merges  do  not  exist  in  general, 
a t  least  not  merges of the  kind  defined  in [ 2 ] .  It is possible, 
however, to choose  sequences a and /j such  that  the  calcula- 



SVENSSON e t  al.: R.EDUCED-COMPLEXITY VITERBI  DETECTORS 

tion of d A 2  only  has  to  be  performed  over  a  finite  interval, 
although a and  are  infinitely  long.  The  sequences a and 
0 are  chosen  exaztly  as  the  merge  sequences given i n   [ 2 ] ,  
[71,  e.g., 

1 a=. . .a_2 ,  a._1,+1,-1,012;.. 
p = ... p - 2 > 0 - - l - l > + 1 , 0 2 , - ~  (23) 

where ai = pi when i # 0, 1  for  the  first  merge  in  the  binary 
case.  Now  this pai.r of sequences  yields  a  merge  at t = ( L R  + 
l )T   in   the  phase  tree given by  the  ensemble of $( t ,  a). Now 
the  expression fo.r dd2 in  (10) will be  studied  for  this  pair 
of sequences  and  an  infinite  observation  length -00 < t < CQ. 
Since  CY^ = pi, i <: 0, i t  is  clear  that $ ( t ,  a) = $( t ,  0) for all 
t < 0 .  For  all t > (LR + 1)T,  we  know  from  the  previous dis- 
cussion  about  difference  sequences  that $( t ,  a) = $ ( t ,  0) 
since  the  influence of a0 ,  a1 and P o ,  p1 does  not  affect  the 
shape  of  these  two  phase  trajectories.  The  separation  between 
these  two  phase  trajectories  is  affected  by  these  symbols. 
This  separation  equals  zero  since Zlai = Zipi, and  thus, 
$( t> a) = $ ( f ,  0) for  all t < 0 and t 2 (LR -I- 1)T. This  is 
equivalent t o  

d t ,  a) - $( t ,  a:) = P(t, a) - $( t ,  0) 
t < O ,  t > ( L R  + l )T  (24) 

and  therefore, the: two  integrals  in  (10)  are  equal  over  these 
intervals.  Thus,  it  is  sufficient  to  calculate d A 2  over the  time 
interval  where  the  trajectories  in  the  receiver  phase  tree  are 
unmerged. 

In  the M-ary  case there  are  more  merge  sequences,  and of 
course,  there  are  also  merges  later  than  the  first.  In  some 
cases the  upper  bound  on dZ can  be  improved  by  also  taking 
such  merges  into  account.  Unlike  the  case  for  matched  re- 
ceivers, the  upper  bound  can also depend  upon a finite  number 
of the  prehistory {data symbols 0.- 1 ,  a-2,  *.. and p- 1 ,  p - 2 ,  .-. 
Only  one  prehistory  sequence  must  be  considered,  however, 
since ai = pi; i < 0, and  not  a  pair of sequences. 

V. THE OPTIMIZED REDUCED-COMPLEXITY RECEIVER 
The  aim of this  section  is t o  find the  optimum  reduced- 

complexity receiver. In  this  case  a  natural  function  to  opti- 
mize  is  the  error  probability  at  a given signal-to-noise  ratio. 
From  the previous  sections  it  is  known  that  this is unrealistic. 
Therefore,  the  mi.nimum  Euclidean  distance  has  been  chosen 
instead. If the  minimum  Euclidean  distance is optimized,  the 
asymptotic  error  probability is  also optimized.  Thus,  the 

t < O  
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Fig. 3. The  piecewise  linear  phase  response of the reduced-complexity 
receiver. 

it  would  in  principle  be  possible  to  find  the  optimum  reduced- 
complexity  receiver,  to  a given  transmitted  scheme,  a  given 
modulation  index,  and  a given complexity  reduction,  for  every 
observation  length of N symbol  intervals.  The  computational 
efforts  to  do  this  are,  however,  very  large.  Therefore,  the  upper 
bound  on  the  minimum  Euclidean  distance  is  maximized 
instead.  A  tight  upper  bound  can  always  be  found,  and  there- 
fore, it is  possible t o  find an  observation  length  sufficiently 
large  for  the  minimum  distance  to  reach  this  upper  bound. 

In  this  paper  we  have  chosen  the  phase  response q ~ ( t )  
to  be  a piecewise  linear  function  for 0 < t < L R T  which  is 
allowed t o  be  discontinuous  at t = 0 and  at t = LR T. 

