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Abstract -The family of Barnes-Wall lattices (including D4 and E,) of 
lengths N = 2“ and their principal sublattices, which are useful in con- 
structing coset codes, are generated by iteration of a simple construction 
called the “squaring construction.” The closely related Reed-Muller codes 
are generated by the same construction. The principal properties of these 
codes and lattices, including distances, dimensions, partitions, generator 
matrices, and duality properties, are consequences of the general proper- 
ties of iterated squaring constructions, which also exhibit the interrelation- 
ships between codes and lattices of different lengths. An extension called 
the “cubing construction” generates good codes and lattices of lengths 
N = 3.2”, including the Golay code and Leech lattice, with the use of 
special bases for 8-space. Another related construction generates the 
Nordstrom-Robinson code and an analogous 16-dimensional nonlattice 
packing. These constructions are represented by trellis diagrams that 
display their structure and interrelationships and that lead to efficient 
maximum likelihood decoding algorithms. General algebraic methods for 
determining minimal trellis diagrams of codes, lattices, and partitions are 
given in an Appendix. 

I. INTRODUCTION 

COMPANION PAPER [l] characterizes a large A number of the coded modulation techniques that 
have been proposed for band-limited channels as coset 
codes, i.e., as sequences of cosets of a sublattice A’ in a 
partition A/A‘ of a binary lattice A, where the cosets are 
selected by the outputs of a binary encoder. 

The principal purpose of this paper is to give a unified 
development of the family of lattices that have proved to 
be most useful in constructing coset codes and of the 
properties of such lattices that are most important for such 
applications, e.g., their minimum squared distances, their 
partitions, and aspects of their structure that are useful in 
decoding. 

This family of lattices is the sequence of 2“-dimensional 
lattices called the Barnes-Wall lattices, and what we call 
their “principal sublattices.” This family includes such 
important lattices as the Schlafli lattice D4, the Gosset 
lattice E,, and the infinite sequence A,,, A,,, . . . of 
Barnes-Wall lattices, whose fundamental coding gain [l] 

Manuscript received September 2, 1986; revised September 18, 1987. 
This paper was partially presented at the 1986 IEEE International Sym- 
posium on Information Theory, Ann Arbor, MI, October 8, and at the 
1986 IEEE Communications Theory Workshop, Palm Springs, CA, April 
28. 

The author is with the Codex Corporation, 7 Blue f i l l  River Road, 
Canton, MA 02021. 

IEEE Log Number 8824502. 

increases by a factor of 21/2 (1.5 dB) for each doubling of 
dimension. 

What may be obscured by the length of this paper is 
that the construction of these lattices is extremely simple. 
The only building blocks needed are the set Z of ordinary 
integers, with its infinite chain of two-way partitions 
2 /22/4Z/ .  , and an elementary construction that we 
call the “squaring construction,” which produces chains of 
2N-tuples with certain guaranteed distance properties from 
chains of N-tuples. Iteration of this construction produces 
the entire family of lattices, determines their minimum 
squared distances, shows their partition (sublattice) struc- 
ture, and gives general interrelationships between the lat- 
tices of different dimension. The construction also natu- 
rally points to structural decompositions that we illustrate 
by trellis diagrams and that lead to efficient maximum 
likelihood decoding algorithms. Other attributes of these 
lattices, such as their generator matrices, “code formulas” 
[l], and duality properties, may be easily derived from 
general properties of this simple construction. 

Actually, the development makes it clear that the most 
natural starting point for the construction is the two-di- 
mensional lattice Z 2  of pairs of ordinary integers, with its 
infinite chain of two-way partitions Z 2/RZ 2/2Z ’/ . . . 
or, equivalently, the complex lattice G of Gaussian inte- 
gers [l], with its partition chain C/$JG/+~G/ . . . , where 
+=1+ i .  

These lattices are closely related to the family of 
Reed-Muller codes. Indeed, the Reed-Muller codes can 
be generated by the same construction, except that the 
starting point is the binary field GF(2), with the exhaustive 
two-way partition into its two elements. The two-by-two 
integer matrix G(2,2) = {[10],[11]} turns out to be a key tool 
in describing the application of the squaring construction 
to group partitions, and the rn-fold Kronecker product of 
this matrix with itself, Le., the N X N integer matrix 
G ( N , N )  that contains all the generators of all the 
Reed-Muller codes of length N = 2”, turns out to be very 
helpful in characterizing the results of rn-fold iterated 
squaring constructions (Lemma 2). 

A construction that we call the “cubing construction,” 
whch is closely related to the twofold iteration of the 
squaring construction, produces groups of 3N-tuples from 
groups of N-tuples. The principal use that we make of this 
construction is to construct the (24,12) Golay code and the 
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24-dimensional Leech lattice. In addition to the cubing 
construction, we need to introduce special bases of 8-space 
to obtain the requisite distance properties. 

Using these bases, we go on to construct the length-16 
nonlinear Nordstrom-Robinson code, which is better than 
any comparable linear code, and an analogous 16-dimen- 
sional nonlattice packing, which falls just short of the 
density of the 16-dimensional Barnes-Wall lattice A16. 
These constructions are closely related to each other and 
to those already described. Furthermore, they show that 
while coset code constructions may almost always be based 
on partitions that result from coset decompositions of 
groups (codes, lattices), the resulting constructions need 
not themselves be linear to have good distance properties 
(indeed, many of the best trellis codes are nonlinear [l]). 

These constructions lead directly to unexpectedly simple 
and highly structured trellis diagrams for these codes and 
lattices. The trellis diagrams suggest maximum likelihood 
decoding algorithms for both codes and lattices that gener- 
ally turn out to be improvements over the best previously 
known algorithms. For completeness, we give methods for 
systematic algebraic determination of minimal trellis dia- 
grams for linear codes and lattices in an Appendix. 

Relatively little in this paper is new. All of the codes and 
lattices are well-known (except for the 16-dimensional 
nonlattice packing, which was noticed earlier by Conway 
and Sloane but has not previously been published). Their 
constructions and properties have generally been derived 
earlier in various forms, some essentially equivalent to our 
constructions, which we have attempted to acknowledge 
appropriately. While we know of no readily accessible text 
on lattices, the recent book by Conway and Sloane [2] is an 
encyclopedic reference for practically everythmg here and 
far more. What we hope to have contributed is a unified 
treatment of the lattices that are most useful in applica- 
tions, with a derivation of their principal properties, at a 
reasonably elementary mathematical level. We do believe 
that the structural properties exhibited in our trellis dia- 
grams are generally new, as well as the decoding methods 
that they suggest. 

