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Abstract -Practically all known good constructive coding techniques for 
band-limited channels, including lattice codes and various recently pro- 
posed trellis-coded modulation schemes, can be characterized as coset 
codes. A coset code is defined by a lattice partition A / A  and by a binary 
encoder C that selects a sequence of cosets of the lattice A’. The 
fundamental coding gain of a coset code, as well as other important 
parameters such as the error coefficient, the decoding complexity, and the 
constellation expansion factor, are purely geometric parameters deter- 
mined by C and A/A. The known types of coset codes, as well as a 
number of new classes that systematize and generalize known codes, are 
classified and compared in terms of these parameters. 

I. INTRODUCTION 

A .  History 

HE FACT that the channel capacity of band-limited T channels with white Gaussian noise is some 9 dB 
beyond what can be achieved with simple pulse amplitude 
modulation (PAM) was an immediate consequence of 
Shannon’s original work (see [l]). It is therefore remark- 
able that approximately three decades passed before seri- 
ous work began on developing constructive coding tech- 
niques that could achieve sizable fractions of this potential 
gain. 

The field was not completely inactive during th s  period. 
Shannon’s work had indicated that there must be sphere 
packings in spaces of high dimension with sufficiently high 
density to approach channel capacity. In the 1950’s and 
1960’s mathematicians developed some constructive dense 
sphere packings based on lattices in spaces of moderate to 
high dimension, notably the 2”-dimensional Barnes-Wall 
lattices [2], and the ultradense 24-dimensional Leech lattice 
[3]. The earliest advocate of the use of lattices for commu- 
nications appears to have been Lang in Canada in the 
early 1960’s (see, e.g., [4, preface]). In an interesting inter- 
play between mathematics and communications, it seems 
that Lang’s calculations of bounds on maximum lattice 
density for 8-32 dimensions helped to motivate Leech to 
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discover his now-famous lattice [3, p. 2651. Another long- 
time proponent of lattices in communications, also in 
Canada, has been deBuda, who proved that the coding 
theorem applies to lattice codes [5]. Connections between 
lattice theory and coding theory were made by Leech and 
Sloane [6], and Sloane has since continued to develop 
bridges between these disciplines. This work is authorita- 
tively and comprehensively summarized in [ 71. 

It is probably fair to say, however, that it was the 
trellis-coded modulation schemes of Ungerboeck [ 81 that 
captured the attention of the modulation community and 
inspired widespread practical application as well as inten- 
sified research. Through a technique called “mapping by 
set partitioning” of one- and two-dimensional signal con- 
stellations, combined with binary convolutional codes, 
Ungerboeck showed how coding gains of the order of 3 dB 
could be obtained with simple four-state codes, while gains 
of up to 6 dB could be obtained with more complex 
(128-state) codes. A variant [9] of Ungerboeck’s eight-state 
two-dimensional scheme has been adopted in international 
standards for both 14.4 kbit/s private-line modems and 
9.6 kbit/s switched-network modems and is coming into 
wide commercial use. 

More recently, trellis-coded modulation schemes using 
multidimensional signal constellations have been devel- 
oped. A simple four-dimensional scheme of Gallager was 
presented by Forney et al. in [l], and a similar scheme was 
discovered independently by Calderbank and Sloane [ 101. 
Wei [ l l ]  has developed a class of multidimensional schemes 
that are highly suited for implementation, one of which is 
used in a Codex 19.2-kbit/s modem. Calderbank and 
Sloane [12], [13] have also developed a variety of classes of 
new trellis codes. 

In an earlier paper [l] Forney et al. pointed out that all 
schemes knswn at that time, including the most important 
lattice codes, could be generated by the same basic ele- 
ments: 

1) a conventional binary encoder, block or convolu- 
tional, operates on certain of the data bits to provide 
a larger number of coded bits; 

2) these coded bits select one of the subsets of a parti- 
tioned signal constellation; 

3) additional uncoded bits select an individual signal 
point from the selected subset. 
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This way of looking at coding schemes has several 
important consequences: 

1) The code distance properties, and thus the funda- 
mental coding gain, are determined by the binary encoder 
and the subset partitioning, which are largely decoupled 
from the choice of signal constellation in the third step. In 
this last step there is a trade-off between optimal shaping 
of the signal constellation and implementation simplicity, 
but this is almost independent of the fundamental coding 
scheme and has only a minor effect on the overall coding 
gain. Finally, in decoding, the first operation can always 
be to determine the best signal point in each subset and its 
metric; after that step, decoding depends again only on the 
fundamental code structure determined by the first two 
encoding operations. 

2) Different classes of codes can be readily compared 
and contrasted in th s  common framework. In this paper, 
whch is to a large extent a sequel to [l], we concern 
ourselves only with the code structure imposed by the first 
two encoding operations, regarding the constellation shap- 
ing as peripheral; in our view this clarifies the similarities 
and differences between various schemes. 

B. Introduction to Coset Codes 

Calderbank and Sloane [13] have made the important 
observations that the signal constellation should be re- 
garded as a finite set of points taken from an infinite 
lattice, and that the partitioning of the constellation into 
subsets corresponds to the partitioning of that lattice into 
a sublattice and its cosets. This lattice/coset language is 
both illuminating and powerful, and we have found that 
all of the good coded modulation schemes mentioned 
above can be put into this framework. (These codes may 
be more specifically characterized as lattice-type coset 
codes, which are the only type considered in this paper, 
apart from a brief mention of phase-modulated coset codes 
in the next section.) 

We call this general class of coded modulation schemes 
coset codes. They seem to provide a general approach to 
the construction of implementable codes for band-limited 
channels that approach channel capacity, just as conven- 
tional codes (both block and convolutional) do for the 
power-limited case. 

We now give a quick preview of the elements of coset 
codes, and of key terms and concepts that will figure in the 
rest of the paper. Fig. 1 illustrates the general structure of 
an encoder for a coset code, embodying the three principal 
elements just described and using the language of lattices 

a s e t  selector 
A / A '  

Fig. 1. General structure of encoder for coset code C(A/A'; C).  

and cosets (compare [l, fig. 101 or [13, fig. 21). The main 
ingredients are as follows: 

1) An N-dimensional lattice A, which we can thnk of 
as an infinite regular array of points in N-space. The 
signal points will all be taken from a finite subset of points 
lying within a translate (coset) of A, and the set of all 
possible signal points is called the signal constellation. 

2) A sublattice A' of A, i.e., a subset of the points of A 
which is itself an N-dimensional lattice. The sublattice 
induces a partition A/A' of A into IA/A'I cosets of A', 
where lA/A'l is the order of the partition; when A and A' 
are binary lattices, the order of the partition is a power of 
2, say 2k+r ,  and correspondingly, the partition divides the 
signal constellation into 2k+r subsets, each corresponding 
to a distinct coset of A'. 

3 )  A rate-k/(k + r )  binary encoder C, which takes in k 
bits per N dimensions and puts out k + r coded bits; the 
latter select one of the cosets of A' in the partition A/A'. 
The redundancy r ( C )  of C is r bits per N dimensions; the 
normalized redundancy per two dimensions is p(C) = 

2r(C)/N. 
The coset code C(A/A'; C )  is the set of all sequences of 

signal points that lie within a sequence of cosets of A' that 
could be specified by a sequence of coded bits from C. 
Some lattices, including the most useful ones, can be 
generated as lattice codes C(A/A'; C ) ,  where A and A' 
are lattices of lower dimension, and C is a binary block 
code. If C is a convolutional encoder, then C( A/A'; C) is 
a trellis code. 

The fundamental coding gain of the coset code is de- 
noted by y(C)  and is defined by two elementary geometri- 
cal parameters: the minimum squared distance d;,(C) be- 
tween signal point sequences in C and the fundamental 
volume V ( C )  per N dimensions, which is equal to 2'(') 
where the redundancy r(C) is equal to the sum of the 
redundancy r ( C )  of the encoder C and the redundancy 
r ( A )  of the lattice A. In fact, 

where the normalized redundancy p(C) (per two dimen- 
sions) is equal to 2r(C)/N. 

To transmit n bits per N dimensions, the signal constel- 
lation must consist of 2"+' points from a coset of A ,  
partitioned into 2k+' subsets, each consisting of 2"-k points 
from a different coset of A'. Given a selected coset of A', 
n - k uncoded bits select a particular signal point from that 
coset. The constellation expansion factor (compared to an 
uncoded constellation of 2" points from a coset of A )  is 
thus 2'(c) per N dimensions, or 2 P ( ' )  per two dimensions. 
This translates into an average power cost of a factor of 
2"(') (or p(C).3.01 dB), which is reflected in the formula 
for the fundamental coding gain y(C) just given. 

The total coding gain y,,,(C) is the product of the 
fundamental coding gain y(C)  with the shape gain y, of the 
finite constellation (y ,  is defined as y,,,(C)/y(C) and is 
approximately equal to the ratio of the normalized second 
moment [7] of an N-cube to that of the region of N-space 
in which the constellation is contained). If the constella- 
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tion is the set of points in a coset of A that lie within an 
N-cube, y, =1 and y,,,(C) = y(C). If the constellation is 
chosen more like an N-sphere to reduce average power, y, 
measures this reduction. Thus y,, unlike y(C), reflects 
finite constellation effects. Even for the same code C ,  y, 
will in general vary with n, unlike y(C). y, is usually much 
smaller than y(C), being upper-bounded by the shape gain 
of an N-sphere (see next paragraph); however, calculating 
y, (or y,,,(C)) is usually more cumbersome than calculat- 
ing y(C). Finally, y, is determined not by C but by the 
choice of constellation boundary; in general, a similar gain 
can be achieved in uncoded systems by choosing a similar 
boundary for an uncoded constellation in N dimensions. 
For all these reasons we prefer to focus on the fundamen- 
tal coding gain y(C) in this paper. (Multidimensional 
constellations will be considered in [14].) We feel that the 
various values for ytot(C) that have appeared in the prior 
literature have confused rather than clarified the funda- 
mental properties of these codes and the comparisons 
between them. 

(Calderbank and Sloane [13] also calculate an asymp- 
totic coding gain whose value is independent of finite 
constellation effects. This gain is the combination of our 
“fundamental coding gain” and the shape gain of an 
N-sphere over an N-cube, whch for N even is G,= 
T( n + 1)/[6( n!)’’“], where n = N/2; thus G ,  = 77/3 (0.20 
dB) for N = 2, ~ / 2 ~ ’ ~  (0.46 dB) for N = 4, 51~/6(24)’/~ 
(0.73 dB) for N = 8 ,  with a limit of ne/6 (1.53 dB) as 
N -+ 00 [l].) 

As a simple example of a coset code, let us consider the 
four-state two-dimensional Ungerboeck code illustrated in 
Fig. 2, transmitting 5 bits per two dimensions with the 
“square” 64-point constellation of Fig. 3(a). In this case 
the lattice A is the two-dimensional integer lattice Z 2 ,  i.e., 
the set of all integer 2-tuples (the signal constellation is 
actually chosen from its translate Z2  +(1/2, 1/2) for 
symmetry). Thus the scale is such that the minimum 
(squared) distance between points in the constellation is 
one. The sublattice A’ is the two-dimensional lattice 2 2  ’, 
Le., the set of all even integer 2-tuples. The partition 
Z2 /2Z2  has order 4, i.e., Z2  is the union of four cosets of 
22’, which correspond to the points labeled A ,  B, C ,  and 
D in Fig. 3. There are 16 points in the constellation from 
each of the four cosets. The minimum squared distance 
between points in any coset of 2 Z 2  is four. The encoder C 
is a rate-1/2 four-state convolutional encoder. Thus the 
redundancy per two dimensions is r ( C )  = p ( C )  =l. One 
of the five input bits per two dimensions goes into the 
encoder, and the two resulting coded bits select one of the 

convolutional 

one of four 
cosets of 2 S 

4 uncoded bits signal point one of 64 
selector signal points 

Fig. 2. Four-state two-dimensional Ungerboeck code ( n  = 5 ) .  

A P A B A B A B  
‘ 3 C D C D C D  
A B A B A B A B  
C D C D C D C D  
A B A B A B A B  
C D C D C D C D  
A B A B A B A B  
C D C D C D C D  

A B A C  
D C D C D C  

A B A B A B A B  
D C D C D C D C D C  

A B A B A B A B  
D C D C D C D C D C  

A B A B A B A B  
D C D C D C  

A B A B  

(a) (b) 
Fig. 3. Two 64-point signal constellations based on partition Z 2 / 2 Z 2 .  

(a) Square. (b) Cross. 

four cosets A ,  B,  C ,  and D ;  the remaining four uncoded 
bits select one of the 16 points from the selected coset. 

As we show below, C can be chosen so that d$,(C) = 
dLn(A‘) = 4; since p ( C )  = p ( C )  =1 (the integer lattice has 
zero redundancy), the fundamental coding gain y(C) is 
2-l.4 = 2 (3.01 dB) (the minimum squared distance gain is 
a factor of four, but t h s  is offset by a constellation 
expansion power cost of a factor of two, leaving a net gain 
of a factor of 2). Because the constellation is square, this is 
also the total coding gain. The total coding gain could be 
improved slightly by use of a more circular constellation, 
e.g., the 64-point “cross” constellation of Fig. 3(b), which 
is about 0.1 dB better [l]. 

C. Other Coset Codes 

The coset codes described in this paper are based on 
partitions of binary lattices. More generally, a coset code 
C(S/T;  C )  can be defined whenever S is some set of 
discrete elements that forms an algebraic group, with some 
distance measure between elements of S,  T is a subgroup 
of S such that the quotient group S / T  has finite order 
IS/TI, and C is an appropriate code whose codewords 
select sequences of cosets of T in the partition S / T .  

For instance, S can be a binary block code, with T a 
subcode, and Hamming distance as the distance measure. 
We shall see some examples of the construction of convo- 
lutional codes in this way in this paper (other such con- 
structions appear in [15]). In [18] we shall see how such 
codes as the Reed-Muller and Golay codes can be built up 
from short codes in this way. In [16], we shall show how 
ternary codes, lattices, and trellis codes can be constructed 
as coset codes, where S and T are ternary block codes or 
lattices, and C is a block or convolutional code over the 
ternary field GF(3). 

Finally, phase-modulated codes can be constructed as 
coset codes as follows. The signal constellation for m-ary 
PSK (mPSK) can be regarded as the m complex mth roots 
of unity, which forms a group S under complex multiplica- 
tion. If n divides m, the nPSK constellation is a subgroup 
T. Thus, for example, 16PSK/8PSK/4PSK/2PSK/lPSK 
is a chain of two-way partitions. Although the minimum 
squared distances within these constellations are somewhat 
different from those in lattice partitions (e.g., 0.152/ 
0.586/2/4/00 for these constellations, compared to 
1/2/4/8/16 for the comparable two-dimensional lattice 
partition z 2 / ~  ’ / 2 ~  2 / 2 ~  2 / 4 ~  ’), similar construc- 
tions to those presented here often yield good phase- 
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modulated codes (e.g., the phase-modulated codes of 
Ungerboeck [8] or of LaFanchere et al. [17]). 

In general, these code constructions rely very little on 
the linearity properties of the groups (e.g., lattices, sublat- 
tices) on which they are based, and the codes so con- 
structed are often not linear, particularly the trellis codes. 
The essential properties of these sets seem to be their 
partition structure and related distance properties, which 
of course were the basis for Ungerboeck’s constructions 
via ‘mapping by set partitioning.’ The primary benefit of 
starting with sets that are groups seems to be that their 
subgroups naturally induce useful partitions via coset de- 
compositions. 

D. Outline 

The primary subject of this paper is the categorization of 
various lattice-type coset codes in terms of their key pa- 
rameters and, ultimately, in terms of their performance as 
measured by their fundamental coding gains. 

Since these codes are based on partitions of binary 
lattices, we begin with an introduction to such lattices in 
Section 11, which is intended to be self-contained. A more 
comprehensive introduction to this family of lattices is 
given in the companion paper [18], hereafter referred to as 
part 11. (By far the best general reference on lattices is the 
forthcoming encyclopedic book by Conway and Sloane 
[7].) Section 111 summarizes those results from part I1 most 
relevant to this paper, particularly the performance of 
lattices as lattice codes, their partition/distance structure, 
and the decoding complexity of lattices and lattice parti- 
tions as measured by the number of binary operations of 
the trellis-based decoding algorithms given in part 11. 

Section IV then extends lattice theory to trellis codes. 
Section V characterizes the principal trellis codes that have 
been introduced to date as coset codes. Section VI intro- 
duces some generic classes of trellis codes whose main 
parameters can be easily determined and which include 
codes similar to (and in many cases equivalent to) the 
principal known codes. Finally, Section VI1 compares and 
contrasts all of these codes in terms of performance vs. 
complexity. 

It is intended that this paper and part I1 may be read 
independently; as a result, there is some overlap. The 
reader who desires to read both papers in the most logical 
order is advised to shm this paper quickly through Section 
11, omitting proofs; then to read part 11, with primary 
focus on the material relating to Barnes-Wall lattices; and 
then to return to the rest of this paper. The mathematical 
level is kept as elementary as possible; for the more 
mathematically inclined reader, we recommend learning 
about lattices by reading Conway and Sloane [7]. 

11. A LATTICE PRIMER 

A .  Definitions 

A real lattice A is simply a discrete set of vectors 
(points, N-tuples) in real Euclidean N-space R N  that 

forms a group under ordinary vector addition, i.e., the sum 
or difference of any two vectors in A is in A. Thus A 
necessarily includes the all-zero N-tuple 0, and if X is in 
A ,  then so is its additive inverse - A .  The vectors in a 
lattice may possibly span fewer than N dimensions; how- 
ever, t h s  will not be the case for any lattice considered 
here, so there will be no confusion if we call a lattice of 
real N-tuples an N-dimensional real lattice. 

As an example, the set 2 of all integers is essentially the 
only one-dimensional real lattice, up to scaling, and the 
prototype of all lattices. The set Z N  of all integer N-tuples 
is an N-dimensional real lattice for any N. 

Lattices have only two principal structural characteris- 
tics. Algebraically, a lattice is a group; this property leads 
to the study of subgroups (sublattices) and partitions (coset 
decompositions) induced by such subgroups. Geometri- 
cally, a lattice is endowed with the properties of the space 
in which it is embedded, such as the Euclidean distance 
metric and the notion of volume in R N .  The following two 
sections are concerned with these two aspects of lattice 
structure. 

Lattices closely related to a given real N-dimensional 
lattice A are obtained by the following operations. 

1 )  Scaling: If r is any real number, then rA is the lattice 
consisting of all multiples rX of vectors X in A by the 
scalar r .  

2) Orthogonal Transformation: More generally, if T is 
any scaled orthogonal transformation of N-space, then TA 
is the lattice consisting of all transformations TX of vec- 
tors X in A by T. We say that TA is a version of A. 

3) Cartesian Product: The M-fold Cartesian product of 
A with itself-i.e., the set of all MN-tuples (XI ,  A,; . ., A,) 
where each Ai is in A-is an MN-dimensional lattice 
denoted by AM. 

For example, Z N  is the N-fold Cartesian product of Z 
with itself, and r Z N  is a scaled version of ZN for any r 
and N. The two-dimensional lattice Z 2  is illustrated in 
Fig. 4. 

0 . 0 .  

m 0 . 0  

0 . 0 .  