I;: 1 

receiver frequency  pulse g R ( t )  that  maximizes  the  minimum 4~~ = 1/4  by  definition;  see  also  Fig. 3. 
Euclidean  distance  has  to be found.  The  function  which Since the  transmitter  pulse g T ( r )  is  symmetric  around 
is  to  be  maximized is therefore given by  (9)-(11).  An  analytic t = L T * T / ~ ,   i t  is  assumed  that  the  receiver  pulse g R ( t )  is  also 
solution  to  this  seems  difficult  to  find.  Therefore,  a  numerical symmetric  around t = L R * T / ~ .  Maximizations  without  this 
maximization is done  instead. With  a  numerical  maximization, assumption  have  also  shown  that  this  is  most  probably  the 
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qR(LR T/2) = 1/4  due  to  Symmetry.  Then qR ( t )  for LR T/2 < - I  

t <LR Tis given  by  symmetry.  Now  the  set of qi, i = 0 ,  -., N 1  - 1 
maximizing  the  upper  bound  has  to  be  found.  This is  done  by 
a  steepest  descent  algorithm [ 5 1 ,  [ 191. The  results  show  that 
in general 40 # 0 yields the  optimum. By choosing N l  large, 
i t  is possible to  approximate  every  continuous  phase  response I . ~ '  
q R ( t )  (except  at t = 0 and t = LR T)  that  corresponds  to  a 
symmetric  frequency  pulse gR ( t ) .  

case.  This  means that  the  interval 0 < t < LR T/2 is divided 
into N1 subintervals,  over  which q R ( t )  is linear.  The  variables ,-,.II 

q i  are  the values at  the  endpoints  of  these  intervals  and q N .  = I 

VI. NUMERICAL RESULTS 
In  this  section,  both  distance  results  and  simulated  error 

probability  results will be  given. 

Distance Results 
' . (1 

The  distance  measure  introduced  in  Section 111 is  used. 
The  observation  interval  length is  always  measured  in  the 
receiver  tree.  The  results  are  presented  as  the  minimum  nor- 
malized  squared  Euclidean  distance  as  a  function of modula- 
tion  index h and  observation  interval  length N .  This  is  done 
for  a  number of pairs  of  transmitter  and  receiver  pulse  shapes 
g T ( t )  and gR( t ) .  Results  are given both  for  optimum  pulses 
g R ( t )  and  for  ad  hoc  chosen  pulses.  Comparisons  will  always 

I 

be made  to  the  optimum receiver  based on g T ( t ) .  In [ 3 ]  - 
[ 5 ]  a  variety of distance  results  are  given  for  different  re- 
ceivers. 

plexity  receivers,  note  that  the  scheme  is  optimum  only  for 
a  specific  modulation  index.  In  these  graphs  the  upper  bound 
for the  optimum  receiver,  the  upper  bound  for  the  optimum Fig. 4 .  Minimum  distance  for  binary 3RC-27D.75.Note that this receiver is 
reduced-complexity  receiver,  and  the  upper  bound  for  an 
ad hoc  reduced-complexity  receiver  are  also  given.  The  opti- 

Considering  the  results  for  the  optimum  reduced-com- u,u h 

n . -? rl.6 2 . e  i .@ 

mum  reduced-complexity  receiver  schemes will be  denoted 
LTRC - L R T ~ ,  where LT and LR are  the  length  in  symbol 
intervals of the  transmitter  and  receiver  pulse,  respectively, 
and h is the  modulation  index  at  which  this  receiver  is  opti- WIt.a) 

mum.  LTRC is the  transmitted  scheme  to  which  this  receiver 2 n  - 
pulse is optimum.  The  ad  hoc  reducedcomplexity  receivers 
will in  the  same  manner  be  referred  to  as  transmitted  scheme- 
receiver  scheme,  e.g.,  3RC-IREC.  For  all  the  piecewise  linear 
pulses  considered,  the  maximization  is  done  with N ,  = 10, 
i.e., the  interval 0 < t < LR T i s  divided into  20  subintervals. 

Fig. 4 shows  a  scheme  with  a  complexity  reduction of 2 ,  
Le.,  3RC-2T0.75.  For  comparison,  the  upper  bound  for  the TI - 
3RC-3RC2  scheme [5] and  the  upper  bound  for  the  optimum 
3RC receiver  are  given. From  [5]  it is known  that  the  phase 
tree given by  the  optimum g R ( t )  pulse  approximates  the 
3RC  phase  tree  very  well. In the  distance  graph  it is  also 
seen  that  the  distance  is  very  close  to  the  upper  bound  for 
the  optimum  3RC  receiver.  The loss at  h = 374 compared  to 
optimum  3RC is  small  for  both  reduced-complexity  receivers. 
Note  that  this  receiver  phase  response  for  3RC-2T0.75 is not 
optimum  for  larger h-values, as  seen  in  Fig.  4. 