The paper is organized as follows. In Section I1 we 
introduce the language and elementary results that we use 
for sets, set partitions, distance measures, and additive 
groups,-particularly groups with orders equal to a power of 
two, with a few words on binary codes and lattices. Section 
I11 contains the general properties of the squaring con- 
struction and of iterated squaring constructions; then, in 
Section IV, the Reed-Muller codes and Barnes-Wall lat- 
tices are developed using these constructions, along with 
their principal properties. Similarly, Section V is devoted 
to the cubing construction, which then is used in Section 
VI to develop the Golay code and Leech lattice after the 
introduction of special bases for 8-space. In Section 
VI1 these bases are used to construct the Nordstrom- 
Robinson code and the analogous 16-dimensional nonlat- 
tice packing. In Section VI11 we work out some examples 
of our decoding algorithms, for the (8,4) first-order 
Reed-Muller code (and the E,  lattice), the Golay code, 

and the Leech lattice. Finally, in the Appendix we show 
how to determine the state spaces and trellis diagrams of 
codes, lattices, and partitions algebraically, using trellis- 
oriented generator matrices. 

11. PRELIMINARIES 

This paper is about discrete sets on which a distance 
metric is defined, partitions of such sets, and set construc- 
tions based on such partitions. In this section we gather 
the elementary facts that we will need about such sets and 
partitions. These sets will almost always be algebraic 
groups, i.e., closed under some addition operation; how- 
ever, the constructions do not essentially depend on group 
properties, and to emphasize this point, we defer the 
discussion of group properties for as long as possible. 

A.  Partitions 

Let S be any discrete set with elements s E S. An 
M-way partition of S is specified by a set of M disjoint 
subsets T ( a )  whose union is S,  where a is a label for the 
subset T(a) .  We denote such a partition by S /T ,  and we 
say that the order of the partition is IS/TI = M.  Ordinar- 
ily, in this paper, the order of a partition will be finite, 
even when the sets involved are infinite. 

A subset labeling is any one-to-one map between the 
subsets and a set of M labels. Examples of labels which we 
shall use include: a subset index i ,  where, for example, 
0 I i I M-1; binary K-tuples a ,  when M = 2K; or a 
system of subset representatives c E S ,  one from each sub- 
set. When S contains a zero element 0, we call the subset 
that contains 0 the zero subset T(O), or simply T, and use 0 
as its representative. 

For example, there is a two-way partition of the set of 
ordinary integers 2 into the even integers, 22,  and the 
odd integers, 2 2  + 1. We say that 2 / 2 2  is a partition of 
order 2. The natural labels for the subsets are {O,l}, where 
2 2  is the zero subset. 

An m-level partition chain S,/S,/ ’ . . /Sm is obtained 
by repeated partitioning of subsets; i.e., the set So is first 
partitioned into IS,/S,l subsets SI( a,), then each subset 
S, (a , )  of So is partitioned, and so forth. We shall require 
that the order of all subset partitions at any given level be 
the same; e.g., that all second-level partitions of the sub- 
sets s , (~,)  have the same order. Then we can say that the 
order ~S,/S,+,~ is the common order of all jth-level parti- 
tions, and IS,/Sml must then be the product of the orders 
IS,/S!+,l, 0 I j I m - 1. 

It is natural to label an m-level partition by an m-part 
label a = (a,, a,;. ., am-,) ,  where a, is one of a set of 
~S,/S’,+,~ labels, 0 I j I m - 1. The subsets at the j th  level 
may then be labeled by the first j parts of the label; e.g., 
S,(a,), &(a,, a,), and so forth. In other words, the 
same system of labels a, is used for each partition 
S,(a,; * e ,  a,~,)/S,+,(a,;~ ., a,). The final subsets Sm(a)  
are labeled by the complete m-part label a .  
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If S / T  is a partition of S ,  the distance metric on S 
carries over to its subsets T ( a ) .  We define the minimum 
distance d ( T )  as the least minimum distance of any subset 
T ( a ) .  Sometimes we say in shorthand that the partition 
S / T  has distances d ( S ) / d ( T ) ,  where the slash is only a 

A;, qq goo?# 
V l i  ?) 

k ,  3)  
/I‘ 

V(0 0) 

Fig. 1. Two-level partition S / T / V .  (a) As Partition trees. (b) As Parti- separation symbol. Gen&lly,’we are interested in parti- 
tions for which d ( T )  > d ( S ) .  tion tower. ( c )  As partition trellis. (d) As schematic trellis. 

Fig. 1 illustrates a two-level partition S / T / V  in three 
ways: as a tree, as a tower, and as a trellis. Let the orders 
of the partitions be M =  IS/TI and N = lT/Vl, so that 
I S / V l =  M N ;  in the figure, M = 2 and N = 4. Then the 
subsets T(a,)  are labeled by an M-valued label a,, and 
the subsets V ( a )  are labeled by an MN-valued two-part 
label a = (a,, a,). The partition tree consists of an M-way 
branch at the first level, where each branch may be labeled 
by a label a,, followed by N-way branches of each first- 
level subset at the second level, where each branch may be 
labeled by a label a,. The partition tower represents the 
selection of a subset T(a,) of S in the partition S / T  by a 
first label a,, and then the selection of a subset V(a,, a,)  
of T(a,)  by a second label a,. The partition trellis is a 
single-level representation of the partition tree with each of 
the MN branches representing a subset V ( a ) ,  and the 
branches grouped into M clusters of N branches, each 
cluster representing a subset T( a,). The final illustration is 
a generic schematic trellis diagram for a two-level partition 
with arbitrary orders IS/TI and lT/Vl. 

The dummy partition S / S  is a one-way “partition” of S 
into a single subset, namely S itself; partition chains can 
be arbitrarily extended by dummy partitions. If Z is a 
single-element subset (e.g., Z = {0}), then a partition chain 
can be extended all the way down to Z,  yielding the 
exhaustive partition S / Z ,  whose order is the number of 
elements in S. 

The Cartesian product S N  is defined as the set of all 
N-tuples s = ( s l , s , ; . . , s N )  of elements of S. If S / T  is 
a partition of order IS/TI, then S N / T N  is a partition 
of order ISN/TNI = IS/TIN. The subsets of the par- 
tition S N / T N  may be labeled by an N-tuple label 
( a l ,  a,;. ., a,), where TN(a, ,  a2 ; .  ., a,) is the subset of 
S N  consisting of N-tuples whose first component is in 
T( u ~ ) ~  whose second component is in T( a,), and so forth. 
If S, /S , / .  . . /Sm is an m-level partition chain, then 
S,”/S,”/.../S,” is an m-level partition chain, and the 
ISo/S,,,lN subsets of S,” may be labeled by m-part, N-tuple 
labels a = { a , , ,  1 1 i < N ,  0 5  j < m - l } ,  where a , =  
{a,,,  0 I j I m - l} is an m-part label for the IS,/Sml 
subsets of So for each i ,  1 I i I N. 