. o m 0  

Fig. 4. Lattice Z 2  and its sublattice R Z 2  (black dots) 

The most important scaled orthogonal transformation 
for our purposes is the rotation operator R, defined by the 
2 x 2 matrix 

R Z 2  is a version of Z2  obtained by rotating Z2  by 45” 
and scaling by 2lI2 and is also illustrated in Fig. 4. The 
points in R Z 2  are a subset of the points in Z 2 ,  meaning 
that R Z 2  is a sublattice of 2’. Note that R2 = 21, where I 
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is the identity operator (in two dimensions), so that R2Z2  

We can define a 2N-dimensional rotation operator by 
letting R operate on each pair of coordinates in a 2N- 
tuple; with a slight abuse of notation, we denote by R any 
such rotation operator. For instance, in four dimensions, 

= 2 z 2 .  

I 1  1 0 o \  
1 -1 0 R A  1 

\ o  0 1 -1I 
Note that R 2 =  21 for any N ,  where I is the identity 
operator in 2N dimensions, so that R2A = 2A for any real 
2N-dimensional lattice A. 

B. Group Properties 

A coset of a lattice A, denoted by A + c, is the set of all 
N-tuples of the form X + c, where A is any point in A and 
c is some constant N-tuple that specifies the coset. Geo- 
metrically, the coset A + c is therefore a translate of A by 
c (if c is in A, then A + c = A).  Two N-tuples are equiua- 
lent modulo A if their difference is a point in A .  Thus the 
coset A + c is the set of all points equivalent to c modulo 
A. 

A sublattice A’ of a lattice A is a subset of the elements 
of A that is itself a lattice, i.e., A’ is a subgroup of the 
additive group A. Thus, by elementary group theory, a 
sublattice A‘ induces a partition (denoted by A/A’) of A 
into equivalence classes modulo A’ (the equivalence classes 
may be added modulo A’ and form the quotient group 
A/A‘). We shall say that the order of the partition (or 
quotient group) A/A‘ is the number IA/A’l of such equiv- 
alence classes (in the mathematical literature, IA/A’l is 
usually called the index of A’ in A). Each equivalence 
class is a coset of A’ (one being A’ itself), or, geometri- 
cally, a translate of A’. For example, the partition Z ,/RZ 
has order IZ2/RZ21 = 2, and Fig. 4 illustrates Z2  as the 
union of two cosets of RZ2.  Of course, any N-dimensional 
integer lattice A is a sublattice of ZN.  

If we take one element from each equivalence class, we 
obtain a system of coset representatives for the partition 
A/A‘, denoted by [A/A’]. (In general, there are many 
ways of selecting such a system [A/A’], so the notation 
does not entirely specify the system.) Then every element 
of A can be written uniquely as a sum X = A’+ c, where 
c E [A /A’] is the coset representative of the equivalence 
class in which X lies, and A’= X - c is an element of A’ 
(because X c mod A’). This is called a coset decomposition 
of A and will be written here as 

As another example, if m is any integer, the lattice m Z  
of integer multiples of m is a sublattice of 2. The partition 
Z/mZ is the partition of the integers into m equivalence 
classes modulo m Z  (modulo m), and the order of the 
partition is m. The integers (0,l;. ., m - I }  form a system 
of coset representatives for the partition Z /mZ,  and every 
integer n can be written uniquely as n = am + c, where am 
is an element of mZ and C E  {O,l; . . ,m-l} =[Z/rnZ] 
(thus [Z/mZ] is essentially the ring Z,, of integers modulo 
m). In particular, the partition 2 / 2 2  has order 2 and 
divides the integers into two subsets, 2 2  (the even inte- 
gers) and 2 2  + 1 (the odd integers). 

More generally, for any m E Z ,  the lattice m Z N  of all 
N-tuples of integer multiples of M is a sublattice of Z”’ of 
order mN, and [Z/mZIN is a system of coset representa- 
tives for Z N/mZ N ;  hence Z = m Z  + [ Z / m Z  ] N .  

A partition A/A‘ also induces a coset decomposition of 
any coset of A ,  say A + c;  for A + c = A’ + [ A/A‘] + c. 

A partition chain A/A‘/A‘l/ ‘ . is a sequence of lat- 
tices such that each is a sublattice of the previous one 
(in other words, A 2 12’2 A“ 2 . . .  ). For example, 
Z/2Z/4Z/ . . . is an infinite sequence of two-way parti- 
tions of the integers. A partition chain induces a multiterm 
coset decomposition chain, with a term corresponding to 
each partition; e.g., if A/A’/A” is a partition chain, then 

A = A” + [ A’/”’] + [ A /A’], 

meaning that every element of A can be expressed as an 
element of A” plus a coset representative from [A’/A’’] 
plus a coset representative from [ A/A’]. For example, the 
chain Z/2Z/4Z/ . ‘ ’ leads to the standard binary repre- 
sentation of an integer m: 

m = a o + 2 a , + 4 a 2 +  . . .  
where a,, a,, u2,  . . . E (0, l}, and a, specifies the coset in 
the partition 2 /22 ,  2a, specifies the coset in the partition 
22/42 ,  and so forth. That is, 

Z =  [Z/2Z]+[2Z/4Z]+[4Z/8Z]+ . . .  . 
For a related example with a finite chain, we can specify 
one of the eight cosets of 2 / 8 2  (one of the equivalence 
classes of integers modulo 8) by 3 bits (a,, a,, a,), where 
a2a,ao is the standard binary representation of the coset 
representative c E (0,l;. -,7}. 

We may illustrate such a decomposition chain by a 
partition tower, as shown in Fig. 5(a). Each block in the 
tower represents one partition A/A’ in the chain, and the 
input to that block is a variable which selects one of the 
lA/A’l cosets of A‘ in that partition (or, equivalently, one 
of the coset representatives in [ A  /A’]). The standard bi- 

A = A’+ [A/A’]. 

For example, the two 2-tuples (0,O) and (1,O) are a system 

every element of Z2  may be written as the sum of one of 
these two 2-tuples with an element of RZ ’, i.e., Z is the 

. .  . .  . .  of coset representatives for the partition Z2/RZ2, and 
. .  . .  . .  

(a) (b) 

union of Rz 2 + (o, o) = Rz 2 and RZ 2 + (1, o) (the black Fig. 5. Partition towers illustrating coset decomposition chains induced 
by lattice partition chains. (a) A/A’/.4’‘/ . .  . (b) 2/12,’ 

dots and white dots in Fig. 4, respectively). 4Z/8Z/. . . . 
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nary representation is illustrated in this way in Fig. 5(b) 
(note that the “least significant bit” a ,  appears at the top). 

C. Geometric Properties 

The geometry of a real lattice A arises from the geome- 
try of a real Euclidean N-space R N .  The two principal 
geometrical parameters of A are the minimum squared 
distance d&,(A) between its points and its fundamental 
volume V( A); these determine its fundamental coding gain 

The norm ( ( x \ ( ~  of a vector x in R N  is the sum of the 
squares of its coordinates. Norms are nonnegative and in 
fact nonzero unless x = 0. The squared distance between 
two vectors x and y is the norm of their difference 

Because a lattice A consists of discrete points, the norms 
of all lattice points are an infinite set of discrete values 
that can be enumerated in ascending order We call this the 
weight distribution of the lattice (theta series, in the lattice 
literature). The weight distribution is also the squared 
distance distribution between any point in the lattice and 
all other points, since any point h in A can be taken as the 
origin 0 by translation of A by A (looking out from any 
point in A ,  the lattice looks the same). 

The minimum nonzero norm is thus the minimum squared 
distance d i l n ( A )  between any two points in A. The num- 
ber of elements of A with this norm is the number of 
nearest neighbors of any lattice point (also called the 
kissing number, or multiplicity), and will be called here the 
error coefficient No( A). 

For example, for any N, the integer lattice Z N  has 
d:,,(ZN) =l. The set of all integer N-tuples of norm 1 is 
the set of all permutations and sign changes of the vector 

’ Loosely, the fundamental volume V(A) is the volume of 
N-space per lattice point, or the reciprocal of the number 
of lattice points per unit volume. More precisely, if we can 
partition N-space into regions of equal volume, one associ- 
ated with each lattice point, then V(A) is the volume of 
each such region. For example, it is easy to see that we 
may partition N-space into N-cubes of side 1, one associ- 
ated with each point of Z N ,  so V(ZN) =l. 

To treat the general case, note that R N  is itself a group 
under ordinary vector addition (but not a lattice), because 
its points are not discrete). Any real N-dimensional lattice 
A is a subgroup of R N .  Thus there is a partition R N / A  of 
N-space into equivalence classes modulo A (cosets of A )  
(in our original definition of a coset of A, implicitly we 
meant a coset in the partition R N / A ) .  Define a fundamen- 
tal region R(A) as a region of h’-space that contains one 
and only one point from each such equivalence class 
modulo A; thus R(A) is a system of coset representatives 
for the partition RN/A.  Every point x in R N  is thus 
uniquely representable as x =  h + c, where h E A and 
c E R(A), i.e., there is a coset decomposition R N =  
A + R( A). Geometrically, this is a tesselation of N-space 
by translates of fundamental regions of A. While there is 

Y(A) .  

llx - Yl12. 

(1,O;. . ,O), SO No(ZN) = 2N. 

no unique fundamental region, every fundamental region 
R(A)  must have the same volume V(A) (if it is measur- 
able), since it is congruent to any other fundamental region 
modulo A; t h s  uniquely defines the fundamental volume 

For example, one fundamental region of the one- 
dimensional integer lattice Z is the half-open interval 
[0,1) = { c: 0 I c < l}; another is the half-open interval 
(- 1/2,1/2]. Whatever fundamental region we take, how- 
ever, its volume (length) must be one. Similarly, for Z ,, we 
may take R ( Z N )  as the half-open N-cube [ O , l ) N  or as 
( -1/2,1/2IN; again the volume V ( Z N )  is one for any N. 

Happily, the computation of fundamental volumes of an 
integer lattice A may be completely avoided by use of the 
following lemma, if we know the order lZN/AI of the 
partition ZN/A. 

Lemma I :  If A‘ is a sublattice of A of order lA/A’l, 
then V(A’) = IA/A’lV(A). 

Proof: Since only one of every lA/A‘l points in A is 
in A‘, the fundamental volume of A‘ must be IA/A’l times 
larger than that of A for its fundamental regions to fill 
N-space. In fact, we may take a union of lA/A’l funda- 
mental regions of A as a fundamental region of A‘, one 
(R( A )  + c )  associated with each member c of a set of coset 
representatives for 11/11‘, in view of the decomposition 
chain R N  = A’+ [ A/A’] + R( A). 

Corollary: If A is an integer lattice, then V( A) = ) Z  ”/A(. 
Notice that Lemma 1 does not essentially depend on A 

being a lattice; as long as A is a union of some number 
lA/A’l of cosets of A‘, the points of A are IA/A’l times as 
dense in N-space as those of A‘. 

From the two geometrical parameters d&,( A )  and V( A), 
we define the fundamental coding gain y ( A )  of a lattice A 
as follows: 

V(A>. 

y ( ~ )  &,( A)/v(  A ) ~ / ~  

(in the mathematical literature this is called Hermite’s 
parameter and is also denoted by the symbol y ) .  The 
fundamental coding gain is a normalized measure of the 
density of a lattice in the following various senses. 

have 
the dimensions of a two-dimensional volume (area). We 
shall often find that the most appropriate normalization of 
other parameters is to two dimensions. 

b) The fundamental coding gain is invariant to scaling, 
y ( r A )  = y ( A ) ,  because dii ,(rA) = r 2 d k , ( A )  and V ( r A )  
= r N V ( A ) .  

c) More generally, the fundamental coding gain is in- 
variant to any scaled orthogonal transformation T, y( TA) 
= y(A), because d:,,(TA) = ldet TI2INdi i , (A)  and V ( T A )  
= ldet TlV( A), where det T is the determinant of T. Thus 
any version of A has the same fundamental coding gain. 

d) The fundamental coding gain is invariant to the 
Cartesian product operation, y( A M )  = y (  A), because 
d i i , ( A M )  = d L , ( A )  and V ( A M )  = V ( A ) M .  Thus if A, is 
an N-dimensional lattice and A, is an M-dimensional 
lattice, then in MN-space (where they can be compared 

a) It is dimensionless. Both d&,( A )  and V( 
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directly) A: has a greater or lesser density of points per 
unit volume than does A$ according to whether y ( A N )  is 
greater or less than y(AM),  provided that they are scaled 
so that their minimum squared distances are the same. We 
therefore say that A is denser than A' if y ( A )  > y(A'), 
regardless of whether A and A' have the same dimension. 

e) For any N, y ( Z N )  = 1. An uncoded system may be 
defined as one that uses constellations based on Z N  (e.g., 
PAM uses constellations based on 2, and narrow-sense 
quadrature amplitude modulation (QAM) uses constella- 
tions based on Z 2 ) .  Thus the fundamental coding gain 
y(  A )  of an arbitrary lattice A may be considered to be the 
gain using constellations based on A over an uncoded 
system using constellations based on Z N .  

f)  More concretely, suppose we form a 2"-point N- 
dimensional constellation by taking all points in an N- 
dimensional lattice A (or a coset of A) that lie within an 

in both pairs of coordinates). However, D4 has the same 
minimum squared distance as RZ4. Thus it is possible to 
take a version of Z4 and insert a translate of that version 
into the interstices between points without reducing the 
minimum distance. So 0, has twice as many points as 
RZ4 per unit volume, with no decrease in d&; hence 0, 
is twice as dense as RZ4 in four dimensions, or 2'12 times 
as dense per two dimensions, which is the normalization 
used in the definition of y. 

We see that Z4/D,/RZ4 is a chain of two-way parti- 
tions with distances 1/2/2 (for short). However, since 0, 
is a sublattice of Z4, it follows that RD, is a sublattice 
of RZ4, R2D4 = 20, is a sublattice of R 2 Z 4  = 2Z4, and 
so forth. Hence Z4/D,/RZ4/RD,/2Z4/2D4/2RZ4/ 
2RD4/ . . . is an infinite chain of two-way partitions, with 
distances 1/2/2/4/4/8/8/16/ . . . 

N-sphere with radius chosen just large enough to enclose 
the desired number of points. The volume of the sphere 

D. complex Lattices and Gaussian Integers 

must then be about 2 " i ( A )  for large n .  For the integer 
lattice Z N ,  the volume of such a sphere must be about 2". 
The ratio of the radii of the two spheres is thus about 
V ( A ) - ' I N  (this dimensional argument in fact holds for 
constellation boundaries of any shape). If we scale A so 
that d; , , (A)  =1, then the minimum distance is the same 
as for Z N ,  but we acheve an average power reduction of 
about V( or y( A), by using the constellation 
based on A rather than that based on Z N .  Thus y(A)  is 
normalized properly to measure a power gain, and we will 
often give its value in decibels. 

For example, RZ2 is a version of Z 2  with diin = 2 (the 
rotation operator R always doubles norms, in any number 
of dimensions). The partition Z 2 / R Z 2  has order 2, and 
thus V( R Z 2 )  = 2. Thus we verify that y(  RZ 2 ,  = 1. 

As an example of a denser lattice, the Schlafli lattice 0, 
may be defined as the four-dimensional integer lattice 
consisting of all integer 4-tuples with an even number of 
odd coordinates or, equivalently, with even norm. The 
order of the partition Z4/D4 is two, because Z4 is the 
union of D4 and its coset 0, +(1,0,0,0) (the set of all 
integer 4-tuples with an odd number of odd coordinates 
or, equivalently, with odd norm). Thus V( 0,) = 2. Clearly, 
d i i n (  D4) = 2; therefore, the fundamental coding gain of 
0, is 

( D, = 2\22', = 2112. 

Thus 0, is denser than Z or Z4 by a factor of 2112 (or 
1.51 dB). The elements of norm 2 are the 24 points 
obtained by permutations and coordinate sign changes of 
the 4-tuple (l,l,O,O), so the error coefficient N,(D,) is 24. 

Another way of comparing the density of 0, to that of 
Z 4  is the following. The lattice RZ4 is a version of Z4 
with dHi,(RZ4) = 2 (since R doubles norms) and with 
V( RZ4) = 4 (since y(  R Z 4 )  = 1). Moreover, R Z 4  is a sub- 
lattice of D4, whch must be of order 2 (by Lemma 1); in 
fact, 0, is the union of R Z 4  (the lattice of integer 4-tuples 
with even norms in both pairs of coordinates) and its coset 
R Z 4  + (l,O, 1,O) (the set of integer 4-tuples with odd norms 

A complex lattice A is a discrete set of points in complex 
Euclidean N-space C N  that forms a group under ordinary 
(complex) vector addition. Again, we stipulate that the 
only such lattices to be considered here will actually span 
N dimensions, so we shall feel free to call such a A an 
N-dimensional complex lattice. 

An obvious isomorphism (written A, = A,) exists be- 
tween any 2N-dimensional real lattice A, and a corre- 
sponding N-dimensional complex lattice Ac, formed by 
taking each pair of coordinates of A, to specify the real 
and imaginary parts of each coordinate of A,, or vice 
versa. Addition of two points gives the same result in 
either case. Sublattices, cosets, and all such group proper- 
ties carry over. Even the norm of two corresponding vec- 
tors is the same, so distances are not affected. Thus for 
most purposes it makes no difference whether we consider 
a lattice to be real or complex. For all parameters previ- 
ously defined (e.g., d$,( A) ,  V( A) ,  y( A)), we may define 
the values for a complex lattice to be the same as those for 
the corresponding real lattice. 

The only difference of any sigruficance arises when we 
consider multiplicative operations, such as scaling, or the 
taking of inner products. A complex lattice A, may be 
scaled by either a real number r or a complex number a, 
the latter operation involving an equal phase rotation of 
each coordinate of A, by the phase of a (as well as a 
scaling of lengths by la], or norms by laI2). The inner 
product (x, y )  of two real vectors x and y is the sum of 
the products of their coordinates and must be real; the 
(Hermitian) inner product (x, y )  of two complex vectors x 
and y is the sum of the products of the coordinates of x 
with the complex conjugates of the coordinates of y and 
may be complex. Thus there may arise differences in 
definitions of orthogonality, duality, and so forth. In gen- 
eral, for the lattices considered in this paper, we shall 
prefer the complex definitions. 

The simplest example of a complex lattice is the one- 
dimensional complex lattice G corresponding to the two- 
dimensional real lattice Z 2 .  The point (a,  b )  in Z 2  corre- 
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sponds to the point a + bi in G, where a and b may be 
any pair of integers. The set G is called the set of Gaussian 
integers. 

The Gaussian integers G actually form a system of 
complex integers analogous to the ordinary real integers Z. 
Multiplication of two elements of G (using complex arith- 
metic) yields another element of G, which cannot be 0 
unless one of the two elements is 0 (in fact, their norms 
multiply as real integers). Thus G is a ring and, in fact, an 
integral domain. Indeed, we have unique factorization in 
G: every element of G can be expressed uniquely as a 
product of primes, up to units, where the units (invertible 
elements) are f 1 and & i ,  and the primes are the elements 
that have no divisors other than themselves, up to units. 
The primes of G, in order of increasing norm, are 1+i ,  
2 i ,  3, .  . , with norms 2,5,9, . . . . We denote the prime 
of least norm by + 1 + i. (Note that 1 + 1 2  = ++* = 2, and 
thus two is not a prime in G.) 

We may scale G by any element g E G and obtain a 
sublattice gG of G. By Lemma 1, the partition G/gG 
must have order 1gI2 (the norm of g). There are thus 1gI2 
equivalence classes of G modulo g. 

For example, +G is a sublattice of G of order 1 + 1 2  = 2 
and, in fact, is the complex lattice corresponding to the 
real lattice RZ2. As with RZ2,  +G consists of all the 
elements of G with even norm, its coset +G + 1 consists of 
all the elements of G with odd norm, and the union of +G 
and +G + 1 is G (Fig. 4 may equally well be taken to 
illustrate this partition of G ) .  The coset representatives 
[G/+G] may thus be taken as {O, l} ,  and are isomorphic 
to Z 2 =  GF(2) using modulo + arithmetic (since 2 = 
0 mod 9). 