The  degradation  compared  to  the  optimum  scheme  for  the 
reduced-complexity  receivers  optimum  at  other  modulation 
indexes  is  very  close to  the  degradation  for  3RC-2T0.75 
[ S I .  

Now,  transmitted  4RC is  considered  instead.  Fig. 6 gives 
the  results  for  4RC-2T0.50.  With  the  complexity  reduction 
factor of 4  in  mind,  the  phase  tree,  generating  the  receiver 
signal  set of the  optimum  reduced-complexity  receiver,  ap- 
proximates  the  4RC  phase  tree  fairly well.  This  phase  tree  is 
shown  in  Fig. 5,  where  the  4RC  phase  tree is  also  given 
(dashed).  The loss at  h = 1/2  compared  to  the  optimum  4RC 
receiver  is  about  0.35  dB. As seen  from  the  distance  graph, 
this  upper  bound  is  reached  with  an  observation  length of 
four  symbol  intervals. 

I1 

-" . 

- 2 1  - 

Fig. 5. Phase  tree  for  binary 4RC-270.50 (solid) and 4RC  (dashed). 

t 



SVENSSON et al.: REDUCED-COMPLEXITY  VITERBI  DETECTORS 1085 

/di,4Rc 

0.o h 
0.2 0.4 0.6 0.8 I .o 

Fig. 6 Minimum  distance  for  binary 4RC-270.50. Note that this receiver  is 
optimum only for h = 1/2. 

Optimizations  and  distance  calculations  for  some  quaternary 
(M = 4)  schemes  have also been  done.  Fig. 7 shows  the re' 
sults  for  quaternary  2RC-1  T0.25.  The  complexity  reduc- 
tion  factor is now 4. Note  that  the  calculated values  are 
marked  with -, X, f, or 0 and  the  lines  only  connect  the 
corresponding  values.  The  distances  shown  are  normalized 
with  the  bit  energy E,  and  are  therefore  comparable  to  the 
binary  results.  The  loss  at h = 1/4  compared  to  the  optimum 
2RC receiver  is about  0.35  dB.  The  upper  bound  at h = 1/4 
is  reached  with  an  observation  length N = 3. 

Simulated Error Probabilities 
The  minimum  distance  calculations give the  error  probabil- 

ity  behavior  for  large  signal-to-noise  ratios.  For  low  signal- 
to-noise  ratios  it is  necessary to  perform  computer  simulations. 
This  is so for  the  optimum  Viterbi  receiver also.  However, 
it  seems  even  more  appropriate  for  the  optimum  reduced- 
complexity  receiver.  From  the  distance  considerations  in  the 
previous  sections  it  follows  that,  relatively  speaking,  the 
error  event  corresponding to the  minimum  Euclidean  distance 
is  a  more  unusual  event  for  the  reducedcomplexity  receiver 
than  for  the  optimum  receiver. A specific  prehistory  must 
have  occurred  in  the  phase  tree  for  the  minimum  distance 
error  event to   take place.  This is not so for  the  optimum  re- 
ceiver. A minimum  distance  can  occur  for  any  prehistory, 
since  the  phase  difference  is  the  same  independent of the 
prehistory. 

Simulations  have  been  made  for  transmitted  4RC  with 
h = 1/2  and  transmitted  quaternary  2RC  with h = 1/4.   The 
receivers  used  are  the  optimum  Viterbi  receiver,  the  optimum 
reduced-complexity  receiver,  and  the  ad  hoc  reduced-com- 
plexity  receiver  with  the  largest  dmin2. All the  simulation 
results  are  based  on  2500  errors  and  the  path  memory  in  the 
Viterbi  detector is 20  symbol  intervals,  which  for  all  the 
schemes  is  enough  to  reach  the  asymptotic  performance given 

4 .0  

3.0 

1 .0  

0.0 t1 

0.2 0.4 n.E 0 .8  I .O 

Fig. 7. Minimum  distance for quaternary 2RC-170.25. Note that this 
receiver is optimum only for h = 1/4. 

by dmin2.  The  lower  bound  on  the  error  probability  for  the 
optimum  Viterbi  receiver  [2] is  also  given  for  comparison. 
Note  that  the  simulated  error  probabilities  are  marked  with 
X, +, or and  then  connected  with  a  straight  line.  This is 
also the case for  the  lower  bound.  The  SNR  in Figs. 8 and 9 is 