B. Distances 

We are interested in discrete sets S on whch a distance 
metric d ( s ,  s’) is defined between pairs (s, s’) of elements 
of S. We assume that d(s ,  s’) is zero if s = s‘ and greater 
than zero if s # s’, and we define the minimum distance 
d( S )  of S as the minimum nonzero d(s,  s’). (If S is a 
trivial set with only one element, we say d ( S )  = 00.) 

If T ( a )  and T(a’) are subsets of S,  the subset distance 
d(a ,  a’) is defined as follows: a) if a # a’, d ( a ,  a’) is the 
minimum distance between the elements of the distinct 
subsets T ( a )  and T(a’); b) if a = a’, then d ( a ,  a’) is the 
minimum distance between distinct elements of the subset 
T ( a ) ,  i.e., d ( a ,  a )  = d(T(a) ) .  

In a single-level partition S / T ,  d ( a ,  a’) is lower- 
bounded by d ( S )  in general, but if a = a’, then d ( a ,  a’) 2 
d ( T ) .  In a two-level partition S / T / V  with a two-part 
label a = (a,, al), d ( a ,  a’) is lower-bounded as follows: 

a) in all cases, d ( a ,  a’) 2 d ( S ) ;  
b) if a ,  = a& then d(a ,a’ )  2 d ( T ) ,  because V ( a )  and 

V(a’ )  are both subsets of the same first-level subset 
T(a,);  

c) if a = a’, then d ( a ,  a’) 2 d ( V ) ,  by definition. 

T h s  lower bound thus depends only on whether the parts 
of the label are the same or different; i.e., on the Hamming 
distances between parts of the label, where the Hamming 
distance between two quantities is defined as zero if they 
are the same and one if they are different. 

The general version of these observations is the essential 
distance property used in constructions based on set parti- 
tions, whch we shall call the partition distance lemma: if 
S , / S , / .  . - / S m  is an m-level partition chain with dis- 
tances d(S,)/d(S,)/  . . *  / d ( S m )  and Sm(a)  and Sm(a’) 
are subsets with multipart labels a and a’, respectively, 
then the subset distance d ( a ,  a’)  is lower-bounded by 
d(S,), where if a # a’, j is the smallest index such that 
a, # a’, while if a = a’, j is equal to m. 

If s’. is the N-fold Cartesian product of S with itself, 
then let the distance metric between two N-tuples s and s’ 
be defined as the sum of the N componentwise distances 
d(s , ,  s,’), 1 I i I N. Then d ( S N )  = d ( S ) ,  since distinct N- 
tuples need not differ in more than one element. Distance 
metrics that naturally have th s  additive property include 

a) Hamming distance: d,(s, s’) = E,dH(s I ,  s,’), where 

d,(s,s’) A {:; if s = s‘ . 
if s # s’ ’ 

b) squared Euclidean distance: 11s - s’l12 4 d,(s, s’) = 

Thus if S / T  is an M-way partition with distances 
d ( S ) / d ( T ) ,  then S N / T N  is an MN-way partition that also 
has distances d ( S ) / d ( T ) .  

C,dE(s , ,  s,’), where d,(s, s’) A 1s - s’I2. 

C. Group Partitions 

Often we shall be interested in sets S which are groups, 
primarily because any subgroup T of a group S naturally 
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induces a partition of S into subsets, namely, the cosets of 
T.  We recall the following facts from elementary group 
theory: 

An (additive) group S is defined by a set of elements 
s E S including 0, and an addition operation such that 
(s + s’) E S ,  s + O  = s, and s + s’= 0 has a solution s’ E S 
called - s .  Our groups will mostly be groups of N-tuples 
(vectors, points), and the addition operation will be some 
form of vector addition. (Thus we will use bold face for 
group elements s.) 

When S is a group, we assume that the distance metric 
d ( s ,  s’) has the group property, d ( s ,  s’) = d(0, s - s’) = 

wt(s - s’), where the last expression involves the weight 
wt(s) A d ( 0 ,  s ) .  Of course wt(0) = 0 and, assuming that 
the distance metric is symmetric, wt(s) = wt(- s). The 
minimum distance d ( S )  is then equal to the minimum 
nonzero weight of any element SES.  Both Hamming 
distance and squared Euclidean distance have the group 
property; the weight of s may be identified as the norm 
lls112 in the latter case. 

Any subgroup T of a group S naturally induces a 
partition of S as follows. Two elements s and s’ are said 
to be equiualent (or congruent) modulo T if ( s  - s’) E T ,  
and we may write s = s’(modT). Since s s’, s = s”, 
implies s’ = s”, congruence modulo T is an equivalence 
relation and partitions S into disjoint equivalence classes; 
we denote this partition by S / T .  

Let us label each class by taking one of its elements c as 
a representative. The equivalence class T(  c )  that contains 
c is the set { t + c :  t E T } ,  which we write as T + c .  Any 
set T + c is called a coset of T in S, and any such c is 
called a coset representative. The coset containing 0 is the 
zero coset T + 0, which is T itself, and we always use 0 as 
coset representative for the zero coset. 

All cosets of T must have the same minimum distance 
d ( T ) ,  which is equal to the minimum nonzero weight 
within T itself. The subset distance d ( c ,  c’) between the 
cosets T + c and T + c’ is the minimum weight within the 
coset T + ( c  - c’); if we define wt(c) as the minimum 
weight within T + c, then d ( c ,  c’) = wt(c - c’). 

Let [ S / T ]  denote any system of coset representatives c, 
one for each equivalence class; then S is the union of the 
IS/TI cosets T + c, c E [ S / T ] ,  so every s E S is equivalent 
to one such c E [ S / T ] ,  and thus every s E S has a unique 
representation of the form s = t + c for some c E [ S / T ]  
and t E T ,  namely, t = s - c. Thus S is the direct sum of 
[ S / T  ] and T.  This is called a coset decomposition of S and 
will be written here as S =  [ S / T ] +  T. (We reserve the 
symbol @ for mod-2 addition.) 