More generally, +*G is a sublattice of G of order 
] + I 2 *  = 2* and, in fact, is the complex lattice corresponding 
to the real lattice R*Z2, which is equal to 2*I2Z2 for p 
even and 2(8-1)/2RZ2 for p odd. As with R*Z2, +*G 
consists of all the elements of G whose norms are multi- 
ples of 2*, and thus dijn(+*G) = 2*. There is then an 
infinite chain G/+G/+2G/+3G/+4G/. . . of two-way 
partitions with distances 1/2/4/8/16/ * . . , correspond- 
ing to the real chain Z2/RZ2/2Z2/2RZ2/4Z2/ . . . . In 
analogy to the chain 2/22 /42 / .  . . , this chain suggests a 
complex binary representation of a Gaussian integer g: 

g = a ,  + +al + +2a2 + . . 
where ao, a,, a 2 ,  . * E {O, l} ,  and a, specifies the coset of 
+G in the partition G/+G,+a, specifies the coset of G2G 
in the partition +G/$I~G, and so forth. That is, the com- 
plex binary representation is based on the coset decompo- 
sition 

C = [ C / + G  J + [ +G/G2C J + [ +2G/+3G] + . . . . 
For any lattice A, if h is any lattice point and m is any 

integer, then _+ m h  = *(A + X + . + A )  is a lattice point, 
so m A  is a sublattice of A, and A (like any additive 
group) is a module over the ring Z of ordinary integers. 
However, a complex lattice A is not necessarily a module 
over the ring G of Gaussian integers (for example, the 

two-dimensional hexagonal lattice is not). It is so if and 
only if X E A implies iX E A; for then if g = a + bi is any 
Gaussian integer, gX = aX + b( iX)  is a lattice point. Then 
gA is a sublattice of A for any g E G .  In particular, i A  is 
a sublattice of A; but since i ( i A )  = - A = A is a sublat- 
tice of i l l ,  in fact i A  = A .  When necessary, we shall call 
such a complex lattice a G-lattice. 

In general, multiplication of a G-lattice A, by the com- 
plex scalar + has much the same effect as a transformation 
of the corresponding real lattice A, by the rotation opera- 
tor R. The correspondence is not exact because R includes 
a reflection as well as rotation and scaling, so that R2 = 2, 
whereas +2 = 2i. (We could have avoided this difficulty by 
exchanging columns in the definition of R.) However, if 
A = A*-i.e., if X E A implies A* E A, where A* is the 
complex conjugate of h-as will be true for all lattices to 
be considered here, then +Ac = R A,. The difference is 
slight, but we regard multiplication by the complex scalar 
+ as fundamentally a more natural operation than rotation 
by R. 

E. Binary Lattices 

Binary lattices have proved to be the most useful class of 
lattices in applications. On the one hand, t h s  is because 
they are a natural extension of binary block codes and are 
well suited to the bit-oriented real world. On the other 
hand, in many cases they give the best performance, both 
as lattices and as the basis of trellis codes, a result which 
would have been harder to predict a priori. For instance, 
the densest known lattices in 1, 4, 8, 16, and 24 dimensions 
(among others) are binary lattices. We provide a brief 
introduction here; part I1 discusses binary lattices in more 
detail. 

A real N-dimensional lattice A is a binary lattice if it is 
an integer lattice that has 2"ZN as a sublattice for some 
m. The least such m is called the 2-depth of the lattice. 
Thus ZN/A/2mZN is a partition chain. It turns out that 
all of the binary lattices that have proved to be useful to 
date have 2-depth equal to one or two; we shall call such 
lattices mod-2 and mod4 lattices, respectively. 

A complex N-dimensional lattice A is a binary lattice if 
it is a Gaussian integer G-lattice that has +*GN as a 
sublattice for some p. The least such p is called the 
+-depth of the lattice. Thus GN/A/+*GN is a partition 
chain. 

If A is a 2N-dimensional real binary lattice, then the 
corresponding N-dimensional complex lattice is also a 
complex binary lattice (if it is a G-lattice), and vice versa, 
since 2"Z2N 2: +2mGN c +2m-1GN. So we may speak of the 
+-depth of a real 2N-dimensional binary lattice. A real 
2 N-dimensional binary lattice with 2-depth m has +-depth 
2m or 2m - 1; thus the +-depth is twice as fine-grained a 
parameter, and we shall henceforth call it simply the depth 
p of a binary lattice. A mod-2 binary lattice thus has depth 
1 or 2, and a mod-4 binary lattice has depth 3 or 4. For 
example, since Z4/D4/RZ4 = G2/D4/+G2 is a partition 
chain, D4 is a mod-2 binary lattice with depth p = 1. 
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Since the order of the partition Z N / 2 " Z N  (resp. 
G N / + W N )  is a power of two, the orders of Z N / A  and 
A / 2 m Z N  (resp. G N / A  and A / @ ' G N )  must be powers of 
two, since their product is IZ "/2"Z 1 (resp. IG N/c$"G I). 
The redundancy r( A )  of a binary lattice A is defined as the 
binary logarithm of lZN/Al ,  so that IZN/A( = 2r(A). In 
view of the corollary to Lemma 1, the fundamental volume 
of a binary lattice is therefore V(A) = 2r('), and the 
fundamental coding gain is 

where p( A )  is the normalized redundancy (per two dimen- 
sions) of A, p ( A )  = r ( A ) / N ,  where 2N is the dimension 
of A as a real lattice, or N is the dimension of A as a 
complex lattice. 

If we choose a constellation of (say) 2" points from A ,  
they will occupy a volume in 2 N-space approximately 2r(h) 
times as large as the same number of points chosen from 
Z 2 N  would. We therefore say that the constellation expan- 
sion factor is 2'(") in 2 N  dimensions, or 2P(") in two 
dimensions. As previously discussed, t h s  translates into a 
power cost due to constellation expansion of a factor of 
2p("), or p(A)-3.01 dB. The formula for fundamental 
coding gain just given therefore has an interpretation as 
follows: the minimum squared distance gain of a factor of 
d,$, ,(A) (relative to d L n ( Z N )  =1) is partially offset by a 
constellation expansion power cost of a factor of 2-p(*), 
leaving a net coding gain of y( A )  = 2-P(A)d2i,( A). 

The order of A / 2 m 2 2 N  is 22Nm-r (A)  , and the order of 
A/+'GN is 2Np-r(A). We may give k ( A )  e Np(A)- r ( A )  
the somewhat ugly but dual name of the 'informatiuity' of 
A, where N is the dimension of A as a complex lattice; the 
normalized informativity (per two dimensions) of A is 
~ ( R ) 2 k ( h ) / N ,  where N is the dimension of A as a 
complex lattice, or 2N is the dimension of A as a real 
lattice. Thus the depth of a binary lattice A is the sum of 
its normalized redundancy and informativity: 

P ( N  = P ( N  + . ( A ) .  
For example, the depth of D4 is 1, its redundancy and 
informativity are both equal to 1, and its normalized 
redundancy and informativity are both equal to 1/2. 

Moreover, if a sublattice A' of a binary lattice A is also 
a binary lattice, then A/A' is a partition whose order is a 
power of two, since ZN/A/Ar/2"ZN is a partition chain 
for some m.  We define the depth of a partition A/A' of 
binary lattices as the depth of A', p(A/A') 2 p(A'); the 
redundancy as the redundancy of A, p(A/A') 2 p(A); 
and the informatiuity as the informativity of A', K(A/A') 
9 K (  A'). It follows that the order of the partition is 

lA/A'l = ~ N ( P ( A ' ) - P ( A ) - ~ ( A ' ) )  

where 2N is the dimension of A as a real lattice. 

F. Labelings of Partitions of Binary Lattices 

If A and A' are binary lattices such that A' is a 
sublattice of A ,  then the partition A/A' has order 2, for 
some integer K .  Any map from binary K-tuples a to 

unique cosets of A' in this partition is called a labeling. 
The labeling may be defined by a function c(a) ,  where a 
is any binary K-tuple, called a label, and c ( a )  is a coset 
representative of the coset of A' specified by a .  We always 
assume that c(0) = 0, Le., that the zero label maps to the 
zero coset, namely, A' itself. 

The following lemma shows, first, that any such parti- 
tion can be broken up into a chain of K two-way parti- 
tions A , /A + 1, 0 I k I K - 1 ; second, that there is then a 
labeling 

= Cakgk 

where ak is the kth coordinate of the binary K-tuple a 
and gk is an element of but not of Ak+l such that the 
two vectors { akgk, ak E {O,l}}, are a system of coset 
representatives for the cosets of Ak+l in the two-way 
partition Ak/Ak+ 1. Thus the 2K binary linear combinations 
{ h k g k }  of the generators gk are a system of coset repre- 
sentatives [ A k / A k + l ]  for the partition Ak/Ak+l (this is a 
special case of a general result for groups of order 2 K -  
binary groups-discussed in part 11). In the coding con- 
text, we call such a labeling an Ungerboeck labeling. 

Lemma 2: Let A and A' be binary lattices such that A' 
is a sublattice of A, and let lA/A'l= 2K. Then there is a 
sequence of lattices A, = A, A,; . a ,  A, = A' such that 
Ao/Al / .  . / A K  is a lattice partition chain and each 

coset decomposition 
partition h, /Ak+l  is two-way, 0 I k I K - 1. A has the 

A = A'+ ( C a k g k ]  

where akE {0,1} and {a,g,,a,E {0,1}} is a system of 
coset representatives for [A,/A,+,], 0 I k I K - 1. 

Sketch of proof (by induction, from k = K - 1 down to 
k = 0): Assume that Ak+l is a binary lattice such that 
h/A,, , /h'  is a partition chain; A, = A' is certainly such 
a lattice. If # A, then a vector gk exists in A that is 
not in A k + l  but has order 2 modA,+,, i.e., such that 
gk + g, E Ak+ (see part 11). Let A, then be the union of 

and its coset h k + l + g k ;  A, is clearly a lattice, 
which by construction is a sublattice of A and has 
(and thus A') as a sublattice. The two vectors {a&,, ak E 
{0,1}} are a system of coset representatives for the cosets 
of in the two-way partition A k / A k + l .  By induction, 
the 2 K - k  binary h e a r  combinations {I, ~ K- la ,g , }  are 
a system of coset representatives for A ,/A'. The induction 
terminates when k = 0. 

Fig. 6 portrays an Ungerboeck labeling in two ways: as 
a partition tower, as in Fig. 5 ,  and as a binary partition 
tree. In the tower, the first bit a. in the label a selects one 

Fig. 6. Illustration of Ungerboeck labeling by partition tower and by 
partition tree. 
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of the two cosets of A, in the partition A/Al,  the second 
bit a, selects one of the two cosets of A ,  in the partition 
A1/A2, and so forth. In the tree, these are shown as 
two-way branches. Thus an Ungerboeck labeling is nested, 
in the sense that the first k bits of the labeling of the 
partition A/A’ are a labeling of the partition A / A k .  If A 
is a vector in A in the coset of A’ whose label is a,  then A 
is in a coset of A, determined by the first k bits of a .  

Consequently, we have the lattice/coset version of the 
Ungerboeck distance bound: if A and A’ are two different 
points of A that lie in cosets of A‘ whose labels agree in 
their first k bits, then J (h  - h’1I2 2 d i i n ( A k ) ,  because both 
A and A’ are in the same coset of A k  (this is a special case 
of the partition distance lemma of part 11). 

G. Decomposition of Binary Lattices 

This section shows that the structure of binary lattices 
(whether real or complex) is a generalization of that of 
binary block codes. Mod-2 binary lattices are essentially 
isomorphic to linear binary block codes, as we can see in 
the following lemma and proof (this is “Construction A” 
of Leech and Sloane [6]). 

Recall that an (N, K )  linear binary block code is any 
K-dimensional subspace of the N-dimensional linear vec- 
tor space over 2, = GF(2) of all binary N-tuples, where 
the coordinates of each of the 2K codewords are regarded 
as elements of the binary field Z, = GF(2). The codewords 
may be expressed as linear combinations c ( a )  = Cakgk of 
a set of K binary N-tuples gk, 1 I k I K, called genera- 
tors. The set is called the generator matrix G ,  so c ( a )  = aG. 
The minimum Hamming distance of the code is the mini- 
mum number of nonzero coordinates in any nonzero code- 
word; we shall sometimes call an (N, K )  code with mini- 
mum Hamming distance d ,  an (N, K ,  d H )  code. (Unless 
otherwise specified, an ( N ,  K )  code will always mean a 
linear binary (N, K ) code.) 

Lemma 3: An N-dimensional real lattice A is a mod-2 
binary lattice if and only if it is the set of all integer 
N-tuples that are congruent modulo 2 to one of the code- 
words c in a linear binary (N, K )  block code C. The 
redundancy of A is r ( A )  = N - K, and its minimum 
squared distance is d:,,(A) = min [4, d H ( C ) ] ,  where 
d H ( C )  is the minimum Hamming distance of the code C. 

is a partition chain, A/2ZN has order 2K for some 
integer K, and Z N / A  then has order 2N-K; so the redun- 
dancy of A is r ( A )  = N - K. A is thus the union of 2K 
cosets of 2 2 ,  (in the partition ZN/2ZN); any such coset 
of 2 Z N  has a binary coset representative c, i.e., an N- 
tuple of ones and zeros, and the coset 2 2  + c consists of 
all integer N-tuples congruent to c modulo 2. By Lemma 
2, A =  2ZN+{Ca,g,}, where the gk can be taken as 
binary N-tuples, 1 I k < K, and addition may be taken 
modulo 2ZN; i.e., modulo 2. The set C of 2K coset repre- 
sentatives { c ( a )  = h k g k }  is thus a linear binary (N, K )  
block code. Conversely, if C is such a code, then the set of 
all integer N-tuples that are congruent modulo 2 to code- 

Proof: If A is a mod-2 binary lattice, then 2 ”/A /2Z 

words c in C is easily seen to be a lattice, with 2 Z N  as a 
sublattice (the set of all integer N-tuples congruent to 0 
modulo 2). 

If c # 0, the minimum norm in the coset 2 2  + c is the 
norm ~ J c J ~ ~  of c itself, which is also the Hamming weight 
of c. The minimum such weight is the minimum Hamming 
distance of the code, d H ( C ) .  If c=O,  the minimum 
nonzero norm in 2ZN itself is four. Thus d$,(A)  = 

Lemma 3 says that any mod-2 lattice A may be con- 
structed as a coset code C(ZN/2ZN; C), where C is a 
linear binary (N, K )  block code. We can express A by the 
code formula (coset decomposition) A = 2 Z N  + C. This 
explicitly exhibits A as the union of 2K cosets of 2ZN. The 
labeling c ( a )  = Za,gk = aG (mod2) is linear in the sense 
that c ( a @ a ’ )  = c(a)@c(a ’ ) .  This picture of a mod-2 lat- 
tice as a coset code is illustrated in Fig. 7. 

min[4, dH(C)I. 

K b i t 7  K bits N bits c ( Y 7  RZ” 

one of 2 K  
cosets of 2 F 

one of ZK 
cosets of 2 P 

Fig. 7. Illustration of mod-2 binary lattice A as union of 2K cosets of 
2 Z N ,  each coset corresponding to codeword r ( a )  in linear binary 
( N ,  K )  code C .  

For example, the mod-2 lattices Z 2 ,  RZ2, and 2 2 ,  
correspond to the (2,2, l), (2,1,2), and (2,0,co) binary 
codes, respectively, and consequently have minimum 
squared distances 1, 2, and 4. The mod-2 lattices Z4, D,, 
RZ4,  RD, and 2Z4  correspond to (4,4,1), (4,3,2), (4,2,2) 
= (2 ,  1,2)2, (4,1,4), and (4,0, co) binary codes, with dis- 
tances 1, 2, 2, 4, and 4. 

In general, the lattice corresponding to any single-par- 
ity-check ( N ,  N - 1,2) code is a mod-2 lattice, the so-called 
“checkerboard lattice ” D,, with minimum squared dis- 
tance 2 and redundancy 1, a sublattice of Z N  of order 2. 
The lattice D, is the lattice R Z 2  = +G. 

Mod-2 lattices are limited to minimum squared dis- 
tances of four or less because N-tuples in 2 Z N  such as 
(2,0,. . . ,0) are lattice points. Binary block codes with 
Hamming distance 4 are therefore of special interest. The 
Gosset lattice E, is the mod-2 lattice corresponding to the 
(8,4,4) Reed-Muller code; E, thus has dL,( E,) = 4, 
r ( E 8 )  = 4, p ( E , )  =1, and thus y(E, )  = 2-l.4 = 2 (3.01 
dB). ( E ,  has many remarkable properties; it is perhaps the 
second most important lattice in lattice theory.) 

If A’ is a sublattice of A, where both are mod-2 lattices, 
it is easy to see that the code C’ associated with A‘ must 
be a subcode of the code C associated with A. 

In general, if A is a mod4 lattice, then 4ZN is a 
sublattice, and Lemma 2 allows us to write 

A = 4 Z N +  ( z a k g k }  

where each g, may be taken as a coset representative of 
4ZN,  Le., as an N-tuple of integers modulo 4, but where 
the label a is still a {O,l}-valued integer K-tuple. Addition 
may be taken modulo 4. This exhlbits A as a union of 2K 
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cosets of 4ZN, where the coset representatives are c ( a )  = 

Ca,g, (mod4). If we take the coordinates of c ( a )  to be 
from the set (0 ,  &1,2}, then c(a )  is also a coset leader of 
its coset, i.e., an element of minimum norm. 

For a further refinement, let A, be the set of all points 
in A whose coordinates are all even. Then A, is a lattice, a 
sublattice of A ,  with 4 Z N  as a sublattice, so A/A,/4ZN 
is a partition chain, and there is a coset decomposition of 
the form A = 4ZN+[A,/4ZN]+[A/A,]. The lattice A, 
is clearly a mod-2 lattice scaled by a factor of 2; conse- 
quently, A, = 4 Z N  + 2C, where C is a binary (N, K’) code 
for some K‘, by Lemma 3; in other words, the coset 
representatives [A,/4ZN] may be taken as 2C, or 
{2Ca,g,}, where the g, constitute a set of K‘ binary 
generators for the code C. Thus we may take K‘ of the 
generators to be 2g,, 1 I k I K‘, and we may write 

A = 4 Z N + 2 C + {  xa ,g , )  

where the g, ,  K’+ 1 I k I K, are N-tuples of integers 
modulo 4 that are not all even, such that { C a , g , }  is a 
system of coset representatives [ A/A,]. The generators 
{2g,, K’+ 1 I k I K } generate a lattice A‘ that is a sub- 
lattice of A,,  whose elements are congruent to 2c‘ modulo 
4, where c’ is a codeword in a binary (N, K - K’) block 
code C‘ that is a subcode of the code C, so K - K‘ I K ‘ .  

It is sometimes possible to find a set of generators 
{ g , ,  K ’ + l s k ~ K }  for A/A, such that each g ,  is an 
N-tuple of ones and zeros and such that the “carries” (the 
twos-coefficients in the vector sum) of any sum g, + g,, 
are a codeword in C; then we say that A is decomposable. 
The coset decomposition then becomes the code formula 
A = 4 Z N  + 2C, + C,, where C, is a subcode of C,. This 
means that A consists of all integer N-tuples whose coor- 
dinate ones-coefficients in the standard binary representa- 
tion form a binary N-tuple a, that is a codeword in C,, 
and whose coordinate twos-coefficients form a binary N- 
tuple u, that is a codeword in C, (this is the “coordinate 
array” idea of Leech and Sloane [6]). 