Fig. 8 shows  the  results  for  4RC-4RC2 (+), 4RC-2  7'0.50 (X), 
and  optimum  4RC (D), together  with  the  optimum  lower 
bound  for h = 1/2.  It is  seen  that  the  reduced-complexity 
receivers  perform  approximately  equally  for  low  SNR's, 
while the  optimum receiver  performs  about 0.1 dB  better 
at  P = lop2 .  The  loss  at  low  SNR's  for  the  reduced-com- 
plexity  receivers  is,  however,  not  at  all  as  large  as  the  mini- 
mum  distance tells  us.  This  is due  to  the  fact  that  the  prob- 
ability  for  the  error  event  given  minimum  distance  to  occur 
is  very  low. 

Finally,  Fig. 9 gives the  results  for  some  quaternary  schemes. 
These  are  2RC-2RC1 (+), 2RC-1T0.25 (X), and  optimum 
2RC (0) for h = 1/4.  The  lower  bound  for  the  optimum 
scheme  is  also  shown.  In  this  case  2RC-17'0.25  performs  in 
between  the  other  two  schemes.  Still,  the loss compared 
to  the  optimum  scheme is low.  For  further  numerical  results, 

E b / N O .  

see 141, [ S I .  

VII. TRADEOFF BETWEEN COMPLEXITY REDUCTION AND 
PERFORMANCE DEGRADATION 

To illustrate  the  tradeoff  between  complexity  reduction 
and  performance  degradation,  we  have  selected  data  for  some 
of the  schemes  in  the  distance  calculation  above  and  in  [3] - 
[ 5 1 .  By complexity  reduction  we  have  defined  the  reduction 
factor ! d L T P L R ) .  The  number of states  and  filters  in  the  sub- 
optimum receiver  is  reduced  by  this  factor  compared to   the  
optimum  receiver. By -performance  degradation  we  define 
the   f ac to r   10~ log10(d~2 /dmin2) ,  i.e., the  difference  in  power 
in decibels  between  the  optimum  scheme  and  the  suboptimum 
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Fig. 8.  Simulated  bit  error  probability for 4RC4RC2 (+), 4RC-2T0.50 
( X ) ,  and optimum 4RC (0) for h = 1/2. The lower bound for the 
optimum receiver is also  shown. The results  are  based on 2500 errors. 

- 3 - 2 - 1  0 I 2  3 4 5 6 7 t! 

SNR [dB1 

llli.! 

Fig: 9. Simulated symbol error  probability for quarternary 2RC-2RC1 (+), 
2RC-1M.25 ( X ) ,  and optimum 2RC(O) for h = 1/4. The lower bound 
for the  optimum receiver is also  shown. The results are  based on 2500 
errors. 

TABLE I ’ 

POWER  DEGRADATION  VERSUS  COMPLEXITY  REDUCTION FOR THE 
OPTIMUM  REDUCED-COMPLEXITY  RECEIVER  COMPARED  TO  THE 

OPTIMUM  RECEIVER FOR h = 314 

scheme 

Degradation 

I I I I 
I I 1 

scheme  for  large  SNR’s.  This  is  the  same loss or  degradation 
that has  been  referred to  above.  The  performance  degradation 
varies with h ,  while  the  complexity  reduction  factor  only  is 
a  function of M and LT - LR . 

Table I shows  the  asymptotic  performance  degradation 
for  the  optimum  reduced-complexity  receiver  compared  to  the 
optimum receiver  versus the  corresponding  complexity  reduc- 
tion  factor.  The  table gives the  results  for 11 = 3/4. It  is  seen 
that  the  degradation is  very  small for a low  complexity  reduc- 
tion  factor,  while  it is increasing  for  larger  factors. 

VIII. DISCUSSION AND CONCLUSIONS 

A general  method of reducing  the  complexity of the  general 
optimum  receiver  structure  for  partial  response CPM (digital 
FM) has  been  presented. A new  distance  measure  has  been 
introduced  for  analyzing  the  asymptotic  performance of 
schemes  with  suboptimum  receivers.  Coherent  transmission 
on  the  additive  white  Gaussian  noise  channel  is  considered 
and  the  distance  results give the  error  probability  behavior 
for  large  signal-to-noise  ratios.  For  low  signal-to-noise  ratios, 
computer  simulations have  been performed  for  some  selected 
schemes. 