The sum of two cosets T + c and T + c’ is defined as the 
coset T + ( c  + c’)  whch contains any sum of two elements, 
one taken from each coset. Under this definition of addi- 
tion, the cosets form a group, called the quotient group, 
and also denoted as S/T.  The order IS/TI of this group is 
the number of cosets of T in S (also called the index of T 
in S ) ,  which is the same as the order of the partition S / T ,  
so the notation and terminology are consistent. 

If S is a finite group, then IS1 = lTllS/Tl; therefore, the 
order of any subgroup T divides ISI. While no multiplica- 

tion operation need be defined on a group, it is always 
possible to multiply group elements by integers, since the 
product i- ms of any integer i- m E 2 with any group 
element s E S is f ( s  + s + . . . ) ( m  times). The set [ S I  of 
all such multiples is a subgroup of S. The order of the 
subgroup [ S I  is called the order of the element s; the order 
of any element s E S must therefore divide the order of S. 

If S is a group with order IS1 = 2K for some K, we say 
that S is a binary group. Any subgroup of a binary group 
is a binary group, and all elements of a binary group have 
orders equal to powers of two. Any nontrivial binary 
group contains an element of order 2; for if s is any 
nonzero element, then the sequence s, 2s, 4s, . . . eventu- 
ally arrives at 0, and the last nonzero element of this 
sequence has order 2. 

If S is a binary group with order IS1 = 2K, then every 
element of S can be expressed as s(a) = C k a k g k  = aG, 
where a = (a,, a,, . . . , a K -  1)  is an integer K-tuple such 
that a k  E {O,l},  0 I k I K -1, and the generators gk are a 
set G = { &, 0 I k I K - l} of group elements. The set G 
will be called a generator matrix, the parameter K (the 
binary logarithm of [SI) will be called the (binary) dimen- 
sion of S ,  and the expression s(a) = aG will be called a 
binary linear combination of the generators. T h s  may be 
shown by induction, as follows: choose gKPl as any 
nonzero group element of order 2; then if T is the sub- 

has the coset decomposition S = [ S / T ]  + T, where the 
quotient group S / T  of elements of S modulo T is another 
binary group, with order ( S / T (  = 2Kp1. Repeating K 
times, we arrive at the desired expression. 

A sequence So, S,,. . a ,  S, of groups Sj is said to be 
nested if S j + ,  is a subgroup of Sj,  0 I j I m - 1. Then 
S , / S , /  . . . / S ,  is an m-level partition chain, and all parti- 
tions at the j t h  level have order 1Sj/SJ+J. The order of 
IS,/S,l is the product of the orders of the ISJ/Sj+ll, 
0 I j I m - 1. A coset of S, in So can be labeled by the 
rn-part label c = ( c o , c l , - .  - , c , - , ) ,  where cj is a coset 
representative in [S , /S j+ , ] ,  0 I j I m - 1. This is a chain 
coset decomposition, So = [S,/S,] + [S,/S,] + . - + S,,,. 
(The expression s(a) = C k a k g k  for elements of binary 
groups is an example of such a chain decomposition.) In 
this case the partition distance lemma is expressed as 
follows: the subset distance d ( c ,  c’) between two cosets is 
lower-bounded by d(  S,), the minimum distance between 
elements of S,, where if c f c’, then j is the smallest index 
such that c, # e;, while if c = c’, then j is equal to m. 

If IS,/S,l is some power of two, say 2K, then we say 
that S,/S, / - . / S ,  is a binary partition chain. Because 
~ S J / S j + , ~  divides ~S,/,S,~, the order of each partition in the 
chain must be a power of two, say 2 k ~ ,  and K = C,kj .  
Obviously, we can label the cosets of Sj+? in S, by binary 
kj-tuples a j  in any arbitrary way (but wth  the zero coset 
labeled by the all-zero kj-tuple 0). Then an alternative 
m-part label for the cosets of S, in So is the binary 
K-tuple a = (a , ,  ul;. ., a,,-l). Because the partition dis- 
tance lemma is based only on whether labels are the same 
or different, it continues to apply, however we label the 
cosets. 

group [ & - 1 1  & { O , & - l }  = { a K - l g K - l ,  a K - 1 E  {o,1}}7 s 
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In a binary partition chain, at each level the quotient 
group SJ/SJ+l is a binary group, and therefore a set of kJ 
generators GJ = {g, , }  exists such that the elements of 
SJ/SJ+, are the binary linear combinations aJGJ of the 
generators in the generator matrix GJ. In other words, we 
have a coset decomposition S, = SJ+l + { a,G, }, meaning 
that every sJ E SJ has a unique representation of the form 
sJ = sJ+ + a G for some sJ+,  E SJ+l and some integer 

J .J kJ-tuple aJ with a,k E {O, l} ,  0 5 k I k, -1. Concatenat- 
ing these representations, we arrive at a set of K genera- 
tors G = { G,, 0 < j I m - l} that is a generator matrix for 
S,/S,; i.e., every so E So has a unique representation 
so = s, + aG for some s, E S, and some integer K-tuple 

viously, t h s  is a nice way of assigning labels to the cosets 
of S,,, in So. 

Note that if S, and SJ., j ’>  j ,  are any two groups in the 
partition chain, then the union of the generator matrices 
from GJ to is a generator matrix for SJ/S,,. This 
motivates the following definition of addition of generator 
matrices: the sum of two generator matrices is the union of 
their generators. Thus we may write, for example, G = ZJGJ. 
The empty set { 0 } is the zero generator matrix under this 
notion of addition. However, there is no additive inverse 
or subtraction in this algebra. 

Fig. 2 illustrates a binary partition chain S , / S , /  . . . / S ,  
with ]S,/S,,J = 2K in three different ways. The first is as a 
partition tower (as in Fig. l(b)) with vertical heights scaled 
proportionally to the dimensions k,. The second is as a 
corresponding tower for a chain T,/T,/ .  . . / T K  of two- 
way partitions, where the subgroups T, are defined recur- 
sively by Tk- ,  = Tk + { a,-,g,-,), starting with TK = s,, 
with the label a broken out into individual values 
a,, a,; . ., a K - , .  We can arrange th s  ordering so that 
all of the groups So, SI;. ., S,,, appear in the chain 
T,/T, / .  . . /TK.  Finally, we give a chain representation of 
the chain So/S1/-../S,,,, with the links of the chain 
labeled with the corresponding generator matrices G,, and 
a similar representation of the chain T,/T,/ .  . . / T K ,  with 
the links labeled by the corresponding generators g,. 

u = ( a , ,  a,;  . * ,  ~ ~ - 1 )  with ak E {O,I},  O I k I K -1. Ob- 

SO’S, 44 s, 

s2 
I 

TO 
TI go 
T2 
T3 g2  
T4 g3 
T5 g4 
T6 g 5  

(a) (b) (c) (dl 
Fig. 2. Partition chain q/Sl /  . . . /So,, where I$/S,,l = Z K  and 

IS,/S,l= z4, lSl/&l = 2’, ~S,,~l/S,,,l = 23. (a) As partition tower. (b) 
As corresponding tower of two-way partitions T,,/T,/ . . . /TK.  (c) As 
chain representation for &/Sl/. . /S,,,, showing the generator matri- 
ces G, for S,/S,+l. (d) As chain representation for T o / T l / .  . / T K ,  
showing generators gk for T, / T, + 1. 