The minimum squared distance of a mod4 decompos- 
able real lattice A is 

d i i n ( ~ )  = min[16,4dH(c1), d,(cO)] 
because, on the one hand, there are N-tuples in 4 Z N  of 
norm 16, in 2C, of norm 4d,(C,) and in C, of norm 
d H ( C O ) ;  on the other hand, if X=2a ,+a0mod4  and 
a , fO ,  then 11X1122d,(C,); if a , = O  but a , # 0 ,  then 
llX11* 2 4d,(C,); finally, if a ,  = a, = 0, then llX112 216 (if 
X # 0). This suggests that we shall want to choose codes C, 
and C, for which the Hamming distances are in the ratio 
1 :4 .  

Most of the mod4 binary lattices useful in practice are 
decomposable. For example, the lattice RE, is a version of 
the Gosset lattice which is mod4 and decomposable, with 
the code formula RE, = 42’  + 2(8,7,2) + (8,1,8). The 
standard binary representation of an integer modulo 4 is a 
more elementary example of a decomposition of this type, 
with the code formula 2 = 4 2  + 2(1,1) + (1,l); this simply 
means that every integer modulo 4 can be expressed as a 

binary linear combination of the two generators 2 and 1, 
where the combination can be specified by a 2-bit label. 

The simplest example of an indecomposable mod4 lat- 
tice is the two-dimensional lattice A = {( I,, x,): n, + x2 = 
Omod4}, for which C is the (2,l) code with generator 
(1, l), so 2C has generator g, = (2,2), but g, must be taken 
as (1, -1) or ( - 1 , l ) ;  however, this lattice can be made 
decomposable by inverting the sign of one coordinate. The 
Leech lattice A,, is an example of a fundamentally inde- 
composable mod-4 lattice. 

Fig. 8(a) illustrates the coset decomposition A /A,/42 
of a mod4  binary lattice that is used above. The K’-bit 
label a, specifies a coset of 4ZN in the partition A,/4ZN, 
and the ( K  - K’)-bit label a, specifies a coset of A, in the 
partition A /A ,. Altogether, therefore, the K-bit label 
(a,, a , )  specifies a coset of 4ZN in the partition A/4ZN. 
Fig. 8(b) illustrates the same decomposition when A is a 
decomposable mod-4 binary lattice with code formula 
A = 4 2  + 2C, + C,; the form is then that of a coset code 
C(ZN/2ZN/4ZN; C,, C,). (If C, is the (N, N )  code, then 
A, = 2ZN,  A is actually a mod-2 lattice, and Fig. 8 
reduces to Fig. 7.) 

Fig. 8. Illustration of mod-4 binary lattice A as union of 2 K  cosets of 
4 Z N ,  each coset corresponding to binary label ( a o , a l ) .  (a) General 
case. (b) Case where A is decomposable. 

It should be clear how to extend Fig. 8 to real binary 
lattices of any 2-depth m, using a partition chain 
A / A , / .  . . /2”ZN of sublattices of A consisting of all 
elements of A whose coordinates are in 2 2  N ,  4 2  N ,  and so 
forth. The decomposition of complex binary lattices is 
similar. Mod-2 complex binary G-lattices are always de- 
composable, with a code formula of the form A = (P2G + 
(PC, + C,, as we can see from the following lemma. Com- 
plex binary lattices with depths of three or more are not 
necessarily decomposable, but the ones that we are con- 
cerned with generally are. 

Lemma 4: An N-dimensional complex G-lattice A is a 
mod-2 binary lattice if and only if it is the set of all 
Gaussian integer N-tuples that are congruent modulo (P2 to 
an N-tuple of the form (Pc, + c,, where c, is a codeword in 
a binary (N, K )  code C,, and c, is a codeword in a binary 
(N, J -  K )  code C, which is a subcode of C,. The redun- 
dancy of A is r ( A )  = 2N - J ,  and its minimum squared 
distance is 

d i i n ( ~ )  = min [4,2dH(c,) ,  dH(c0)]. 
Proof: If A is a mod-2 binary lattice, then 

GN/A/2GN= (P2GN is a partition chain, and A/2GN has 
order 2J for some integer J .  Since GN/2GN has order 22N, 
G “/A has order 22N-J, so the redundancy of A is r( A )  = 

2 N  - J. A is the union of 2’ cosets of 2 G N =  (P2GN, and 
we may take the coordinates of the coset representative of 
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any such coset to be of the form +cl + c,, where c1 and c, 
are binary N-tuples. Sums of coset representatives may be 
taken mod 2G 

Consider the set A, of all points in A whose coordinates 
are all multiples of +. Then A/A,/+’GN is a partition 
chain, and there is a coset decomposition of the form 
A = +2GN+[A,/+’GN]+[A/A10]. The generators of the 
lattice A, modulo G2GN may be taken as +gk, 1 < k I K, 
for some K ,  where each g, is a binary N-tuple; conse- 
quently, A, = +’G + +C,, where C, is the binary (N, K )  
code generated by these g,. Similarly, the generators of the 
lattice A modulo A, may be taken as g,, K + 1 I k < J, 
where each g, is a binary N-tuple; consequently, A =  
A, + C,, where C, is the binary (N, J - K )  code gener- 
ated by the g,, K + 1 I k I J. Since A is a G-lattice, 
X E A implies +A E A. Therefore, C, must be a subcode of 

The minimum distance expression arises from the fact 
that there are N-tuples of norm 4 in +’GN, of norm 
2d,(C,) in +Cl, and of norm d,(C,) in C,; conversely, if 
X 5 +cl + c, mod +2 and c, # 0, then llX112 2 dH(Co);  if 
co = 0 but c1 # 0, then llX11’ 2 2d,(C,);  finally, if co = c1 
= 0, then llh112 2 4 (if X # 0). 

For the converse, let A be the set of all Gaussian integer 
N-tuples X = +cl + co mod +2. To show that A is a G- 
lattice, we must show that if A,, A, E A, then A, + A, E A ,  
and also if A E A ,  then - X E A and ih E A. The first two 
propositions follow immediately from 2X = 0 mod +2. The 
third follows from iX = +A - X E A, where the fact that 
+ A E  A depends on C, being a subcode of C,. A is a 
Gaussian integer lattice with 2GN as a sublattice (by 
construction). 

A mod-2 complex G-lattice A has depth 1 if and only il 
the code C, of Lemma 4 is the (N, N )  code; then its code 
formula can be simplified to A = +G + C,. Otherwise, it 
has depth 2. 

For example, as a complex lattice, the mod-2 depth-1 
Schlafli lattice D4 is decomposable with the code formula 

D4 = +G2 + (2,1,2). 

Thus p( 04) = 1, r( D4) = 1, p (  D4) = 1/2, and diin( D4) = 

2, in agreement with the values obtained earlier for D4 as a 
real lattice. As a complex lattice, the mod-2 depth-2 Gosset 
lattice E, is decomposable with the code formula 

E, = G2G + + (4,3,2) + (4,1,4) 

(see part 11). Thus p ( E 8 )  = 2, r (E8)  = 4, p ( E , )  =1, and 
d;,( E,) = 4, in agreement with the values obtained earlier 
for E, as a real lattice. The complex binary representation 
of a Gaussian integer mod+2 is a more elementary exam- 
ple of a decomposition of t h s  type. 

As in the real case, complex binary lattices that are not 
mod-2 are not necessarily decomposable, i.e., expressible 
purely in terms of binary codes. However, the lattices that 
are useful in applications generally are as follows. Let 
CP-1/CP-2/ . . /C, be a partition chain of binary (N, K , )  
codes, 0 5 j I p - 1, i.e., C, is a subcode of C,+ ,. Then let 
A be a complex binary lattice whose elements are the set 

(or modulo 2). 

Cl. 

of Gaussian integer N-tuples h that are congruent to 
+P-’cP- ,  + . . . + c, modulo +P,  where c, is a codeword in 
the code C,, i.e., the coefficients of ( P J  in the complex 
binary representation of X are codewords in C,, 0 I J I 
p - 1. We represent this by the (complex) code formula 

A=+’”GN++P-VP-,+ 1 . -  + C,. 

This is the coordinate array idea again, but using the 
complex binary representation rather than the standard 
binary representation. 

Some of the principal properties of such a complex 
decomposable lattice are as follows. 

a) A is a G-lattice, because if X E A, then +A E A, in 
view of the subcode structure of the code formula; thus 
ih  = (+ -1)h E A. 

b) A has depth p (assuming that KP-, < N). 
c) The order of the partition A/+PG” is the product of 

the 2K1; the informativity of A is k ( A )  = CK,; the redun- 
dancy of A is r ( A ) =  Np-CK,=C(N- K,); and the 
normalized redundancy of A is p ( A )  = p - CK,/N = 

C(1- K,/N). 
d) The minimum squared distance of A is 

d &,( A ) = min [ 2P, 2 IJ- ‘dH ( CP- I ) ,  . . . , d ,  ( Co )] 

because, on the one hand, we can exhibit N-tuples with all 
of these norms by appropriate choice of codewords; on the 
other hand, if j (  A )  is the smallest index such that c, # 0 in 
the above congruence, then X has at least dH(C,) coordi- 
nates with norm at least 21. This suggests that we shall 
want to choose a code partition chain Cfi- , /CP-J. . . /C, 
for which the Hamming distances are in the ratio 2/4/ . . . . 

A decomposable complex lattice of depth p may be 
depicted as a coset code C( G N/+G ”/ . . /+IJG N ;  C,, . . . , 
C,-,), analogously to Fig. 8(b), where the coset of +JGN 
in the partition +JGN/+J+’GN is determined by a code- 
word from <, 0 I j I p - 1. 

H. Dual Lattices 

If A is a binary lattice of depth p, either 2N-dimen- 
sional real or N-dimensional complex, we define its dual 
lattice AL as the set of all Gaussian integer N-tuples y 
that are orthogonal to all vectors x E A modulo + p ,  where 
we use the complex inner product (x, y ) .  That is, (x, y )  is 
a Gaussian integer in the lattice +PG, or a multiple of +P.  

For example, it is easy to verify that D4 is self-dual, using 
the fact that D4 is the set of all pairs of Gaussian integers 
that are both even (in +G) or both odd (in +G +1). 

If A is a binary lattice of depth p,  we may regard 
G N/A/+PG and G N/A’/+PG as dual partition chains, 
since +”GN is the lattice of all vectors orthogonal to all 
vectors in G N  modulo +P,  and vice versa. It is straightfor- 
ward to verify that the order of GN/A is the same as the 
order of A’/+PGN, which implies that the order of GN/A1 
is the same as the order of A/+PG”. Therefore, the 
redundancy of A’ is the informativity of A ,  and vice 
versa. Moreover, if A/A‘ is a partition of binary lattices of 
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depth p,  then G N/A/A'/+PG 
are dual partition chains, and A''/,' is a partition of 
binary lattices with the same order and depth as A/A'. 

If A is a decomposable N-dimensional complex binary 
lattice of depth p,  with code formula 

and G ,/Af '/A'/+PG 

A=+PGN++P-lCP-l+ . . .  +eo, 
then its dual lattice A' is a decomposable complex binary 
lattice of depth p,  with code formula 

A' =+"GNf+P-'C$ + . . .  +CP?, 

where CJ' is the dual code to C,. (Recall that the dual 
code to a linear binary (N, K )  block code is an (N, N - K )  
code and that, if C' is a subcode of C, then C' is a 
subcode of (C') '.) This proposition may be verified by 
noting that Co'/ . . . /eP$' is a code partition chain, that 
every generator +P-J-'g: of A'/+PGN is orthogonal 
mod +" to every generator +J'gJ. of A/+PG ,, and that the 
dimensions are such that the informativity of A' is equal 
to the redundancy of A and vice versa. 

For example, the Schlafli lattice D4 is self-dual, because 
its complex code formula is D4 = +G2 + (2,1,2), and the 
(2,1,2) code is self-dual. The Gosset lattice E ,  is self-dual, 
because its complex code formula is E,  = +,G4 + +(4,3,2) 
+ (4,1,4), and the (4,3,2) and (4,7,4) codes are duals. 

An alternative definition of the dual of an N-dimen- 
sional real lattice A with 2-depth m is the lattice A' 
consisting of all integer N-tuples orthogonal to all N -  
tuples in A modulo 2", using the real inner product. For 
the lattices that we will be considering, this definition 
coincides with the definition given above when the depth 
(+depth) p of A is even, so that p = 2m; when p is odd, 
p = 2m - 1, the dual lattice under this definition will be a 
version of the dual lattice as defined earlier, rotated by the 
rotation operator R. When a real lattice is decomposable, 
the code formula for its dual has the same relation to its 
code formula as is given in the complex case above. For 
example, the Gosset lattice E,  has depth 2 and has real 
code formula E, = 2 2 '  + (8,4,4); its dual under this alter- 
native definition is still itself, because the (8,4,4) code is 
self-dual. The Schlafli lattice D4 has depth 1 and has real 
code formula D4 = 2Z4 + (4,3,2); its dual under this alter- 
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denote by A(0, n ) ,  may be regarded as either a 2"-dimen- 
sional complex G-lattice or a 2"+ '-dimensional real lattice. 
The first few members of the family are A(0,O) = G = Z 2  
(the Gaussian integer lattice or the two-dimensional real 
integer lattice), A(O,1) = D4 (the Schlafli lattice), A(O,2) 
= E, (the Gosset lattice), A(O,3) = A,, (the 16-dimen- 
sional Barnes-Wall lattice), and A(0,4) = A,, (the 32- 
dimensional Barnes-Wall lattice). These are the densest 
lattices known in 4, 8, and 16 dimensions (and, until 
recently, 32) [7]. 

The Barnes- Wall lattices are decomposable, with code 
formulas that involve the family of Reed-Muller codes. 
Recall that the Reed -Muller code RM(r, n ) ,  0 I n ,  0 5 r 
I n ,  is a code of length N = 2", minimum distance 
d H = 2"-', and with K (  r, n )  = C, ~ _<.e,,, information 
bits, where Cfl, is the combinatorial coefficient 
( n ! ) / [ (  j ! ) ( (  n - j ) ! ) ] ;  further, the Reed-Muller codes of a 
given length are nested, in the sense that RM(n, n ) /  
RM(n - 1, n ) /  . . . /RM(O, n )  is a code partition chain. 

The Barnes-Wall lattice A(0, n )  has depth p equal to n 
and may be defined as the complex G-lattice that has the 
code formula 

A (0, n ) = +"G + +"-' RM ( n  - 1, n )  + . * * + RM (0, n), 

where N = 2". For example, as we have already seen, 
R(O,O)=G, A(O,1)= D4=+G2+(2,1,2), A(O,2)=EX= 
+,G4 + +(4,3,2) + (4,1,4), and so forth. Thus the complex 
code formula involves all Reed-Muller codes of length 
N = 2" (this construction is due to Cusack [19]). There are 
similar real code formulas involving alternate Reed-Muller 
codes of length 2N, as we shall tabulate below. 

From the properties of decomposable binary lattices and 
Reed-Muller codes, the redundancy and informativity of 
R(0, n )  are both equal to n2"-' = nN/2, the normalized 
redundancy and informativity are both equal to n/2, and 
the minimum squared distance d k n  is equal to 2". Conse- 
quently, the fundamental coding gain is y = 2"12. Because 
RM(n - r - 1, n )  and RM(r, n) are dual codes, the dual 
of A(0, n )  has the same code formula as A(0, n )  itself, and 
A(0, n )  is self-dual for any n .  

The principal sublattices of the Barnes-Wall lattices are 
a family of lattices A(r, n ) ,  0 I n ,  0 I r I n ,  which may be 

native definition is RD4, whch has code formula RD4 = * defined as decomposable 2"-dimensional complex G- 
2Z4  +(4,1,4), since the (4,3,2) and (4,194) codes are 
duals. 

lattices of depth p = n - r with the code formulas 

A ( r ,  n )  = +"-'GN+ +"-'-' RM ( n  - 1, n )  

111. USEFUL LATTICES AND THEIR PARTITIONS + . . . + RM(r ,  n )  

In this section we list the lattices that have proved useful 
in applications. These are primarily the sequence of 
Barnes -Wall lattices and their principal sublattices, all of 
which are closely interrelated. Another close relative is the 
Leech lattice, probably the most important lattice in lattice 
theory. We give the principal properties of these lattices, 
including their geometrical parameters and their partition 
properties. For further details, see part 11. 

The Barnes-Wall lattices are a family of 2"-dimensional 
binary lattices. The nth member of the family, which we 

where N = 2". Thus A ( n ,  n )  is GN, or the integer lattice 
Z2, ,  and A(0, n )  is the Barnes-Wall lattice as previously 
defined. The lattice A ( n  - 1, n ) ,  n 21, is the "checker- 
board lattice" D,, with code formula D, = + G N +  
RM ( n  - 1, n ) = +G + (N, N - 1,2), where N = 2" and 
(N, N - 1,2) is the single-parity-check code of length N. 

In view of the general formula for the dual of a decom- 
posable complex G-lattice and the duality properties of 
Reed-Muller codes, the duals of the principal sublattices 
are the decomposable 2"-dimensional complex G-lattices 
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TABLE I 
USEFUL BINARY LATTICES 

Real Code Formula Complex Code Formula ( r ,  n) A 2N P 

(0,O) Z2 2 0 Z2  c 
G2 
+G2 +(2,1,2) 

c4 

+C4 +(4.3,2) 
+2c4 + +(4,3,2) + (4,1,4) 

Zl6 16 0 ZI6 CX 
'16 16 1 2Z16 +(16,15,2) WX +(8,7,2) 

(393) 

(L3)  HI6 16 2 2ZI6 +(16,11,4) +*G8 + +(8,7,2) + @,4,4) 
(2,3) 

(0,3) '16 16 3 4Z16 +2(16,15,2)+(16,5,8) G3G8 + +2(8,7,2)+ +(8,4,4)+(8,1,8) 

z 32 32 0 z 32 c'6 (4,4) 
(3,4) '32 32 1 2Z32 +(32,31,2) +GI6 +(16,15,2) 
(L4) '3 2 32 2 2Z32 +(32,26,4) +2C'6 + +(16,15,2)+(16,11,4) 
(L4) H3 2 32 3 4Z32 + 2(32,31,2) + (32.16,8) +3C'6 + +2(16,15,2)+ +(16,11.4) 

+(16,5,8) 

+ +(16,5,8) +(16,1.16) 
(0~4) A32 32 4 4Z3' + 2(32,26,4) + (32,6,16) +4C16 + +3(16,15,2)i +2(16,11,4) 

z 24 24 0 z 24 c'2 

'24 24 1 2Z24 +(24,23,2) +G'2 +(12,11,2) 
'24 24 2 2Z24 +(24,18,4) +2C'2 + +(12.11.2)+(12,7,4) 
H24 24 3 4ZZ4 + 2(24,23,2) + (24,12,8) +'G12 ++*(12,11,2)++(12,7,4) 

+ 12,5,8)' 

+ +(12,5,8)' + (12,1,16)' 
24 4 4Z24 +2(24,18,4)+(24,6,16)' + 4 ~ 1  I + +3(12,11,2)+ +2(12.7,4) A 24 

of depth p = n - r with the code formulas 

A ( r ,  n ) = 9"- 'G + +'-'-' RM ( n - r - 1, n ) 
+ . * . + RM ( 0 ,  n ) 

where N=2". Thus A(n ,n) '  = G N = Z Z N ,  A(0,n)' = 
A ( n ) ,  and A ( n  - 1, n )  I, n 21, is the dual D$ of the 
checkerboard lattice D,, with code formula D$ = +GN+ 
RM(O,n)=$GN+(N,1,N),  where N = 2 "  and ( N , l , N )  
is the repetition code of length N .  