The  optimum  reduced-complexity  Viterbi  receiver  for 
partial  response  continuous  phase  modulation  (digital  FM) 
has  also  been  found.  The  optimization is performed  by  means 
of a  numerical  maximization of the  upper  bound  on  the  squared 
minimum  Euclidean  distance.  The  phase  tree of the CPM 
scheme is approximated  in  the  receiver by a  phase  tree  based 
on  a  shorter  frequency  pulse.  This  shorter  pulse  is  assumed 
t o  have  a  piecewise  linear  phase  response.  The  piecewise  linear 
phase  response, giving a  maximum  upper  bound  on  the  Eu- 
clidean  distance,  is  found.  The  optimum  receiver  phase  re- 
sponse varies with  the  modulation  index 11 for  a given  receiver 
frequency  pulse  length  and  a given transmitter  frequency 
pulse.  This  does  not give an  optimum  reduced-complexity 
receiver  in  a  global  sense,  since  a  subclass of receiver  phase 
responses is allowed  in  the  optimization. 

The  results  show  that  the  number of filters  and  states 
can  be  reduced  significantly  at  the  expense of a  power  de- 
gradation of the  order  of 0.5-1 .O dB. A graceful  degradation 
occurs.  The  larger  the  complexity  reduction,  the  larger  the 
performance  degradation.  Partial  response  schemes  with  very 
smooth  power  spectra  can  be  received  in  Viterbi  receivers 
with  a  rather  low  number of states. 

The  reduced-complexity  receiver  is  a  robust  receiver  and 
the  idea of approximating  the  phase  tree  can  also  be  applied 
to   o ther   types of smooth  frequency  responses,  e.g.,  TFM 
GMSK, SRC  [2 ] ,  [ 161, [ 21 1 .  Similar  results  are  expected 
for  these  schemes. 

It  should be noted  that  the class of  schemes  analyzed  above, 
in  terms of. the  distance  between  mismatched signal  sets, 
has  the  following  feature.  The  power  spectrum of the  re- 
ceived  signal  is  narrower  than  the  power  spectrum of the 
“optimum”  received signal for  which  the  reduced-complex- 
ity  receiver is designed. A noise-reducing  bandpass  filter  might 
improve  the  performance  beyond  what is indicated  by  the 
distance  value,  which  is  calculated  by  means  of  matched 
filters  in  white  noise  arguments.  Simulations  should  be  per- 
formed to  validate  this  hypothesis. 
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Even  without  a  noise-reducing  bandpass  filter,  the  distance 
values for  the  suboptimum  receivers seen1 to  be  a  little pessi- 
mistic  for  low  and  intermediate  error  probability values 
(signal-to-noise  ratios).  This  could  be  explained  by  the  rare 
occurrence of error  events  (relatively  speaking)  correspond- 
ing to the  minimum  distance. 

An  analytic  optimization  still  has  not  been  done  and  seems 
very difficult to do.  However,  these  results  seem to be  very 
close to an  absolute  optimum  reduced-complexity  receiver. 
A  comparison  with  the  results  for  the  ad  hoc  pulses  shows 
that  the  minimum  distance is not  especjally  sensitive to small 
variations  in  the  pulse  shape. 

In [ 2 0 ]  a  reduced-complexity  method  is given where  the 
Viterbi  decoder  has  a  predetermined  processing  order  and  a 
reduced  number of survivor signals.. This  method is claimed 
to  ‘be  asymptotically  optimum  for  certain  modulation  indexes. 
So far  it  has  only  been  applied  to  very  simple  piecewise  linear 
phase  responses  for  binary  schemes. It is not  clear  how  this 
method  compares  to  ours  for  the  more  interesting  cases,  i.e., 
long  smoothing  pulses  for  the  binary  schemes,  and to the  
quaternary M = 4 schemes.  Further  work is required.  Another 
type of reduced-complexity  receiver is the very  simple MSK- 
type  receiver  [21],  which is limited to binary  schemes  with 
modulation  index h = 112. 

With the receiver  in  this  paper  the  signal  spectrum is un- 
affected,  and  only  receiver  complexity is reduced.  Thus,  the 
very low  sidelobes  of,  e.g.,  3RC  can  be  maintained  with  simpler 
detectors. I t  should  be  observed  that  the  technique  above is 
quite  general  and  applies  to  nonbinary CPM schemes  and 
modulation  indexes  not  necessarily  1/2.  It  also  applies to  a 
wide  range of smooth  pulse  shapes, e.g., TFM [ 161, spectral 
raised  cosine  (SRC) [ 21 , CORPSK [ 121 , GMSK [ 21 1 ,  etc. 
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