D. Binary Codes and Lattices 

The groups SJ that we are most interested in are binary 
codes and lattices. 

A binary ( N ,  K )  code C is a set of 2 K  binary N-tuples 
(codewords) that forms a group under mod-2 vector addi- 
tion. The components of the codewords are usually thought 
of as belonging to the binary field GF(2), whose elements 
we shall write in bold face as { O , l } ;  however, they may 
equally well be thought of as ordinary integers restricted to 
the values {O, l} ,  since mod-2 vector addition and multipli- 
cation by a binary scalar lead to the same result in either 
case. 

We use (vector) Hamming distance as a distance metric 
for codes. If we regard a codeword as an integer N-tuple, 
then the Hamming weight of a codeword c is equal to its 
norm llc11*. If the minimum Hamming distance between 
elements of the code C is d H ( C )  = d ,  we may also use the 
notation ( N ,  K ,  d )  for the code C. 

Since C is a binary group, from the discussion above, C 
has a generator matrix G, consisting of K generators gk,  
where each gk is a codeword in C, such that the code 
consists of the 2K binary linear combinations aGc of the 
generators, using mod-2 vector addition. (In fact, if we 
regard the codeword components as elements of GF(2), 
then C must be a vector space of dimension K over the 
field GF(2).) If C’ is an ( N ,  K’) code that is a subcode of 
C, then G, can be chosen to include a generator matrix 
Gc, for C‘, and we may write G, = G,, + G,,,, meaning 
that the generator matrix for C is a union of a generator 
matrix for C‘ with a set of K - K‘ generators Gclt-, for C 
modulo C’. The set of 2K-K’ binary linear combinations 
aG,,,, is a system of coset representatives [C/C’], and 
C = C‘ + [C/C’] is a coset decomposition of C correspond- 
ing to the decomposition G, = G,, + Gclcp of its generator 
matrix. 

Any binary code C is a subcode of the ( N ,  N )  code of 
all binary N-tuples, so ( N ,  N ) / C  is a 2N-K-way partition 
of the binary N-tuples into cosets of C, and there is a 
generator matrix G(,,,, N )  for the (N, N )  code that contains 
a generator matrix G, for C plus N - K additional gener- 
ator G ( N ,  N) lC  that generate a system of coset representa- 
tives [ ( N ,  N ) / C ]  for the cosets of C. 

A generator matrix G ( N , N )  for the (N, N )  code is an 
N X N integer matrix that is a basis for binary N-space. Its 
(integer) determinant must be congruent to 1 modulo 2. If 
in fact the determinant is equal to k l ,  then we say that 
G , ,  N )  is a universal basis for any Cartesian product S N ,  
where S is any group, or a “universal basis for N-space”; 
for then (and only then) G ( N , N )  has an integer inverse 
G[G N ) ,  so that any element s E S N  can be uniquely ex- 
pressed as s = s’G(N, N !  for some s’ E S N ,  namely s’G;; ,,,). 

A (real) binary lattice A is defined as a set of integer 
N-tuples that forms a group under ordinary vector addi- 
tion, and that has 2“ZN as a sublattice for some m ,  where 
Z N  is the set of all integer N-tuples. The 2-depth of a 
binary lattice is the least m for whch 2“Z is a sublat- 
tice; a binary lattice with 2-depth 1 or 2 is called a mod-2 
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or mod-4 lattice, respectively (see [l]). We use squared 
Euclidean distance as a distance metric for lattices (al- 
though it is not a metric in a strict sense). 

The cosets of A modulo 2"ZN may be represented by 
N-tuples of integers modulo 2", and coset representatives 
may be added modulo 2". If A is a mod-2 lattice, there is 
thus an isomorphism between its cosets modulo 2 2  and 
the codewords of some binary (N, K )  code C (see [l ,  
lemma 31). The (Euclidean) weight of a coset 2 2  + c, i.e., 
the minimum weight of any element of ths  coset, is equal 
to the Hamming weight of the codeword c. 

Since ZN/A/2"ZN is a partition chain and IZN/2"ZNI 
= 2mN, the theory of binary partitions applies. The parti- 
tion A/2"ZN has a generator matrix GA comprising K 
coset representatives g, of 2"2 modulo 2" such that the 
2K binary linear combinations uGA (mod2") are a system 
of 2K coset representatives [A/2"ZN] for the cosets of 
2"Z"' in A. If A' is a binary lattice that is a sublattice of 
A, then we can choose GA so that it includes a generator 
matrix GA, for A'/2"ZN, and GA=GM+GA/,, where 
the binary linear combinations u G A / ,  are a system of 
coset representatives for the lattice partition A/A'. If 
IA/2"ZNI = 2K, then IZN/Al = 2mN-K , and there is a 
generator matrix G Z ~ / 2 m Z ~  for ZN/2"ZN = (2/2mZ)N 
(the N-tuples of integers mod2") that is the union of a 
generator matrix G,, plus a generator matrix GZNIA for a 
system of coset representatives for the cosets of A in 2 N .  

The Gaussian integers are the set of complex numbers 
G = { a  + bi: a ,  b E Z } .  A complex binary lattice A is 
defined as a set of Gaussian integer N-tuples that forms a 
group under complex vector addition and that has +"GN 
as a sublattice for some p ,  where G N  is the set of all 
Gaussian integer N-tuples, and + A 1 + i is the prime of 
least norm in G.  The depth (+-depth) of A is the least such 
p. Every property stated above for real binary lattices is 
true for complex binary lattices, if we substitute Gaussian 
integers for integers and the lattice chain GN/A/+"GN for 
2 N/A/2mZ N .  

The fundamental coding gain y is the principal subject of 
[l]. For a lattice A of real 2N-tuples or complex N-tuples, 
the coding gain is in general defined as y(A) A 
dLn( A)/V( A) l lN ,  where dLn( A)  is the minimum squared 
distance between points in A, and V( A )  is the fundamen- 
tal vdume of A. All of the lattices to be considered here 
may be regarded as complex binary lattices and have 
minimum squared distance equal to d L n  = 2', where p is 
the depth of A. If 1A/2"GN( = 2K, then V(A) = IGN/AI 
= 2"N-K. Consequently, for such lattices y(A)  = 2K/N= 
I A /2 "G 1 l / N .  