Table I gives the real and complex code formulas of the 
Barnes-Wall lattices and their principal sublattices for up 
to 32 real dimensions (16 complex dimensions). In addi- 
tion to the designations already introduced, we designate 
A(l,3) as H16, A(1,4) as H3,, and A(2,4) as X3, ,  For 
reference, we also give "code formulas" for the Leech 
lattice A,, and its principal sublattices H,,, X2,, D,,, and 
Z 24, whch are closely related to their 32-dimensional 
relatives. (A2, and its principal sublattice H2, are inde- 
composable complex binary lattices of depths 4 and 3, 
respectively; in these two cases a notation such as (24,6,16)' 
means the set of all binary linear combinations modulo 4 
of a set of six generators whose coordinates are integers 
modulo 4, such that the minimum nonzero norm in any 
coset with such a representative is 16.) 

Table I1 gives additional information on these lattices. 
The informativity k( A )  and the normalized informativity 
K(A) follow from the dimensionality of the Reed-Muller 
codes in the complex code formula, and from k ( A )  (or 
from the code formulas) we can compute the redundancy 

r ( A )  and the normalized redundancy p(A). For all of 
these lattices, the minimum squared distance dAn( A )  is 
equal to 2'; it follows that the fundamental coding gain is 
given by y (  A )  = 2ppp = 2". (This expression for the funda- 
mental coding gain has the following interpretation: both 
A and +PGN have the same minimum squared distance 
2', but A is the union of 2k(h) cosets of +'GN and is 
therefore 2k(") times as dense as +'GN in 2N-space. A 
constellation based on A will therefore be a factor of 24" '  
smaller in 2N dimensions, or 2"(*) in two dimensions, 
which translates into power savings of a factor of 2"(").) 
We also give the normalized error coefficient No = 
No( A ) / N  (normalized to two dimensions), whch may be 
obtained from the lattice literature or from the weight 
distributions of Reed-Muller codes. Finally, we give the 
number 2" of states in the trellis diagrams for A that are 
derived in Part 11, as well as the corresponding normalized 
decoding complexity ED = No( A)/N, per two dimensions, 
where ND(A) is the number of binary operations (ad- 
ditions or comparisons of two numbers) required to de- 
code A (find the closest element of A to an arbitrary point 
r in 2N-space), using the trellis-based algorithms of 
Part 11. 

(Note that the constellation expansion factor 2p(") is 
almost a factor of two smaller for H, ,  than for A,,, while 
the fundamental coding gain is only slightly inferior (by a 
factor of 2-l"). The error coefficient and decoding com- 
plexity are also about a factor of two smaller. Therefore, 
the lattices H,, may be attractive alternatives to the 
densest lattices A 2 N  in practical applications. In addition, 
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2 2  

2 4  

'4 

2 8  

D8 

Z 
'16 

4 6  
A16 

z 32 

'3 2 

x3 2 

H3 2 

z 24 

'24 

x24 

H24 
A 74 

0 
0 
1 

0 
3 
4 

0 
1 

11 
12 

0 
15 
26 
31 
32 
0 

11 
18 
23 
24 

0 
0 

0 

1 

0 

1/2 

3/4 

7/8 
11/8 
3/2 

0 
15/16 
13/8 

31/16 
2 

0 
11/12 

3/2 
23/12 

2 

0 0 
0 0 
1 1/2 
0 0 
1 1/4 
4 1 

0 0 
1 1/8 
5 5 / 8  

12 3/2 
0 0 
1 1/16 

11 11/16 
32 2 

0 0 
1 1/12 
6 1/2 

6 3/8 

13 13/12 
24 2 

1 
1 
2 

1 
2 
4 

1 
2 
4 
8 

1 
2 
4 
8 

16 
1 
2 
4 
8 

16 

1 0.00 4 1 

1 0.00 4 1 
2112 1.51 12 2 

1 0.00 4 1 
23/4 2.26 28 2 

2 3.01 60 4 

1 0.00 4 1 
27'8 2.63 60 2 

2"/' 4.14 284 8 
23/2 4.52 540 16 

1 0.00 4 1 
215/16 2.82 124 2 
213/' 4.89 1244 16 

231/16 5.83 5084 128 
4 6.02 9180 256 

1 0.00 4 1 
21'/'2 2.16 92 2 

2'12 4.52 508 8 
223/12 5.77 8188 128 

4 6.02 16380 256 

1 

1 
3.5 

1 
5.75 

11.75 
1 

-1  
- 32 
- 64 

1 
7.5 - 16 

- 792 - 1584 
1 
1.25 

- 42 
- 632 - 1264 

the Leech half-lattice HZ4 is decomposable as a real lattice, 
with the (24,12,8) Golay code appearing in the code 
formula, whereas the Leech lattice A24 itself is not.) 

Because of the nested character of Reed-Muller codes, 
the code formulas show that Z 2 N  = A(n,  n ) / A ( n  - 1, n ) /  
. . . /A(O, n )  is a partition chain of 2"-dimensional com- 

plex lattices of depths 0/1/.../n and with distances 
1/2/ - . -  /2" (for short). Also, we may verify that 
A(0, n)/+A(l, n ) /  . . . /+"A(n, n )  = +"GN= R"Z2N is a 
partition chain of 2"-dimensional complex lattices of depths 
n / n  / . . . / n  and with distances 2"/2"/ . . /2". Similarly, 

is a partition chain of 2"-dimensional complex lattices of 
depths 0/1/ . . . / n  and with distances 1/2/ .  . * /2", and 

= R"Z2N is a partition chain of 2"-dimensional complex 
lattices of depths n / n /  . . / n  and with distances 

Fig. 9 is an illustration of these partition chains in 
dimensions 2, 4, 8, and 16, extended indefinitely using the 
lattices +JA(r ,  n )  = RJA(r ,  n )  for all j 2 0. The lattices 
are arranged in columns according to depth, where for the 
purposes of this diagram we regard $dA(r, n )  = RJA(r ,  n )  
as having depth n - r for any j 2 0. One unit of vertical 
distance corresponds to a two-way partition. The lines 
indicate sublattice relationships. From this diagram, we 
can easily find the least p for which $WN= RPZ2N is a 
sublattice of any given lattice, and thus verify the depths 
of lattices and partition chains. 

In the rest of this paper, we will be considering coset 
codes C ( A / A f ;  C )  based on partitions A/A' of lattices 
that appear in Fig. 9. The partitions that we will use are 
generally those with A' at least as dense as A, depths no 
greater than four, and orders no greater than 212. Table I11 
summarizes some of the principal properties of such parti- 
tions, including: the (real) dimension 2 N ;  the order lA/A'l 

Z 2 N =  A(n ,  n>'/A(n-l,n)l/.../A(O,n)l = A ( O , n )  

A(0, n) = A(0, n) */+A(l, n) '/. . * /+"A(n, n) * = +"GN 

2"/2"/ . . . /2". 

I \  

Fig. 9. Partition chains involving Barnes-Wall lattices, principal sublat- 
tices, and duals of principal sublattices in 2,4, 8, and 16 dimensions. 

of the partition; its depth p( A/A') = p( A'), normalized 
informativity K (  A/A') = K (  A'), and normalized redun- 
dancy p(A/A') = p ( A ) ;  the minimum squared distances 
of A and A'; and the normalized (per two dimensions) 
complexity ED = N , / N  of decoding the partition, where 
No is the number of binary operations required by the 
trellis-based decoding algorithms of part I1 to determine 
the closest element of each of the IA/A'l cosets of A' in 
the partition A/A' to an arbitrary point r in 2N-space. 
(Note:  if A/Af is a partition, then so is R A / R A ' -  
+A/+A'; if it is simpler to decode R A / R A '  than A/A', 
the lesser Ijb is given.) The final column gives sD/lA/A'1, 
to show that f l D  is approximated by a ( A / A f ( ,  where a is a 
small number in the range from one to six. 
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TABLE I11 
USEFUL LATTICE PARTITIONS 

A A' 2N l A / k l  P K P 4l,"(A) dA"(A') E D  & / I  A /All 

2 
2 
2 
2 
4 
4 
4 
4 
4 
4 
4 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 

16 
16 
16 
16 
16 
16 
16 

2 
4 
8 

16 
2 
4 
8 

16 
32 
64 

128 
2 
8 

16 
16 
32 

128 
256 
256 
2l 
212 

2 
16 
32 

128 
21 
212 

256 

1 
2 
3 
4 

1 
2 
2 
3 
3 
4 
4 

1 
2 
2 
3 
3 
3 
3 
4 
4 
4 

1 
2 
2 
3 
3 
3 
4 

0 
0 
0 
0 
0 

0 

0 

0 
0 

1/4 
0 
1 

3/4 
1/4 

0 
1 

1/4 
0 
0 

1/2 

1/2 

1/2 

5 / 8  

3/2 

'c 

1 
1 
1 
1 

1 
2 
1 
2 
1 
2 
1 

1 
2 
1 
4 
2 
2 
1 
4 
2 
1 

1 
2 
1 
4 
2 
1 
8 

2 2 
4 4 
8 8 

16 16 

2 5 
4 10 
4 16 
8 32 
8 56 

16 112 
16 208 

2 6.5 
4 30 
4 44 
8 60 
8 88 
8 280 
8 504 

16 560 
16 3792 
16 7376 
2 7.25 
4 74 
4 104 
8 176 
8 8440 
8 16376 

16 1552 

1 
1 
1 
1 

2.5 
2.5 
2 
2 
1.75 
1.75 
1.6 
3.25 
3.75 
2.75 
3.75 
2.75 
2.2 

2.2 
- 2  

- 2  
- 2  

3.6 
4.6 
3.25 

- 6  
- 4  
- 4  
- 6  

IV. TRELLIS CODES 

A .  Introduction to Trellis Codes 

A trellis code is a coset code Q=(A/A'; C )  as shown in 
Fig. 1, where C is a rate-k/(k + r )  convolutional code. In 
t h s  paper C will always be a binary convolutional code, 
and A and A' binary lattices, generally mod-2 or mod-4. 

The codewords in a rate-k/( k + r )  convolutional code 
may be expressed as sequences ( a  ,, a , + 1, . . . ) of binary 
(k + r)-tuples ai, which serve as labels that select cosets 
A'+ c(a , )  of A' in the partition 11/11'. The code sequences 
in a trellis code C(A/A'; C )  therefore consist of the se- 
quences of elements of A that are congruent to some coset 
representative sequence (c (a , ) ,  c(a,+l), . . e )  modulo A', 
where (a , ,  a,,,, . . . ) is a codeword in C .  

For technical reasons, all sequences (s,, s, + 1, . . . ) are 
assumed to have a definite starting time t ,  although they 
may continue indefinitely. We may associate with any such 
sequence a formal power series in the delay operator D, 

where t may be any integer, positive or negative. Thus a 
coset code maps a label sequence a ( D )  to a coset repre- 
sentative sequence c( D). 

The important properties of a convolutional code are 
linearity and time-invariance. Linearity means that the 
mod-2 sum of any two codewords is a codeword. Time- 
invariance means that the time shift of any codeword is a 
codeword, i.e., if a ( D )  is a codeword, then so is D a ( D ) .  
(It follows that a convolutional code is a vector space over 

s (D)=s ,D'+s ,+,D'+'+ . . .  

the field of binary formal power series f ( D ) , f ,  E { O , l } ;  
the dimension of this vector space is k, and any codeword 
a(  0) can be written as a( D) = Zf,( D)g,(  D), where the 
g,( D), 1 I j I k, are a set of k generator sequences that 
form a generator matrix G ;  see [20].) We assume that the 
labeling function c ( a , )  is time-invariant; then a trellis code 
is also time-invariant, although, as we shall see in more 
detail below, not necessarily linear. 

A convolutional code C has a well-defined state space, 
whch is a vector space over the binary field of some 
dimension v. The parameter v is called the overall con- 
straint length, or just constraint length, of C .  The code C 
can be generated by a linear (binary) finite-state machine 
with k inputs, k + r outputs, and v binary memory ele- 
ments; such an encoder has 2" states. 

A trellis diagram for a 2"-state, rate-k/(k + r )  convolu- 
tional code is an extended state transition diagram for the 
encoder that generates C. For each time t ,  it has 2" nodes, 
or states, representing the possible states at time t. For 
each possible state transition, it has a branch connecting 
the two corresponding nodes. There are 2k branches leav- 
ing and entering each node, and each is labeled with the 
(k + r)-tuple a that represents the encoder output associ- 
ated with that state transition. Thus we may obtain a trellis 
diagram for a trellis code C(A/A'; C) by talung a trellis 
diagram for C and replacing each label a by the corre- 
sponding coset representative c( a ) ,  representing the coset 
A'+ c ( a ) .  

The minimum Hamming distance d H ( C )  of a convolu- 
tional code C is the minimum Hamming distance between 
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any two codewords in C, i.e., the minimum number of 
coordinate differences between the outputs a on any two 
paths in the trellis that start and end in a common state. 
Because C is linear, this is also the minimum Hamming 
weight of any codeword, which is the minimum weight of 
any path that starts and ends on a zero state. 

The minimum squared distance d&,(C) of a trellis code 
C(A/A’; C )  is the minimum squared distance between 
any two code sequences in C,  which is the lesser of a) the 
minimum distance IlX,(D)- X2(D)112 between sequences 
X,(D) and X,(D) that correspond to two distinct paths 
that begin and end in a common state; and b) the mini- 
mum distance d&J A‘) between elements of A’, corre- 
sponding to “parallel transitions” associated with any 
given branch. (If h ( D )  is a code sequence, then so is 
A (D) + X’D J for any A’ E A’.) 

For example, the four-state Ungerboeck code shown in 
Figs. 2 and 3 uses the four-state rate-1/2 convolutional 
code whose encoder and trellis diagram are illustrated in 
Fig. 10. Contrary to convention, the encoder is shown in 
coset code form, using the partition (2, 2, 1)/ 
(2,1,2)/(2,0,00) of binary codes of length 2. Let go be a 
coset representative for the nonzero coset in the partition 
(2,2)/(2, l), e.g., go = [lo], and let g ,  be the coset repre- 
sentative for the nonzero coset in the partition (2,1)/(2,0), 
Le., g ,  = [ l l ] .  The two bits u = (uo, a , )  select a 2-tuple 
c ( a )  = aogo + a,g, ,  representing one of the four cosets of 
(2,O) (the single codeword [OO]) in the four-way partition 
(2,2)/(2,0). In the trellis diagram, branches are labeled by 
both a and c ( a ) .  

(2.2)/(2.1) * 
c = = o g o + a ,  g, 

Fig. 10. Convolutional encoder C for four-state Ungerboeck code of 
Figs. 2 and 3, and trellis diagram labeled with both a and c ( a ) .  

The minimum Hamming distance of ths  code (taking 
the outputs as c ( u ) )  is five, because the distance between 
distinct paths is at least two where they diverge, two where 
they merge, and one somewhere in between. (This is be- 
cause the difference between paths is a codeword of the 
(2,1,2) code where they merge and diverge, and a code- 
word in the (2,2,1) code somewhere in between; that is, we 
are exploiting the Ungerboeck distance bound for this 
code partition chain.) 

The trellis code of Figs. 2 and 3 is obtained by replacing 
the code partition chain (2,2)/(2,1)/(2,0) by the corre- 
sponding partition of mod-2 lattices, Z 2/RZ 2/2Z = 
G/+G/+2G. Note that go and g ,  are. still coset represen- 
tatives for the nonzero cosets of R Z 2  in the partition 
Z 2 / R Z 2  = G/+G and of 2 Z 2  in the partition RZ2/2Z2 
= c+G/+~G, respectively, if we regard them as integers 
modulo 2. The trellis diagram of Fig. 10 then continues to 

represent this trellis code, where we now regard the 2- 
tuples c ( a )  as coset representatives of cosets of 22’. 

It is easy to see that the minimum squared distance 
between code sequences corresponding to distinct paths in 
the trellis is the minimum Hamming distance between 
sequences c ( D )  of coset representatives and thus is equal 
to d H ( C )  = 5. However, since d&,(2Z2) = 4, the mini- 
mum squared distance of the trellis code is d&,(C) = 4. If 
X(D)  is any code sequence, the only code sequences at 
distance 4 from X ( D )  are the sequences X(D)+ X‘DJ, 
where A‘ is one of the four elements of 22 ’  of norm 4, 
namely k(2,O) and *(0,2). These are special cases of 
general results for trellis codes based on partitions of 
mod-2 lattices that will be given below. 

B. Geometrical Parameters 

As with lattices, the two principal geometrical parame- 
ters of a trellis code are the minimum squared distance 
dkn(C) between its code sequences and its fundamental 
volume V ( C )  (per N dimensions); these determine its fun- 
damental coding gain y(C). 

We have already introduced d&,(C) and noted that 
dL,(C) = min[di, dk(A‘)], where d; is the minimum 
squared distance lIX,(D)- X2(D)11* between code se- 
quences A,(D) and h, (D)  that correspond to two distinct 
paths that begin and end in a common state in the code 
trellis. If, as with convolutional codes, the distribution of 
distances from a given code sequence to all other code 
sequences does not depend on the given code sequence, 
then d k ( C )  is the minimum squared distance from the 
all-zero code sequence to any other code sequence, i.e., the 
minimum norm of any code sequence. We call such codes 
distance-invariant. All codes in ths  paper are distance- 
invariant. 

The error coefficient N , ( C )  is the average number of 
code sequences that differ from a given sequence by d,$,(C) 
and that first differ from the given sequence at a given 
time t .  By time-invariance, No(C) does not depend on the 
time t ,  and we may take t = 0, say. If the code is distance- 
invariant, then the number of code sequences that differ 
from a given sequence by d k ( C )  does not depend on the 
gven sequence, and we may take the given sequence as the 
all-zero sequence. Thus in a distance-invariant code No(C) 
is the number of sequences of norm d k ( C )  that start at 
time zero. 

The fundamental volume is a trickier concept. Intu- 
itively, since the code C conveys k bits of information per 
unit time (per N dimensions) and has r bits of redun- 
dancy, it is clear that in some sense the trellis code C is 2k 
times as dense as A‘ and a factor of 2‘ less dense than A, 
per N dimensions. Therefore, the fundamental volume 
V(C) should be equal to 2-%’( A’), or to 2‘V( A). 

To substantiate t h s  proposition, we argue as follows. 
Define C, as the set of all code sequences that start at time 
t or later. By time-invariance, all such sets are isomorphic 
to each other and to a particular such set, say C,. How- 
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ever, C ,  is also a proper subset of C,, if t > t’; e.g., C ,  is a 
proper subset of C,. 

Define two code sequences as equivalent modulo C ,  if 
their first difference is at time t or later. Two sequences in 
C ,  are then equivalent modulo C,  if and only if their first 
element c, is the same. Let A, then be the set of all 
possible first elements c,; that is, A , =  {A:  A E A’+ 
c (a , ) } ,  where a ,  is a possible time-zero output from the 
encoder C gven that all previous outputs were zero or, 
equivalently, given that the encoder starts in the zero state. 
There are 2k such a,, and thus A, is the union of 2k cosets 
of A‘. Ordinarily, A, is a lattice, which we call the 
time-zero lattice. By Lemma 1, V(A,) = 2-kV(A’); since 
V(A’) = 2k+rV(A), we also have V(A,) = 2rV(A). 

In an appropriate sense, therefore, the equivalence classes 
of C ,  modulo C,, whch we may write as C,/C,, are 
isomorphc to the time-zero lattice A,. The set C ,  has the 
decomposition 

Co=Co/C,+C, /C,+ . . .  

which by time-invariance is isomorphic to the Cartesian 
product A, x A, X . . . . In other words, C ,  fills space as 
densely as does A, X A,x . . -  . Thus it is reasonable to 
define the fundamental volume of C per N dimensions as 
V ( C )  = V( A,). 

Now we may define the fundamental coding gain of a 
trellis code in the same way as we did for a lattice: 

y (C)  = d;,(C)/V(C)’/”. 

Let us now write k(C) and r ( C )  for the parameters k and 
r of a convolutional code C, and K ( C )  and p ( C )  for 
the normalized informativity and redundancy K ( C )  = 
2k(C)/N and p ( C )  = 2 r ( C ) / N ,  respectively. Since V ( C )  
= V( A,) = 2-k(c)V( A’) = 2‘(‘)V( A), we also have the ex- 
pressions 

y ( C )  = 2“(C)dLn(C)/V( A I ) 2/N 

= 2“(‘) [ dLn(C)/dLn( A’)] y( A’) 

= 2“‘C’[ d~,(C)/2P‘C’] 

where K(C) = K (  C )  + K (  A’) and p(C) = p( A’). Also, 

y (C)  = 2-P(C’d&(C)/V(A)2iN 
,2-P(c) [ d2 r n i n ( ~ ) / d L n ( ~ ) l  Y ( A )  

where p(C)  = p ( C ) +  p(A).  Thus if we define the normal- 
ized redundancy, informativity, and depth of the trellis 
code C as the sums of the corresponding quantities for the 
code C and partition A/A’, where we regard the depth of 
C as 0, then we get expressions analogous to those that we 
obtained for lattices. 

The following lemma is both useful in itself and also 
gves an intuitive explanation of these formulas. 

Lemma 5: If C(A/A‘; C )  is a trellis code based on a 
partition A/A’ of binary lattices, where the depth of A‘ is 

p, and a 2’-state, rate-k/(k + r )  convolutional code C, 
then there is an equivalent trellis code C( G N/$d” ”; C’) 
based on the partition GN/+WN, where C‘ is a 2“-state, 
rate-[k + k(A’)]/Np convolutional code, and N is the 
dimension of A or A’ as complex lattices. 

Proof: If A‘ is a binary lattice of depth p,  then 
GN/A/A’/@WN is a partition chain, with (GN/AI = 2“(”) ,  
lA/A’l= 2k+r ,  (A’/+”GNI = 2k(”’), and JGN/c#PGNI = 2Nfi. 
In view of the coset decomposition G N  = (p%” + 
[A’/@” N]  + [ A/A’] + [ G ”/A], we may select a coset of 
@’GN in the partition GN/$pGN by the following set of 
Np bits: an all-zero r(A)-tuple 0, which selects the zero 
coset of A in the partition GN/A, namely, A itself; a 
(k  + r)-tuple a ,  which selects the coset A’+ c ( a )  of A’ in 
the partition A/A‘ as in the original trellis code 
C(A/A’; C ) ;  and finally, a k(A’)-tuple a’ of “uncoded 
bits” which selects one of the 2k(h’) cosets of (P’G” whose 
union is A‘. These N p  bits can be regarded as the outputs 
of an augmented convolutional encoder C‘, whch has 
k + k( A’) information bits, r + r( A )  redundant bits, and 
the same number of states as the original encoder for C, as 
illustrated in Fig. 11. The set of code sequences that may 
be generated by this augmented encoder are the same as 
those in the original code C(A/A’; C). 

.--_----___--_--____-- 
augmented encoder c’ ‘ 4 cosets of+ ”e 

Fig. 11. Augmented encoder C’ of Lemma 5 .  

An alternative form of Lemma 5 is as follows. If the 
2-depth of A’ is m, then C(A/A’; C) is equivalent to a 
code C ( Z  N/2mZ ”; C’) based on the partition Z N/2mZ ”, 
where C‘ is a 2”-state, rate-[ Nm - r - r(  A ) ] / N m  convolu- 
tional code, and N is the dimension of A or A‘ as real 
lattices. The proof is essentially the same. Indeed, if p is 
even, p = 2m, then the partition Z2N/A/A‘/2mZ2” is the 
same as G ”/A /A’/$W N, and the augmented encoder C‘ 
is the same; if p is odd, p = 2m - 1, then the partition 
Z2N/A/A’/2mZ2N is an extension of GN/A/A‘ /@’GN 
by the partition +W ”/$d’+ ’G N, and the augmented en- 
coder C‘ just uses N more uncoded bits. 

The coding gain y(C) may now be related to that of the 
lattices GN, A ,  A‘, and $PGN as follows. Relative to 
y(A’) = 2“(A’)[dL,(A’)/2”A’)], the gain y (C)  is greater by 
a factor of 2K(c) due to the fact that C conveys K ( C )  more 
bits of information per two dimensions, offset by a dis- 
tance loss factor of dLn(C)/dLn(A’) (if any). Relative to 
y( A )  = 2-P(”)d2,(  A’), the gain y(C)  is greater by the 
distance gain factor of d&(C)/dLn( A), offset by a power 
loss of 2-P(c) due to constellation expansion. If A’ = +WN, 
then y(A’) =1 and dL,(A‘) = 2”(”’), so y(C) is simply 
2“(‘), offset by a distance loss factor of dkin(C)/2P(*’) (if 
any). If A = G N ,  then y(A)  =1 and d&,(A) =1, so y(C)  
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is simply d;,(C), offset by a power loss of 2-P(') due to 
constellation expansion. 

T h s  last expression is the simplest and shows that we 
need to know only the minimum squared distance d;,(C) 
and the normalized redundancy p(C) to compute the fun- 
damental coding gain y(C) = 2 pp(C)diin(C), where the 
normalized redundancy is simply the sum of the normal- 
ized redundancies of the code C and the lattice A. If 
A = G N  = Z 2 N ,  then it suffices to know the normalized 
redundancy r/N of the code C. A small normalized redun- 
dancy p (C) is thus desirable to both minimize constellation 
expansion and maximize coding gain for a given d;,(C), 
as was recognized by Wei [ l l ] .  

Lemma 5 shows that all trellis codes based on partitions 
of binary lattices are equivalent to trellis codes based 
on partitions GN/r#PG N ,  or, by extension, partitions 
ZN/2"ZN of the integer lattice Z N ,  so that in principle 
only these kinds of partitions need to be considered to 
discover all binary trellis codes. In practice, consideration 
of more general partitions A/A' both facilitates the search 
for good codes and simplifies their encoding and decoding. 

C. Linear Trellis Codes 

In general, if c1 and c2 are two code sequences in a 
trellis code C ,  it is not necessarily true that c1 + c2 and 
c1 - c2 are also code sequences. When this property does 
hold, we say that C is a linear trellis code. In this section 
we give some examples of linear trellis codes, including the 
important case where A/A' is a partition of mod-2 binary 
lattices. 

If a trellis code is linear, then it is a lattice, albeit an 
infinite-dimensional lattice. Because it is a time-invariant 
infinite-dimensional lattice, it is usually possible to define 
its parameters on a per-unit-time or per-two-dimensions 
basis, so that they are perfectly finite and analogous to the 
parameters of a finite-dimensional lattice, as we have 
already seen in the previous section. In this sense, linear 
trellis codes are to finite-dimensional lattices as convolu- 
tional codes are to block codes. (To extend th s  analogy, 
nonlinear trellis codes are a generalization of nonlattice 
finite-dimensional sphere packings.) 

A trivial example of a linear trellis code is the repeated 
use of a lattice code. If A is any lattice, let A" be defined 
as the set of all sequences (A,,  A,+1,.  . . ), where A ,  E A ,  
j 2 t. This may be regarded as a trellis code based on the 
"dummy partition" A /A where the convolutional encoder 
C disappears. The trellis associated with A* has one state 
for each time t, and the branch in each time interval is 
labeled by A. 

If C( A /A'; C) is a linear trellis code, it is a sublattice of 
A" and has (A')" as a sublattice, so A"/C/(A')" is a 
partition chain. If the partition a / A '  has depth p ,  then 
(GN)" /C/ (+"CN)"  is a partition chain; if it has 2-depth 
m, then (2N)m/C/(2m2N)m is a partition chain. 

A trellis code C has little chance of being linear unless 
the mapping c ( a )  from encoder output (k + r)-tuples 
(labels) a to coset representatives c is linear modulo A', as 

in Lemma 2; i.e., c ( a )  = aG, where G = { g,, 1 I j I k + r } 
is a generator matrix of k + r vectors of A that span A ,  
modulo A'. The following lemma shows that when A/A' is 
a partition of mod-2 lattices and the labeling map is linear, 
C is linear, and indeed isomorphic to a binary convolu- 
tional code, in the same sense as a mod-2 binary lattice A 
is isomorphic to a binary block code, described in Lemma 
3 (recall that if c ( a )  is an Ungerboeck labeling, it is linear 
modulo A'). 

Lemma 6: If A' is a mod-2 lattice, C is a 2"-state, 
rate-k/( k + r )  convolutional code and the labeling map 
c ( a )  is linear modulo A', then a trellis code C(A/A'; C) is 
the set of all sequences of integer N-tuples that are congru- 
ent modulo 2 to one of the words in a 2"-state rate- 
[ N  - r(C)J/N convolutional code C'. The redundancy of 
d: is r ( C )  = r + r(  A), and its minimum squared distance is 
diin(C) = min[4, dH(C')]. 

Sketch ofproofi By the extension of Lemma 5, C is 
equivalent to a code based on the partition ZN/2ZN, 
where the augmented encoder C' has N output bits and 
redundancy r(  C') = r + r( A). In the augmented encoder, 
the ( k  + r)-tuple a and the uncoded bits a' specify a coset 
of 2 2  in the partition Z N/22 N ,  which may be specified 
by a binary N-tuple c' (a,  a'). The mapping c ' (a ,  a') may 
be taken to be linear mod 2 if c ( a )  is linear modulo A'. 
Thus C is set of all sequences of integer N-tuples that are 
congruent modulo 2 to one of the words in the convolu- 
tional code C'. The minimum squared distance between 
code sequences corresponding to distinct codewords of C' 
is dH(C') ,  and d;,(2ZN) = 4. 

The four-state Ungerboeck code shown in Figs. 2, 3, and 
10 is an example of a code of t h s  type. The encoder of 
Fig. 10 is of the form of the augmented encoder of Fig. 11. 
Many of the important known codes to be listed in the 
next section, including Gallager-Calderbank-Sloane 
(GCS)-type codes and most of the Wei codes, are of t h s  
type. 

Even when a code is not linear, it may still be regular in 
the sense of Calderbank and Sloane [13]. A labeling c ( a )  is 
defined as regular if the minimum squared distance be- 
tween points in two cosets A'+ c ( a )  and A'+ c(a ' )  is a 
function only of the mod-2 sum a@a' of their labels or, 
equivalently, if the minimum norm in the coset A'+ c ( a )  
- ~ ( a ' )  is equal to the minimum norm in the coset A'+ 
c ( a  ea') .  For example, the 2-bit standard binary represen- 
tation is a regular labeling of the four cosets in the 
partition 2 /42 .  If C(A/A'; C) is a code based on a 
partition A/A' with a regular labeling, the minimum 
squared distance between code sequences in the coset 
sequences c(a(  0))  and c(a ' (D))  corresponding to code- 
words a ( D )  and a ' ( D )  is then equal to the minimum 
norm of any code sequence in the coset sequence c ( a ( D )  
@a'( D)) corresponding to the codeword a ( D )  @a'( 0). 
Therefore, the distribution of distances from any given 
code sequence to all other code sequences is the same as 
the norm distribution of code sequences, and the code is 
thus distance-invariant. 
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A labeling is regular under any of thk following condi- 

a) if it is linear, in the sense that c ( a ) -  c(a’) = c (a@a’ )  
modulo A‘, e.g., whenever A and A‘ are mod-2 
lattices; 

b) if it is an Ungerboeck labeling and the Ungerboeck 
distance bound always holds with equality, e.g., any 
Ungerboeck labeling for Z 2/RZ 2/2Z 2/2RZ = 

c) if A and A‘ are N-fold Cartesian products AN and 
(A’)N,  and the labeling for AN/(A’)N is the N-fold 
Cartesian product of a regular labeling for A/A’, 
e.g., when the partition is G ”/$I~G 

In fact, regular labelings (although not necessarily regular 
Ungerboeck labelings) exist for all partitions used in all 
the codes covered in this paper. 

tions: 

G/+G/+2G/$3G; 

or Z N/4Z N .  

V. KNOWN CLASSES OF TRELLIS CODES 

We shall now categorize the principal classes of trellis 
codes that have so far appeared in the literature according 
to the parameters of the previous sections. In the next 
section, we give further generic classes. We shall then 
compare and contrast all of those schemes, including lat- 
tice codes. 

Ungerboeck [8] developed classes of one- and two- 
dimensional trellis codes using rate&/( k + 1) binary con- 
volutional codes. From the viewpoint of this paper, his 
one-dimensional schemes are based on the four-way parti- 
tion 2 / 4 2  of the integers into the four residue classes 
modulo 4, in combination with a binary rate-1/2 convolu- 
tional coder to select cosets of 42. His two-dimensional 
schemes for rectangular constellations, which have the 
greatest practical importance, are based on either the four- 
way partition Z2/2Z2 in combination with a rate-1/2 
convolutional encoder, or the eight-way partition Z 2/2RZ 
with a rate-2/3 convolutional encoder. He also gves codes 
using phase-modulated constellations that are based on 

similar principles and may be regarded as coset codes (see 
Section I-C), but that will not be covered here. 

Table IV gives the characteristics of the Ungerboeck 
one- and two-dimensional schemes. The codes achieve 
increasing dLn as the number 2” of states increases from 4 
to 512, up to the maximum possible value of d:in( A’) = 2p. 
(Note: We use the codes listed in [21], where minor correc- 
tions have been made in the earlier code tables.) The depth 
is p = 4  for the one-dimensional schemes, whle in two 
dimensions p = 2 or 3. The redundancy r is one for both 
classes, but the normalized redundancy p (per two dimen- 
sions) is thus two in the one-dimensional case, versus one 
in the two-dimensional case. The fundamental coding gain 
y is given by the formula 2-Pd2, and is also given in 
decibels. No is the number of nearest neighbors, and 
fi0 = 2N0/N is the error coefficient normalized to two 
dimensions. No is the number of decoding operations 
using the trellis-based decoding algorithms of the partition 
A/A’ whose complexity is given in Table 111, followed by 
a conventional Viterbi algorithm for the convolutional 
code, and so = 2ND/N is the decoding complexity per 
two dimensions. (For each unit of time, for each of the 2’ 
states, the Viterbi algorithm requires 2k additions and a 
comparison of 2k numbers, or 2k - 1 binary comparisons, 
so that its complexity is ,82kiv, where ,8=2-2-k,  and 

is the number of branches per stage of the trellis, 
which is the measure of complexity used by Ungerboeck 
[21], following Wei [ll].) 

The error coefficient reduces the effective coding gain by 
an amount that depends on the steepness of the error 
probability curve. In this paper, we will use the rule of 
thumb that every factor of two increase in the error 
coefficient reduces the coding gain by about 0.2 dB (at 
error rates of the order of this will enable us to 
compute an effective coding gain yerf (in dB), normalized 
for the error coefficient No. In principle, the error coeffi- 
cients at every distance ought to be considered, and the 
effective coding gain evaluated in the same way for each; if 

2k+u 

TABLE IV 
UNGERBOECK CODES 

N A A‘ 2’ k / ( k  + r )  P 4 , n  Y dB $0 @D 

4 2  
4 2  
4 2  
4 2  
4 2  
4 2  
4 2  
4 2  

222  
2Rz2  

2Rz2  
2RZ2 

2RZ2 
2RZ2 
2RZ2 
2Rz2  

4 
8 

16 
32 
64 

128 
256 
512 

4 
8 

16 
32 
64 

128 
256 
512 

One-dimensional 
2 
2 

1/2 

2 
1/2 
1/2 
1/2 2 

2 
2 

1/2 
1/2 
1 /2 2 
1/2 2 

1/2 
2/3 
2/3 
2/3 
2/3 
2/3 
2/3 
2/3 

Two-dimensional 
1 
1 
1 
1 
1 
1 
1 
1 

9 
10 
11 
13 
14 
16 
16 
16 

2.25 3.52 
2.5 3.98 
2.75 4.39 
3.25 5.12 
3.5 5.44 
4 6.02 
4 6.02 
4 6.02 

2 3.01 
2.5 3.98 
3 4.77 
3 4.11 
3.5 5.44 
4 6.02 
4 6.02 
4 6.02 

8 
8 

16 
24 
72 

132 
4 
4 

4 
16 
56 
16 
56 

344 
44 

4 

24 
48 
96 

192 
384 
768 

1536 
3072 

16 
64 

120 
232 
456 
902 

1800 
3592 
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they grow too large too rapidly, they can dominate per_for- 
mance. We will not go beyond the error coefficient No in 
this paper, except for Ungerboeck-type codes, where we 
can present results of Eyuboglu and Li (unpublished) that 
take into account the next two normalized coefficients, fil 
and i2. 

Honig [22] has performed a search for one-dimensional 
Ungerboeck-type codes based on the four-way partition 
2 / 4 2 ,  using a criterion that includes the effect of the error 
coefficient, and has obtained an improvement at 64 states 
(the apparently improved 16-state code is actually catas- 
trophic). Similarly, Pottie and Taylor [23] have searched 
for two-dimensional Ungerboeck-type codes based on the 
eight-way partition Z2/2RZ2 and have obtained improve- 
ments at 64 and 128 states; the 128-state code has a lower 
fundamental coding gain y but a greater effective coding 
gain yefr due to its much lower error coefficient. Finally, 
Eyuboglu and Li have made a reasonably exhaustive search 
for the best codes of both classes in terms of the effective 
coding gain criterion, for up to 256 states, with modest 
improvements at as few as 16 states. 

Table V gives the performance parameters diin,  flo, El, 
f i 2  and the consequent effective coding gains yerr for a 
number of the codes of Ungerboeck, Honig, Pottie and 
Taylor, and Eyuboglu an! Li. When the dominant error 
coefficient is other than No, it is starred. The parity-check 
polynomials hJ  for these codes are also given, in the octal 
notation of Ungerboeck [8], [21]. All parameters not given 

(including decoding complexity) are the same as for the 
Ungerboeck code with the same number of states. 

Fig. 12(a) plots the effective coding gain yeff versus the 
normalized complexity fiD for the best of these Unger- 
boeck-type one- and two-dimensional codes. We see that 
the graphs are fairly linear on this log-log plot over most 
of their range. An increase of a factor of two in complexity 
yields an increase of about 0.4 dB in coding gain, until the 
effective coding gain passes 5 dB. The one-dimensional 
codes are of the order of 0.2 dB better over t h s  linear 
range (however, the two-dimensional codes have been gen- 
erally preferred in practice because their constellation ex- 
pansion factor 2P is only two, not four). 