111. SQUARING CONSTRUCTIONS 

If S is any set and S / T  is a partition of S ,  then the 
squaring construction is a simple method of generating a 
set U of pairs of elements of S with distance at least 
m i n [ d ( T ) , 2 d ( S ) ] .  In the next section we show that this 
simple 2-construction generates many good codes and lat- 
tices, notably the Reed-Muller codes and the Barnes-Wall 

lattices. As in Section 11, we begin by considering set 
partitions S / T ,  then go on to group partitions, and finally 
to partitions of codes and lattices. 

A.  The Squaring Construction 

If S is a union of M subsets T,, 15 i 5 M ,  then the 
squaring construction is defined as the union U of all pairs 
(s,, s,) where s1 and s2 are in the same subset, i.e., as the 
union of the M sets q2, 1 s i  s M .  We denote U by 

Fig. 3 illustrates the squaring construction by a trellis 
diagram. The trellis consists of two sections joined at M 
intermediate nodes, or states. Each section contains M 
branches, one corresponding to each subset T,, and repre- 
senting all elements of T,. The union of all branches in a 
section thus represents the total set S,  and the section thus 
represents the M-way partition S / T .  The branches in each 
section corresponding to the same subset T, are joined at a 
common state; thus each joined pair of branches repre- 
sents a Cartesian product T2.  The set U = lS/TI2 is repre- 
sented by the set of all possible paths through the trellis 
from the initial node to the final node, i.e., by the union of 
the r2, 1 I i I M .  The essential property of the squaring 
construction is that it guarantees a certain minimum dis- 
tance between elements of U = IS/TI2, which is in part a 
consequence of the partition distance lemma. 

lS/TI2. 

Fig. 3. Trellis diagram representing squaring construction U = IS/Tl'. 

Lemma 1: If S / T  is a partition with minimum dis- 
tances d ( S ) / d ( T ) ,  then U =  IS/TI2 has minimum dis- 
tance 

d ( U ) = min [ d ( T ) , 2d  ( S )]  . 
Proof: a) If two distinct elements of U belong to the 

same set q2 (correspond to the same path through the 
trellis), then they differ by at least d(  7')  in one coordinate. 
b) If two distinct elements of U belong to different sets T,2 
(correspond to different paths through the trellis), then 
they differ by at least d ( S )  in both coordinates. c) If t ,  
and t ,  are two elements in the same set T, that differ by 
d(  T ) ,  then ( t , ,  t l )  and ( t , ,  t l )  are elements of U that differ 
by d ( T ) .  d) If s1 and s2 are two elements of S that differ 
by d ( S ) ,  then (sl,sl) and ( s 2 , s 2 )  are elements of U that 
differ by 2d(S). 

In view of Lemma 1, we shall be particularly interested 
in partitions S / T  where d ( S )  and d ( T )  are in the ratio 
112. 

Suppose we arrange the branches in each section of the 
trellis so that they connect in any arbitrary order, i.e., let U 
be the union of M Cartesian product sets T,@T,, where the 
M pairs ci, j )  are ordered in any way such that both 
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indices run through all possible values. Another way of 
saying this is that there is a one-to-one map j ( i )  from i to 
j .  We call this a twisted squaring construction. Then asser- 
tions a) and b) of the proof of Lemma 1 still hold; c) holds 
with a minor modification; but d) need not necessarily 
hold. Thus the minimum distance is bounded by d(T)  2 
d(U)  2 min[d(T),2d(S)]; i.e., the equality of Lemma 1 
becomes a lower bound. We shall see later, in the construc- 
tion of the Nordstrom-Robinson code and the analogous 
nonlattice packing, that twisted squaring constructions can 
indeed improve minimum distance. 

A trellis diagram may be used as a recipe for decoding, 
provided that the decoding metric is a sum of independent 
contributions from each section of the trellis. More pre- 
cisely, if the elements of a set (code) are represented by a 
trellis diagram with N sections, so that each codeword c is 
an N-tuple ( cl, c2,  . , c N )  corresponding to some path 
through the trellis, and the decoder’s objective is to find 
the codeword c that minimizes some additive distance 
metric d(c, r )  = E,d(c,, r,), where r = (rl, r2; . -, rN)  is 
some “received word,” then a trellis diagram is a guide to 
an efficient search, as follows. First, for each branch in the 
trellis, find the element c, in the subset T(a) correspond- 
ing to that branch that minimizes d(c,,r,) over T(a). 
Thereafter, regard that branch as being labeled by the 
minimizing c, and having the corresponding distance as its 
metric, or length. Second, find the minimum length path 
through the trellis by some orderly search that systemati- 
cally compares the lengths of all possible paths between 
nodes and discards all but the best. 

For example, the squaring construction trellis diagram 
of Fig. 3 specifies the following obvious decoding method. 
First, for each branch in each section, find the best ele- 
ment of the corresponding subset q. Then, for each of the 
M intermediate nodes, sum the metrics of the two branches 
connecting that node to the initial and final nodes, and 
compare the M sums to find the shortest of the M two- 
branch paths. The latter step involves M additions of two 
numbers and an M-way comparison, equivalent to M - 1  
two-way comparisons, so that the total number of binary 
operations (additions or comparisons of two numbers) is 
2M-1.  

The construction of U exhlbits it as a union of M 
subsets T2 ,  and U is a subset of S2.  S2 is the union of M 2  
subsets T,@T,, where the indices (i, j )  run through all 
possible values. Clearly, we can express S2 as the union of 
M subsets U,, where each U, has the form of a twisted 
squaring construction, one of which (but only one) can be 
a true squaring construction. Fig. 4 is a trellis diagram 
illustrating such an M-way partition S2/U. Now there are 
M final nodes, one corresponding to each U,. The set S 2  is 
the set of all elements (sl, s2) corresponding to all possible 
paths through the trellis from the initial node to any final 
node. Fig. 4(a) illustrates the partition S2 /U for M = 4, 
and Fig. 4(b) is a schematic representation of this kind of 
trellis. 