The first multidimensional code seems to have been 
developed by Gallager [l]. In th s  code, an eight-state rate- 
3/4 convolutional encoder selects two successive 
cosets from the four-way two-dimensional partition 
Z2 /2Z2  or, equivalently, one coset from the 16-way four- 
dimensional lattice partition Z4/2Z4 (equivalently, four 
successive cosets from the two-way one-dimensional parti- 
tion 2 / 2 2 ) .  The basic idea, as in Lemma 6, is that with 
such partitions the minimum squared distance d:in be- 
tween code sequences is simply the minimum Hamming 
distance d ,  of the binary code, as long as d ,  I 4. Quite 
independently, Calderbank and Sloane [lo] discovered a 
very similar code, although with improved error coefficient 
flo due to the choice of an eight-state rate-3/4 binary code 
with a lower error coefficient. We shall call codes based 

TABLE V 
EFFECTIVE CODING GAINS 

4 
8 
16 
16 
32 
64 
64 
128 
128 
128 
256 
256 
512 

4 
8 
16 
32 
32 
64 
64 
64 
128 
128 
128 
128 
256 
256 
256 
512 

- 

04 
16 
10 
34 
064 
060 
036 
042 
056 
024 
164 
3 04 
310 
214 
0510 

2 
04 
04 
10 
10 
024 
054 
126 
160 
124 
362 
3 70 
0342 

2 
02 
04 
06 
16 
016 
004 
052 
014 
150 
100 
142 
056 
212 
162 
0346 

5 
13 
23 
23 
45 
103 
161 
235 
261 
201 
515 
515 
1017 

5 
11 
23 
41 
45 
101 
143 
115 
203 
223 
245 
263 
401 
411 
401 
1001 

9 
10 
11 
11 
13 
14 
14 
16 
15 
14 
16 
15 
16 

4 
5 
6 
6 
6 
1 
7 
7 
8 
8 
1 
7 
8 
8 
7 
8 

For 2/42 codes 
2.25 3.52 
2.5 3.98 
2.75 4.39 
2.15 4.39 
3.25 5.12 
3.5 5.44 
3.5 5.44 
4 6.02 
3.75 5.74 
3.5 5.44 
4 6.02 
3.15 5.14 
4 6.02 

For Z 2/2 RZ2 codes 
2 3.01 
2.5 3.98 
3 4.77 
3 4.71 
3 4.11 
3.5 5.44 
3.5 5.44 
3.5 5.44 
4 6.02 
4 6.02 
3.5 5.44 
3.5 5.44 
4 6.02 
4 6.02 
3.5 5.44 
4 6.02 

8 
8 
16 
8 
24 
12 
16 
132 
16 
8 
4 
8 
4 

4 
16 
56 
16 
8 
56 
48 
40 
344 
172 

8 
8 
44 
36 
4 
4 

16 
16 
16 
16 
56 
0 

*64 
0 
68 
16 
64 
12 
0 

32 
12 
160 
104 
*128 
260 
292 
252 
0 

624 
*188 
*132 
*304 
*308 
*64 
128 

32 
32 
32 
48 
112 
180 
132 
512 
*200 
28 

*160 
*80 
*112 

128 
320 
820 
404 
404 
1008 
1184 
992 
5900 
2568 
968 
752 
1316 
1224 
248 

* 700 

3.32 
3.78 
3.99 
4.19 
4.60 
4.61 
4.94 
5.01 
5.16 
5.24 
5.47 
5.42 
5.57 

3.01 
3.58 
4.01 
4.37 
4.44 
4.68 
4.72 
4.78 
4.74 
4.94 
4.91 
5.01 
5.28 
5.28 
5.22 
5.50 

U 
U 
U 

EL 
U 
U 
H 
U 

EL 
EL 
U 
EL 
U 

U 
U 
U 
U 

EL 
U 
PT 
EL 
U 

EL 
PT 
EL 
U 

EL 
EL 
U 
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10 100 1000 10000 
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Fig. 12. Performance versus complexity. (a) For Ungerboeck-type one- 
dimensional and two-dimensional codes (as improved by Eyuboglu and 
Li). (b) For Wei codes. (c) For Calderbanl-Sloane-type codes. 

on partitions ZN/2ZN (with N > 2) GCS-type codes. 
Table VI gives the parameters of the GCS-type code 
just described, with the error coefficient for the Calder- 
bank-Sloane (CS) version (as given in [13]). 

Wei [ 111 has developed a variety of multidimensional 
codes. We shall say that a code is “Wei-type” if A/A‘ is a 
lattice partition where A’ is a denser lattice than A. Wei 
stresses that A‘ should be dense to maximize coding gain 
and to simplify code construction but that A should have 
low redundancy p ( A )  to maximize coding gain and to 
minimize the constellation expansion factor. Wei is also 
willing to increase the number of states 2” (and d_ecoding 
complexity) to minimize the error coefficient No, even 
when the fundamental coding gain y is not improved 
thereby. Table VI1 gives the parameters for the codes 
discussed in [ll]; Wei also mentions that any of h s  codes 
that are based on the 16-way partition z8/& can be 
translated into a code based on the 16-way partition 
E,/RE,, with the same error coefficient, but with twice the 
constellation size. (Wei’s lattice “DE,” is here called 081, 
in keeping with the notation of Section 111.) Note that the 
32-state code based on Z4/2Z4 is a GCS-type code. 
Indeed, all of the codes in whch A‘ is a lattice of depth 2 
are equivalent to GCS-type codes in view of Lemma 6; in 
particular, the eight-state code based on Z4/RD, is equiv- 
alent to the CS version of the GCS-type code just de- 
scribed, although its decoding complexity is less because of 
the symmetries of RD, (the blank error coefficients are 
unknown but large). 

Ungerboeck [21] has found additional 128-state Wei-type 
codes that extend the four- and eight-dimensional families; 
these codes are listed in Table VIII. Fig. 12(b) plots the 
effective coding gain yerr versus the normalized complexity 
ED for the Wei codes for which the error coefficient is 
known, versus the codes of Fig. 12(a) as benchmarks. 

Calderbank and Sloane [12], [13] have also developed a 
number of multidimensional codes. We shall say that a 

TABLE VI 
GCS-TYPE CODE 

N A A’ 2’ k / (  k + r )  P Y dB $0 rs, Yerr(dB) 

4 z4 2 2 4  8 3 /4 1 /2 4 2312 4.52 44 64 3.82 

TABLE VI1 
WEI CODES 

N A  A’ 2” k / ( k  + r )  P 4,” Y dB Is, rs, Y,rr(dB) 

4 z4 RD4 8 2/3 1/2 4 2 3 / 2  4.52 44 44 3.82 
4 2 4  R 0 4  16 2/3 1/2 4 2’12 4.52 12 12 4.20 
4 z4 2 2 4  32 3/4 1/2 4 23/2 4.52 4 244 4.52 
4 2 4  2 0 4  64 4/5 1/2 5 5/2‘12 5.48 12 1048 4.65 

1/4 27/4 5.21 316 104 4.01 
4 Z7I4  5.21 124 164 4.28 

4 215/’ 5.64 228 
4 215/’ 5.64 196 352 4.12 

1/8 2’5/’ 5.64 412 600 4.31 
1 8 4 6.02 336 
1 8 4 6.02 316 5 84 4.16 

8 0: RE, 128 4/5 1 8 4 6.02 124 1080 5.03 

8 z x  EX 16 3/4 
8 Z x  EX 32 3/4 1/4 
8 Z x  EX 64 3/4 1/4 

1/8 16 Z “  H,h 32 4/5 
16 ZL6 H,6 64 4/5 1/8 
16 Z“ H16 128 4/5 
8 D; REX 32 4/5 
8 D,I RE, 64 4/5 

4 2’14 5.21 60 284 4.49 
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TABLE VI11 
FURTHER WEI-TYPE CODES (UNGERBOECK) 

N A A‘ 2” k / ( k  + r )  P d i m  Y dB @O @D Yerr(dB) 

6 6/2’12 6.28 128 2040 4.11 
4 2714 5.27 28 1032 4.11 

4 Z4 20, 128 4/5 1 /2 
8 Z 8  RD8 128 4/5 1/4 

TABLE IX 
CALDERBANK-SLOANE CODES 

N A A‘ 2“ k / ( k + r )  P dil” Y dB @n r5, Yerr(dB) 

2 
2 
2 
2 
2 
4 
4 
8 
8 
8 
8 

4 
8 

16 
64 

128 
16 
64 
8 

16 
32 
64 

2/4 
2/4 
2/4 
2/4 
2/4 
3/4 
3/4 
3/4 
3/4 
3/4 
3/4 

2 8 2 3.01 
2 11 2.15 4.39 
2 12 3 4.71 
2 14 3.5 5.44 
2 16 4 6.02 
1 6 3 4.11 
1 8 4 6.02 

8 2714 5.21 
27/4 5.21 8 
2714 5.21 8 

5/4 8 2714 5.27 

5/4 
5/4 
5/4 

4 
32 
48 
48 

228 
152 
828 
164 
316 
124 
60 

44 
12 

128 
464 
912 
152 
512 
90 

120 
180 
300 

3.01 
3.19 
4.05 
4.12 
4.85 
3.12 
4.48 
3.15 
4.01 
4.28 
4.49 

Note added in proof: J. Chow (private communication) has obtained values of = 88 and yerr = 3.88 dB for the 16-state D4/RD4 
code, and of dAn = 6, No =16, and yerr = 4.37 dB for the 64-state D4/RD4 code. 

TABLE X 
FURTHER Z2/4Z2  CODES (EYUBOGLU) 

N A At 2’ k / ( k  + r )  P d i m  Y dB Is, Is, Yerr (dB) 

2 2 2  4 2 2  4 2/4 
2 2 2  4 2 2  16 2/4 
2 Z2 4 2 2  32 2/4 

2 9 2.25 3.52 8 44 3.32 
2 12 3 4.11 16 128 4.31 
2 12 3 4.11 4 240 4.11 

2 2 2  4 2 2  32 2/4 2 13 3.25 5.12 16 240 4.12 

code is “CS-type” if A/A’ is a lattice partition where A 
and A’ are versions of the same lattice. Some of their 
codes are shown in Table IX. (They also consider the 
following: Ungerboeck-type codes based on partitions 
2 / 4 2 ,  2 2/22 and 2 2/2 RZ 2, but without improvement 
over Ungerboeck either in fundamental coding gain y or in 
error coefficient go, except for the Y = 6 case also found 
by Pottie and Taylor; the GCS-type code based on the 
partition .Z4/2Z4, as previously mentioned; and codes 
using the nonbinary two-dimensional hexagonal lattice A, ,  
for which the results are not particularly encouraging. The 
last three codes appear to be equivalent to the aforemen- 
tioned translation of Wei’s Z8/E8 codes.) 

Finally, Eyuboglu has also searched for codes based on 
the 16-way two-dimensional partition 2 2/4Z ’. The addi- 
tional codes found that improve on codes already listed are 
summarized in Table X. 

Fig. 12(c) plots the effe_ctive coding gain yeff versus the 
normalized complexity No for the Calderbank-Sloane 
codes, as improved by the codes in Table X (up to 32 
states), again with the codes of Fig. 12(a) for comparison. 
Note that the Z2/4Z2 codes ought to be compared to the 
one-dimensional 2 / 4 2  codes, since they have the same 
redundancy and depth, and in fact include the latter as a 
subset; their performance improvement is in fact small, 
and, taking complexity into account, they are no better. 

VI. FURTHER CLASSES OF TRELLIS CODES 

In this section we present a number of additional generic 
classes of codes that can be described relatively simply. 
Our objective is more to round out the picture than to 
improve on earlier results; in general, these codes have 
parameters comparable to those of the known codes of the 
previous section (or indeed of lattice codes). Our main 
point, in fact, is that “there are many ways to modulate,” 
and that the complexity of the encoder and decoder re- 
quired to achieve a given coding gain and error coefficient 
remains remarkably constant across a wide variety of 
codes. 

We describe eight different classes of codes C(A/A’; C), 
based on all possible choices of the three following binary 
characteristics. The codes are based either on a lat- 
tice partition A/A‘ with minimum squared distances 
dLn(A)/diin(A’) in the ratio 1 : 2, or on a partition chain 
A/A‘/A“ with distances diin( A)/d&,( A’)/diin( A”) in 
the ratio 1 : 2 : 4 (in the latter case, we use an Ungerboeck 
labeling and exploit the Ungerboeck distance bound). The 
convolutional code C is either a rate-k/2k code, with 
IA/A’J= 22k or else IA/A’I = IA’/A’’l= 2k,  or a rate&/ 
( k  + 1) code, with JA/A’J = 2 k + 1  or else JA/A’J = 2 and 
IA’/A”l= 2k. The constraint length v of C is either k or 
2 k, with each of the k input bits being held in memory for 
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either one or two time units. All codes are noncatastrophic, 
i.e., there is no infinite sequence of nonzero inputs that 
leads to a finite sequence of nonzero outputs. 

The resulting codes have many characteristics similar to 
those of the Wei and Calderbank-Sloane codes, as well as 
the four-state two-dimensional Ungerboeck code. Except 
for error coefficient, the rate-k/2k codes also have param- 
eters resembling those of the Barnes-Wall lattices. 

Class I Codes 

Let A/A' be a 22k-way lattice partition with diin( A') = 

2dii,( A). Let C be a "unit-memory'' rate-k/2k binary 
convolutional encoder, as shown in Fig. 13(a). In each time 

k 

k 

W 

Q ,mt 
A / A '  A /A '  

A ' / A *  A ' /A"  
k 

( f )  

Fig. 13. Encoders. (a) For Class I code. (b) For Class I1 codes. (c) For 
Class I11 and IV codes. (d) For Class V codes. (e) For Class VI codes. 
( f )  For Class VI1 and VI11 codes. 

unit k inforniation bits enter the encoder and are stored 
for one time unit; the encoder output is the combination 
of the k current and k previous bits, or b bits altogether, 
which select one of the 22k cosets of A'. The encoder has 2k 
states, and the code has a trellis diagram in which every 
current state is connected to every next state, so there are a 
total of 22k branches in each time unit, one corresponding 
to each coset of A'. The code is thus not catastrophic, 
because only one branch corresponds to the zero coset of 
A' (A' itself). Any two paths through the trellis must differ 
in at least two time units, so the minimum squared dis- 
tance between paths is 2d$,(A), which is the same as the 
minimum squared distance d:in(A') within any coset of 
A'; thus d;,(C) = dLn( A'). 

The multiplicity No of sequences at distance d$,(C) 
from a given sequence that start at a given time is 

No= NAr + (2k - 1) N i  

where NK is the number of points of weight dL,(A' )  in 
A', and NA is the number of points of weight diin(A) in 
any nonzero coset of A' (if it is the same for all such 
cosets). 

Table XI gives the parameters for Class I codes based 
on the partitions Z4/RZ4, D4/RD4, E8/RE8,  and 
Al,/RA,,, which have orders 4, 4, 16, and 256, and 
depths 1, 2, 3, and 4, respectively (the D4/RD4 code was 
developed as a phase-modulated code by Divsalar and 
Simon [24]). These codes are closely related to the lattices 
D4, E,, A,,, and A,,, and have the same principal param- 
eters p, p ,  and y. In the case of the two-state code based 
on Z4/RZ4, it is possible to make the minimum squared 
distance between distinct paths equal to 3d,$,( A )  (use the 
partition chain Z4/D4/RZ4 ,  and let one of the two bits 
control each of these two-way partitions; see Class 111), so 
that the_ error coefficient achieves its minimum possible 
value, No = 4. 

Class 11 Codes 

Let A/A' again be a 22k-way lattice partition with 
d$,( A') = 2d$,( A). Let C be a rate-1/2, 22k-state convo- 
lutional encoder as shown in Fig. 13(b), with k informa- 
tion bits entering in each time unit, two units of memory, 
and 2k output bits, k representing the inputs one time 
unit earlier, and 2k representing the mod-2 sum of the 
current inputs with those two time units earlier, which 
together select one of the 22k cosets of A'. The trellis 
diagram has 22k states, with 2k branches leaving and 
entering every state. Because the distance between paths is 
at least d;,,(A) when they diverge, d&,(A) when they 
merge, and d$,(A) in some other time unit, the distance 
between distinct paths is at least 3dLn(A). Thus d$,(C) 
= dL,(A') = 2dii,(A), the distance withm cosets of A', 
and the error coefficient No is the same as that of A' (the 
minimum possible for any coset code based on the parti- 
tion A/A'). The code is noncatastrophic because every 
nonzero input creates a nonzero output one time unit later. 
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TABLE XI 

N A  A' 2' k / (  k + r )  P 4," Y dB Is, ND Yeff(dB) 

2 
2 
4 
8 

4 
8 

16 

2 
4 
8 

2 
4 
8 

4 
4 
8 

16 
8 

16 
16 

4 
8 

16 

8 
8 

16 

2 
4 
8 

16 
8 

2 
4 
8 

16 
8 

2 
2 
4 

16 

4 
16 

256 

2 
4 

16 

4 
16 

256 

2 
2 
8 

128 
4 
8 

64 

4 
64 

16 
64 

214 

212 

2 
4 
8 

16 
16 

4 
16 
64 

256 
256 

Class I codes 
2 

8 
l/: 4 

3/2 2 16 

Class I1 codes 
1 4 

8 
16 2 

Class 111 codes 
1 3 

6 
16 2 

3/2 

3/2 

Class IV codes 
1 4 

8 
16 2 

Class V codes 

1 

13/8 

3/2 

2 
4 
8 

16 
4 
4 
8 

1/2 

5/4 

1 /2 
1/4 
3/4 

Class VI codes 
1 4 

8 
16 

4 
4 
8 

5/4 

1/2 
1/4 
3/4 

13/8 

Class VI1 codes 
1 3 

3 
3 
3 
6 

1/2 
1/4 
1 /8 

1 

Class VI11 codes 
1 4 

4 
4 
4 

1 8 

1/2 
1/4 
1/8 

1.51 
3.01 
4.52 
6.02 

3.01 
4.52 
6.02 

1.76 
3.27 
6.02 

3.01 
4.52 
6.02 

1.51 
3.01 
5.27 
7.15 

4.52 
5.27 
6.77 

3.01 
5.27 
7.15 
4.52 
5.21 
6.77 

1.76 
3.27 
4.02 
4.39 
4.77 

3.01 
4.52 
5.27 
5.64 
6.02 

4 
44 

252 

12 
60 

540 

8 

1020 

4 
12 
60 

4 
44 

764 

316 
1692 

12 
60 

540 
60 

284 
540 

8 
24 

4 
12 
60 

284 
60 

5 
13 
67 

1614 

16 
88 

2544 

8 
46 

684 

16 
88 

2544 

5 
13 
90 

5632 

37 
89 

1792 

16 
300 - 219 

58 
194 - 216 

8 
30 
74 

166 
212 

16 
72 

284 
1096 
2072 

1.51 
2.32 
3.24 

2.69 
3.73 
4.61 

1.56 

4.42 

3.01 
4.20 
5.24 

1.51 
2.32 
3.75 

3.25 
3.52 

2.69 
4.49 
5.13 
3.73 
4.04 
5.36 

1.56 
2.75 

3.01 
4.20 
4.49 
4.41 
5.24 

Table XI gives the parameters for Class I1 codes based 
on the partitions D4/RD4,  E,/RE,, and A,,/RA,,. Their 
parameters, including coding gain, are the same as those of 
Class I codes, except that the increase of the number of 
states to equal the order 22k of the partition A/A' results 
in a reduction of the error coefficient E, to its minimum 
value. The decoding complexity increases only modestly 
because it is dominated by the complexity of decoding 
A /A'. 

Class I I I  and I V Codes 

Let A/A'/A'' now be a chain of two 2k-way partitions 
with distances d&,( A") = 2dii,( A') = 4dii,( A).  For a 
Class I11 code (resp. Class IV), let C be the same rate-k/2k 

- 

encoder as in Class I (resp. Class 11), but now let the first 
set of k output bits select the coset of A' in the partition 
A/A', and the second set of k output bits select the coset 
of A" in the partition A'/"', as shown in Fig. 13(c). 
These encoders are still noncatastrophic. 

Because the label selecting the coset of A' in the parti- 
tion A/A' is zero at the time of the first nonzero input, 
the set of possible initial code symbols (the time-zero 
lattice A,)  is A', so the minimum squared distance be- 
tween distinct paths is dii,,( A') where they first diverge. In 
the case of Class I11 codes, the minimum squared distance 
between distinct paths is d&,(A) where they merge, so 
d$,(@) = 3diin(A). In the case of Class IV codes, the set 
of possible final code symbols is also A', so that the 
minimum squared distance between distinct paths is 
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d;,(A’) where they merge, and also at least d i l n ( A )  at 
some other time, so that the d i I n  between distinct paths 
is 5 d i , , ( A ) .  This means that d i , , (C)  = d i , , (A”)  = 

4d i1 , (  A), and furthermore the normalized error coeffi- 
cient Eo is the same as that of A“. 

Table XI gives the parameters for Class I11 codes based 
on the partitions Z 2 / R Z  2 / 2 Z  2, D4/RD4/2  D4, and 
E, /RE, /2E8 ,  whch have orders 4, 16, and 256, and 
depths 2, 3,  and 4, respectively. The first is a noncatas- 
trophic Ungerboeck-type two-state code with y = 1.5 
(1.76 dB) (this code appears as a phase-modulated code in 
Divsalar et al. [25]) .  The others are CS-type codes. For the 
E , / R E 8 / 2 E ,  code, we use the fact that there exists an 
alternative partition E8/R*E8/2  E,, where R*E8, like RE,, 
is a version of E, with d k , =  8, such that the system of 
coset representatives [ R*E8/2E,] is also a system of coset 
representatives for E,/RE,  (see part 11); t h s  ensures that 
d i l n  = 8 when paths merge as well as when they diverge, so 
that d&,(C) = di , , (2E8)  = 16. 

Table XI gives the parameters for Class IV codes based 
on the same partitions Z 2 / R Z 2 / 2 Z 2 ,  D4 /RD4/2D4 ,  and 
E 8 / R E 8 / 2 E 8 .  The first is Ungerboeck‘s four-state code, 
which is the prototype of this class. These are CS-type 
codes that are closely related to Class I11 codes, except 
that they have twice the constraint length and 4/3 the 
minimum squared distance and coding gain (except in the 
last case, where only the error coefficient improves). Again, 
these codes are closely related to the lattices E,, AI6, and 
A32 and to the corresponding Class I and I1 codes and 
have the same principal parameters. In fact, even the 
decoding complexity is the same as that of Class I1 codes, 
but the error coefficient is still further reduced. 

Class V Codes 

Let A/A’ now be a 2k+‘-way partition with distances 
d i i , (  A‘) = 2d,$,( A), and let C be a rate-k/( k + 1) convo- 
lutional encoder as shown in Fig. 13(d), with k informa- 
tion bits entering in each time unit, and k + l output bits 
generated as follows. Let T be a linear (modulo 2) circuit 
with k input bits, namely the k-tuple x , - ~  of input bits 
delayed by one time unit, and k + 1 output bits. One 
output bit goes directly to the coset selector; the remaining 
k bits are added (modulo 2) to the k-tuple x,, and the 
k-bit sum forms the remaining inputs to the coset selector. 

The circuit T need have only the following two proper- 
ties: a) its outputs are all-zero only when its inputs are 
all-zero, and b) there is no infinite input sequence 
( xo, xl, . . . ) into C that generates a finite output sequence 
from C (so that the code is noncatastrophic). A simple 
circuit T with these properties is the one whose output is 
simply the (k  + 1)-tuple (x,_ 1,0), where the leftmost bit is 
the one that goes directly into the coset selector. Property 
a) is obvious. Property b) follows from the fact that if 
xo # 0, then there is no sequence (xl, x2, . . . ) such that 
( xo, 0) @ (0, xl) = 0, ( xl, 0)  @ (0, x2) = 0, etc., since x1 can 
only match the k - 1 low-order bits in x,,, x2 can then 
only match the k - 2  low-order bits in xo, etc., and so 

eventually the highest order nonzero bit in x,“shifts” to 
the hghest order position, where it cannot be matched. 

Property a) ensures that the minimum squared distance 
is at least diin( A’) = 2dii , (  A), because two distinct paths 
differ by at least d:,,( A )  where they diverge and d$,( A )  
where they merge. The multiplicity No of sequences at 
distance d,$,( A’) from any given sequence starting at any 
given time is 

No = NAt + (2k+’  - k - 2)  N/: 

where NA, is the number of points of weight d i i n ( A ’ )  in 
A’, and NA is the number of points of weight d i i n ( A )  in 
any nonzero coset of A’ (if it is the same for all such 
cosets). The coefficient of N: follows from the observation 
that in the code trellis, starting from a given zero state and 
ending at some later zero state, there are 2 & - 1  nonzero 
paths of length 2, 2k-’ - 1 nonzero paths of length 3, and 
so forth, up to 2 - 1 = 1 nonzero path of length k + 1, so 
that the total number of nonzero paths is 2k+‘ - k - 2 (ths 
is generally true for any noncatastrophic rate-k/( k + 1) 
encoder; see Forney [26]). 

Table XI gives the parameters for Class V codes based 
on the partitions Z 4 / R Z 4 ,  D4/RD4,  E,/RE,,  and 
A I 6 / R A l 6 ,  as in Class I, as well as D,/E, ,  D16/H16, and 
H16/A16. The first two are just the two-state Class I codes 
again, since k + 1 = 2 k  = 2. The third code is a code equiv- 
alent to the eight-state CS code based on E,/RE,,  which 
may be considered as the prototype of t h s  class. The 
fourth is a 128-state code with a coding gain in excess of 
7 dB, but with a huge error coefficient and decoding 
complexity. The last three further illustrate that Class V 
codes attain large coding gains for relatively few states 
(and thus small decoding complexity) but with outsize 
error coefficients: the fifth code attains y = 23/2  (4.52 dB) 
with only four states, while the last gets considerably 
beyond 6 dB with only 64 states. (In unpublished work, 
Wei had earlier constructed codes based on such 16- 
dimensional partitions as H l 6 / A I 6 ,  with comparable cod- 
ing gains.) Even if the effective number of states is taken 
as the order of the partition 11/11‘ rather than 2” (since the 
decoding complexity is dominated by decoding A/A’), so 
that the effective number of states doubles, these are still 
very good (ignoring E,,). 

Class VI Codes 

Once again, let A/A’ be a 2k+’-way partition with 
distances d,$,(A’) = 2 d i i n ( A ) ,  but now let C be a rate- 
k/(k + l )  convolutional encoder as shown in Fig. 13(e). 
T h s  is the same as the Class V encoder, including the 
circuit T, except that there is a second memory element, 
and its output x , - ~  is further added to the k-tuple output 
of the encoder of Fig. 13(d). 

Property b) of circuit T again ensures that the code is 
noncatastrophic. Furthermore, it ensures that if the input 
sequence has a finite number of nonzero x,, then the 
encoder outputs are nonzero at at least three different 
times: once when the sequence begins, once at some inter- 
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mediate time when T has a nonzero output, and once 
when the last nonzero input finally leaves the encoder. 
Consequently, the minimum distance between two distinct 
paths is at least 3diin( A), so that the minimum distance of 
the code is d&(C) = d$,( A’) = 2dii,( A), and the error 
coefficient No is the same as that of A‘. 

Table XI gives the parameters for Class VI codes based 
on the same partitions as for Class V (except for Z 4 / R Z 4 ,  
where no improvement is aclueved). The four-state D4/RD4 
code is again a Class I1 code, and the 64-state E 8 / R E 8  
code is equivalent to the corresponding Wei/Calderbank- 
Sloane code. The remaining codes illustrate that Class VI 
codes have the same coding gains as Class V codes, but 
with reasonable error coefficients, at the cost of increased 
decoding complexity (vastly increased, for those codes 
with gains more than 6 dB). 

Class VII and VIII Codes 

Now let A/A’/A” be a two-level partition chain with 
distances d i in(  A”) = 2d$,( A’) = 4dii,( A )  and orders 2 
and 2k. Let C be a rate-k/(k + 1) encoder as in Fig. 13(d) 
and (e), but with one output bit selecting one of the two 
cosets of A‘ in the partition A/A‘, and the remaining k 
bits selecting a coset of A“ in the partition A’/”’, as 
shown in Fig. 13(f). 

Again, the codes are noncatastrophic. With Class VI1 
codes, as with Class 111, two distinct paths differ by at 
least dii,( A’) where they diverge and diin( A )  where they 
merge, so that diin(C) = 3dLn(A). With Class VI11 codes, 
as with Class IV, two distinct paths differ by at least 
diin(A’) where they diverge, by at least di,,(R) at some 
intermediate time, and by at least diin(A’) where they 
merge, so that the minimum squared distance between 
distinct paths is at least 5diin(A). Hence diin(C) = 

d$,( A”) = 4d:i,( A), and the error coefficient go is the 
same as that for A”. 

Table XI gives the parameters for Class VI1 and Class 
VI11 codes based on the partitions Z2/RZ2/2Z2,  Z4/ 

whch have orders 4, 8, 16, 32, and 32, and depths 2, 2, 2, 
2, and 3, respectively. The first Class VI1 code is the 
two-state Class I11 code again, and the first Class VI11 
code is again Ungerboeck‘s four-state code. The remaining 
codes are Wei-type codes. In particular, the second and 
third Class VI11 codes correspond to Wei’s 16-state four- 
dimensional and 64-state eight-dimensional codes, which 
are the prototypes of this class, and the last two Class VI11 
codes are 256-state elaborations of codes that Wei investi- 
gated for 2”=32, 64, and 128. The Class VI1 codes are 
closely related to Class VI11 codes, except that they have 
half the state space dimension and 3/4 the minimum 
squared distance and coding gain. 

D 4 / R D 4 ,  Z8 /D8/E8 ,  z ’ 6 / D 1 6 / H 1 6 ,  and D t / E , / R E 8 ,  

VII. DISCUSSION 

A large number of codes have been discussed in a 
common framework in this paper. In this section we draw 
what conclusions seem warranted by the evidence. 

1) Trellis codes and lattice codes are comparable, with 
respect to fundamental parameters such as fundamental 
coding gain y versus number of states 2”. Considering the 
sequence of Barnes-Wall lattices, we see that it takes two 
states to get y =.2112 (1.51 dB), four states to get y = 2 
(3.02 dB), 16 states to get y = z3l2 (4.52 dB), and 256 
states to get y = 4 (6.02 dB). The depths p of these lattices 
are 1, 2, 3, and 4; their redundancies p are 1/2, 1, 3/2, 
and 2; and their minimum squared distances are 2, 4, 8, 
and 16. 

These properties are shared by the generic trellis codes 
that we have called Class I, 11, and IV, which include a 
two-state y = 2’12 code based on the partition Z 4 / R Z 4  
and the four-state Ungerboeck y = 2 code based on the 
partition Z2/2Z2, both with minimal error coefficient 
No = 4. 

All of the trellis codes that acheve y = 23/2 (4.52 dB) 
require 16 states, except for the GCS/Wei eight-state 
four-dimensional code, which has an error coefficient of 
E,, = 44, and four-state Class I and V codes, whose error 
coefficients are very large and whose decoding complexity 
is not that much less than that of the Wei/Class VI11 
16-state four-dimensional code, for example. Note also 
that the lattices X,, and X,, achieve y = 23/2 (4.52 dB) 
and y = 213/’ (4.89 dB) with 8 and 16 states, respectively, 
but with p = 2, p = 1/2 and d i in  = 4, like the Wei codes. 

There is a nearby cluster of codes that achieve y = 3 
(4.77 dB), with either p = 3, p = 1 and d2 ,  = 6, or p = 4, 
p = 2 and d;, = 12; e.g., the 16- and 32-state two-dimen- 
sional Ungerboeck codes, the 16-state CS/Eyuboglu codes, 
or the 16-state Class 111 and Class VI1 codes. 

There is another cluster of codes at y = 2’14 (5.27 dB). 
While there are codes that achieve this fundamental coding 
gain with as few as eight states (e.g., the eight-dimensional 
CS code, or two of the Class V codes), it seems to take 32 
or 64 states to get reasonable error coefficients (e.g., the 
Wei or CS eight-dimensional codes). 

To achieve y = 4 (6.02 dB), all of the trellis codes with 
reasonable error coefficient (go < 100) require 256 states. 
There are such codes with as few as 16 states (e.g., Class I 
A 1 6 / R A 1 6 )  but with very large error coefficients and with- 
out as much saving in decoding complexity as the low 
number of states would suggest (because most of the 
complexity occurs in decoding the lattice partition). There 
are a number of good 128-state codes, but there are also 
lattices (H24 and H32) that achieve nearly 6 dB with 128 
states. The 256-state one-dimensional Ungerboeck code is 
remarkable: it obtains y = 4 with minimal error coefficient 
go = 4, and with quite low decoding complexity. Note that 
it has p = 4, p = 2 and dL, = 16, like A24 and A32. 

In summary, we propose a folk theorem: it takes two 
states to get 1.5 dB, four states to get 3 dB, 16 states to get 
4.5 dB, perhaps 64 states to get 5.25 dB, and 256 states to 
get 6 dB, as long as we require a reasonably small error 
coefficient (for trellis codes). 

2) Trellis codes are better than lattice codes, if we con- 
sider effective coding gain versus decoding complexity. 
Granted, our measure of effective coding gain is based on 

I 
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a rule of thumb that is only approximately valid for 
moderately low error rates and that generally does not take 
into account neighbors other than the nearest; granted 
also, our measure of decoding complexity is based specifi- 
cally on the algorithms of part I1 and is highly implemen- 
tation-dependent. We have not even given an effective 
coding gain yerr for lattice codes because our rule of thumb 
is questionable when the number of nearest neighbors is so 
high. Nonetheless, it seems clear that the very large error 
coefficients of lattice codes will mean that their effective 
performance will be significantly inferior to that of compa- 
rable trellis codes. For codes with the same parameters, 
due to the many symmetries of the lattice codes, the 
decoding complexity does seem to increase slightly as we 
go from a lattice code to Class I to Class I1 to Class 
IV-i.e., as the code becomes “more convolutional”-but 
this slight effect is very much outweighed by the large 
reduction in error coefficient. 

3) It is best to keep the redundancy p as small as possible, 
within reasonable limits. The densest lattices are all self- 
dual, so their redundancy is equal to half their depth 
(the comparable trellis codes use rate-k/2 k encoders). 
Ungerboeck [8] made the point, using channel capacity 
arguments, that there is little to be gained by going beyond 
1 bit of redundancy per symbol, Le., by using rate-k/ 
( k  + r )  encoders with r >1. Wei [ll] recognized that, by 
going beyond two dimensions, the normahzed redundancy 
p could be reduced below one and thus that good codes 
could be obtained with small constellation expansion. The 
evidence of the codes presented here is that, while the very 
best codes (e.g., Ungerboeck’s four-state two-dimensional 
code, or all of his one-dimensional codes) may have infor- 
mativity equal to redundancy, like the best lattices, there is 
very little loss if redundancy is reduced as long as we do 
not go to extremes (e.g., Wei’s 16-dimensional codes, with 
p = 1/8). Compare, for example, the Ungerboeck-type 
two-dimensional codes with the one-dimensional; or the 
codes (or lattices) with p =1/2 that achieve y = 23/2 
(4.52 dB), versus those with p = 3/2. 

4) The Ungerboeck codes are still the benchmark. Com- 
paring all codes shown in Fig. 12(a)-(c), we see that little 
improvement has been achieved over Ungerboeck‘s origi- 
nal results. The one-dimensional codes are generally slightly 
better than the two-dimensional codes, but this is offset by 
their normalized redundancy of p = 2, which gives a con- 
stellation expansion factor of four, versus the two-dimen- 
sional redundancy of p = 1, which gives a constellation 
expansion factor of two. Some of the 2 2/42 codes found 
by Eyuboglu are slightly better, but this is not surprising 
because any 2’-state rate-1/2 2 / 4 2  code can also be 
regarded as a 2’-state rate-2/4 Z2/4Z2 code. Some of 
Wei’s four-dimensional codes are also slightly better; this 
is more surprising and significant because these codes also 
have normalized redundancy p = 1/2. (The Wei eight- 
dimensional codes are also in the vicinity of the two- 
dimensional Ungerboeck codes but with p = 1/4; the com- 
parable Wei/Calderbank-Sloane codes have slightly higher 
decoding complexity and, more importantly, p = 5/4.) 

Of all the codes we have considered, a few stand out as 
“special.” The four-state two-dimensional Ungerboeck 
code is certainly in this category because it is the unique 
code with y = 2 and No = 4 and because of its symmetries 
and close relationship to the special lattice E,. As men- 
tioned before, the 256-state one-dimensional Ungerboeck 
cfde is also special because it is a code with y = 4  and 
No = 4, which makes it the trellis cousin of the very special 
lattice AZ4. The 16-state four-dimensional Wei code is the 
single code that most clearly improves on the 
Ungerboeck-type codes; note that it has the same parame- 
ters as the lattice X24. (However, could there be a 16-state 
code with p = 3, p = 3/2, d&,, = 8-i.e., with the same 
parameters as A,,-that achieves y = 23’2, No = 4 or 8? or 
a-l6-state, p = 2, p = 1, d$,, = 6 code that aclueves y = 3, 
No = 4 or 8?) 

These results suggest that there is little likelihood of 
finding significantly better codes in terms of the parame- 
ters that we have considered. Above 5 dB, where the curves 
for the Ungerboeck-type codes begin to tail off, there 
could be codes with 64 or more states that are superior to 
those known, although it is also possible that t h s  is close 
enough to channel capacity that the performance/com- 
plexity curve will tend to saturate for all codes. We do not 
expect to need depths more than three to four in this 
range, so in view of Lemma 5 a systematic search of 
2 N/4ZN codes should settle the question. (Ternary codes 
may also be attractive in tlus region; see [16].) 

VIII. CONCLUSION 

We have defined coset codes in such a way as to 
embrace all of the good known codes and to suggest a 
large variety of extensions. Their characterization in terms 
of geometrical parameters like the fundamental coding 
gain turns out to be quite simple and allows us to sort out 
from the variety of schemes that have been proposed those 
that seem to have the best combinations of coding gain, 
decoding complexity, and constellation expansion. 

With respect to those parameters, Ungerboeck’s original 
codes continue to stand up very well uis-&is the rest of 
the codes considered. Wei’s codes probably represent the 
most significant improvement, particularly because they 
reduce the constellation expansion factor below two, while 
achieving some gains in coding gain and decoding com- 
plexity. While the codes of Calderbank and Sloane do not 
rise to the top in any of our comparisons, their intro- 
duction of the lattice/coset viewpoint has clearly been 
the most significant conceptual contribution since 
Ungerboeck. 

In the opinion of the author, wlule many of the best 
codes may have already been discovered, the fields of coset 
codes and trellis codes are no further developed than that 
of ordinary coding theory in the early 1960’s. There may 
well be better codes still to be discovered in the 3-6-dB 
range, as indicated in the previous section. Suboptimal 
decoders should be investigated, as well as codes specifi- 
cally tailored for such decoders. The design of good sphere 
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packings in large dimensions is a topic of active mathemat- 
ical interest, and the development of still more powerful 
trellis codes is wide open. Codes which combine good 
coding gain with other properties, such as rotational in- 
variance and decoding delay, will be important for appli- 
cations. The theory of phase-modulated coset codes should 
be brought along in parallel with that of the lattice-type 
codes. The combination of these codes with spectral shap- 
ing requirements, e.g., signalling for partial-response or 
other band-limited channels, is an important topic. The 
vector quantization problem is dual to the sphere packing 
problem and in the block case has been attacked success- 
fully with lattices; there should also be good trellis quan- 
tizers. The question of how to design good multidimen- 
sional constellations is not closed. Finally, it seems that 
mathematicians should be interested in trellis codes, 
particularly as infinite-dimensional generalizations of fi- 
nite-dimensional sphere-packings. As in other parts of 
information theory, the interplay between theoretically and 
practically motivated research is likely to prove fruitful for 
some time. 
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