Decoding a partition means finding the shortest path 
through the trellis from the initial node to each final node, 

ux 
( 4  (b) 

Fig. 4. Trellis diagram for partition S 2 / U ,  where U = IS/TI2. (a) Illus- 
tration for case M = IS2/Ul = I S / T l =  4. (b) Schematic representation. 

i.e., finding the least distance d(c, r )  for each subset in the 
partition. Decoding an M-way partition is thus a set of M 
parallel computations. The trellis diagram for the M-way 
partition S 2 / U  suggests the following efficient decoding 
procedure. First, find the best element for each branch and 
the corresponding branch metric. Then, for each of the M 
final nodes, decode the corresponding squaring construc- 
tion as before. The total decoding complexity after the first 
step is thus M(2M - 1) binary operations. 

B. Two-Level Squaring Constructions 

Now suppose that S / T / V  is a two-level partition chain: 
Le., that there is a set of MN subsets VI,, 1 I i I M ,  
11 j I N, such that each T, is the union of N subsets VI,,  
and S is the union of the M sets q. Then, for each T,, we 
can form a squaring construction W, equal to the union of 
the N corresponding sets ys. However, W ,  is a subset of 
q2, which is a subset of U = IS/TI2. In fact U is the union 
of the M sets T2,  while each T 2  is the union of N twisted 
squaring constructions of the type of v, so that there is 
an MN-way partition U/W, illustrated by the trellis dia- 
gram of Fig. 5. The trellis is the union of M subtrellises, 
one corresponding to each set q2. Each subtrellis is an 
N-state trellis of the form of Fig. 4, representing a parti- 
tion T,/w. The set U corresponds to the union of all 
paths from the initial node to any of the MN final nodes, 
each such node representing one of the subsets of the type 
w* 

(a) (b) 
Fig. 5 .  Trellis diagram for partition U / W ,  where U =  IS/T12, W =  

IT/V12. (a) Illustration for case M = IS/Tl= 2, N = IT/VI = 4. (b) 
Schematic representation. 

Comparing Fig. 5 to Fig. 1, we see that the first section 
is a partition trellis for the two-level partition S/T/V, 
while the nodes at the end of the second section represent 
the two-level partition U/T2/W. Note that lU/TzI = 
IS/TI = M ,  while IT2/Wl = IT/V( = N, so that there is the 
same number MN of nodes at the end of each of the two 
sections of a two-level partition trellis. 

Decoding the partition U/T2/ W involves decoding MN 
N-way squaring constructions, so the decoding complexity 
is MN(2 N - 1) binary operations. Because U/ W is a set 
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partition, we can iterate the squaring construction to arrive 
at a two-level squaring construction lU/ WI2. Alternatively, 
we denote a two-level squaring construction in terms of the 
original chain S/  T/ V as the 4-construction 

IS/ T/ V I I IS/ T I ' /IT/ V I I 2 .  

In view of Lemma 1, 

d(lS/T/VI4) = min[d(W),2d(U)]  

=min[d(V) ,2d(T) ,4d(S)] .  

Thus we will be particularly interested in two-level parti- 
tions S / T / V  with distances d(S)/d(T)/d( V )  in the ratio 
1 :2 :4 .  

A trellis diagram for a two-level squaring construction 
lS/T/VI4 is obtained by joining two trellises of the type 
of Fig. 5 back-to-back, as shown in Fig. 6. Every branch in 
this trellis represents a subset V I , .  The decoding complex- 
ity of such a trellis, given branch metrics, is 2MN(2N - 1) 
to decode the partitions represented by the two halves of 
the trellis, plus MN additions and MN - 1 binary compar- 
isons to sum the left and right metrics to each of the MN 
center nodes, and finally to select the largest. The total 
decoding complexity is thus 4MN2 - 1 binary operations, 
given branch metrics. 

Fig. 6. Schematic trellis diagram for two-level squaring construction 
IS/ T/ v i4 

Wei [3] and Ungerboeck [4] use the branch complexity of 
a trellis as a measure of decoding complexity, where the 
branch complexity is the number of branches per section. 
For the trellises of Fig. 5 and 6, the branch complexity is 
M N 2  in the most complicated section. Note that in all 
cases so far, our decoding complexity per section is closely 
approximated by the branch complexity. 

C. Iterated Squaring Constructions 

The squaring construction can be iterated indefinitely to 
produce 8-constructions lS/T/V/ Wls, 16-constructions, 
and so forth. The corresponding trellis diagrams become 
not only more complicated but also less regular, in that 
they do not have the same number of states at each 
boundary. Nonetheless, the decoding methods for the one- 
and two-level squaring constructions do generalize. 

Let So/S,/ . . /Sm be an m-level partition chain. We 
may apply the squaring construction to each partition of 
the chain to generate m sets S,, ~S'/S'+l~2, 0 I j I m - 1, 
which in turn form a partition chain Slo/Sll/ . . . /Sl,mpl, 
because each S,., is a subset of SJ' and has S':, as a 
subset. We may iterate up to m times, finally arriving at a 

2"-construction defined inductively by 

ISO/S,/. . . / S m I N  

A llSo/S1/. * * /Sm-,p2/~S1/S2/ * * /SmlN/212 
where N = 2". By iteration of Lemma 1, we find that 

d(  1'0/~1/ . . . / S m I N )  

= min [ d (  Sm),2d( Sm-,); * ,  2md( So)]. 
A schematic trellis diagram for the partition Slo/Sll/ 

. * /Sl, m - l  is shown in Fig. 7. The first section represents 
the m-level partition So/&/. . . /Sm, with every branch 
representing one subset Sm(a) in t h s  partition. The nodes 
at the end of the second section represent the subsets 
Sl,m-l(u') = ~ S m - l ( u ' ) / S m ~ 2  in the partition Sl,,/Sll/ 
- - . /Sl,m-l. The total number of such nodes is equal to 

l'10/'11/. . * /'1,m-ll 

= I ~ o / S 1  / . . . / S m  I '/( I So/~11 II S m  - 1 / S m  I). 
For each such node, there are ~ S m - , / S m ~  merging branches, 
all originating from a common cluster of lSm-,/Sm1 nodes 
at the end of the first section. The total number of branches 
in the second section (the branch complexity) is thus equal 
to 

I'm - 1 I ' m  I I SIO/S~,/ . . . /SI, m - 1 I 
= ISO/S,/. . . /Sm12/ISo/S11. 

The diagram shows that the union of all lSm-l/Sml nodes 
S1,m-i(a') in a cluster at the end of the second section 
represents a set Sm_ while the whole trellis, repre- 
senting S,, = ISO/S1l2, is the union of ISo/Sil subtrellises, 
each representing a set S,(a)2. 

Fig. 7. Schematic two-section trellis diagram for partition Slo/S1l/ 
/ S I . m - l  = I $ / ~ l l 2 / " . / l ~ , - 1 / ~ , l 2 .  

The decoding of an iterated squaring construction pro- 
ceeds in stages. Given the best element for each subset 
and the corresponding subset metric in the partition 
S o / S , / .  . . /Sm, for each of the two sections illustrated in 
Fig. 7, we may determine the best element for each subset 
and the corresponding subset metric in the partition 
Slo/Sll/. . /Sl,m-l by decoding ~Slo/Sl,m-l~ (twisted) 
squaring constructions, each involving ISm - ,/Sm1 addi- 
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tions and IS, - ,/Sm I - 1 binary comparisons, for a total of 
(2~Sm-,/Srn~- l)~Slo/Sl,m-l~ binary operations, or ap- 
proximately twice the branch complexity. This operation is 
repeated m times to decode the whole 2"-construction. 
Thus the strategy is to decode first 1-tuples, then 2-tuples, 
then 4-tuples, and so forth until we arrive at a final 
decoded 2"-tuple. This strategy resembles that of other 
"fast" algorithms, such as the fast Fourier transform on 2" 
points. 

D. The Squaring Construction for Groups 

Now let S be a group, T a subgroup, and S / T  the 
group partition induced by T.  Since each subset of S in 
this partition is a coset T + c for some coset representative 
c E [ S / T ] ,  the squaring construction for groups may be 
defined as the union U of all pairs ( 1 ,  + c, t ,  + c ) ,  where 
t , ,  t ,  E T and c E [ S / T ] .  Thus li is the union of IS/TI 
cosets of T 2 ,  namely T 2  + ( c , c )  for c E [ S / T ] .  

Since S / T  remains a set partition, all of the properties 
of the squaring construction applied to set partitions con- 
tinue to hold, in particular the expression for d ( U )  of 
Lemma 1, as well as the trellis and associated decoding 
method. The chain S 2 / U / T 2  is thus a set partition chain. 
However, S 2  and T 2  are groups, and it is easy to see that 
U = lS/TI2 is also a group, because an element of T 2  + 
( c ,  c )  plus an element of T 2  +(c', c') is an element of 
T 2  + ( c +  c ' , c +  c'). Thus S2/U/ 'T2 is in fact a group 
partition chain. 

The elements ( c ,  c )  E [ S / T I 2  form a natural set of 
IS/TI coset representatives [ U / T 2 ]  for U / T 2 .  As coset 
representatives for S 2 / U ,  we may choose any IS/Tl ele- 
ments of S 2  that are distinct modU. Two natural choices 
are [ S 2 / U ]  = {(c,O): c E [ S / T ] }  and [ S 2 / U ]  = ((0, c ) :  

We shall find it convenient to express coset representa- 
tives of squaring constructions as Kronecker products. 
Define go as the integer 2-tuple [ lo] ,  and g ,  as [ll]. Then 
the two-by-two integer matrix G,?,,, A { g o ,  g , }  is a univer- 
sal basis for any two-fold Cartesian product group, and in 
particular for S 2 / T 2  = ( S / T ) , .  We have 

c E [ S / T I ) .  

(C,O) =go@.c 

(c,  4 = g , @ c  

[s2/u1 =go@ [ S / T I  

[ U / T 2 1  = s 1 @ [ W T I  

[ S 2 / T 2 ]  = ( 8 0  + Sl) @ [ S / T I  

where the sum in the last equation is the direct sum 
[ S 2 / T 2 ]  = [ S 2 / U ] + [ U / T 2 ] .  (Note that we could have 
equally well used gh A [ O l ]  in place of go.) In the rest of 
the paper, we will usually write Kronecker products as 
ordinary products. 

Now we may write the squaring construction as 

I S / T 1 2 = T 2 + g l [ S / T ]  

and because g ,  is a generator matrix G(,,,, for the binary 

(2,l) code, we may also write 

lS/TI2 = T 2  + G ( , , l , [ S / T l  

where the sum is a direct sum and the indicated products 
are Kronecker products in both cases. 

Suppose now that S / T  is a binary group partition, i.e., 
that the order of S / T  is some power of two, say 2K. Then, 
as shown in Section 11, there is a generator matrix GSIT = 

{ g , ,  0 I k 5 K - l}, such that [ S / T ]  = aGSIT, where the 
label a runs through all K-tuples of (0, 1)-valued integers, 
Le., such that the set of all binary linear combinations of 
the generators g ,  in the matrix Gs,T form a system of 
coset representatives for the partition S / T .  The partitions 
S2/U and U / T 2  are then also binary partitions of order 
2K, with generator matrices 

G S z / U  = go@ G S / T  = [ G S / T  9 '1 
G U / T 2  = glgGS/T = [ G S / T *  G S / T ]  . 

The (binary) dimensions of S2/U and U / T 2  are equal to 
the dimension of S / T .  

Let S / T / V  now be a two-level group partition. Because 
lS/TI2 has T 2  as a subgroup and lT/VI2 is a subgroup of 
T 2 ,  IT/VI2 is a subgroup of lS/TI2 and lS/T12/IT/V12 
is a group partition. A set of coset representatives 
[ IS/ T I '/ IT/ VI is the direct sum g l @  [ S / T ]  + go@ [ T/ VI. 
The squaring construction applied to this partition yields 

IS/ T/ I A I IS/ T I I T/ I I 

= ~ I ~ / ~ 1 2 ~ 2 + ~ l @ ~ ~ l @ ~ ~ / ~ l + ~ o @ ~ ~ / ~ l ~  

= V 4 + ( g o + g 1 ) @ ( g 1 @ [ T / ~ 1 )  

= ~ 4 + ~ ~ o ~ l + ~ l ~ o + ~ l ~ l ~ ~ ~ / ~ l + ~ l ~ l ~ ~ / ~ l .  

+ g1@ (g1@ [ V T I  +go@ [ T / V I )  

In the last expression we have written Kronecker products 
as ordinary products and used the fact that the associative 
law holds for Kronecker products. 

The Kronecker product gl@gl  is the integer 4-tuple 
[llll], while go@g,  = [1100], g,@go = [1010]. Because g l @  
g ,  is a generator matrix G(4,1) for the binary (4,l) repeti- 
tion code, and (g ,g,  + g,go + g , g l )  is a generator matrix 
G,4,3, for the binary (4,3) single-parity-check code, we may 
wnte 

l s / T / V 1 4 =  V4 +G,4,,)[T/Vl+G(4,,)[S/Tl 

where Kronecker products are written as ordinary prod- 
ucts. 

If S / T / V  is a binary group partition, then S / T  and 
T / V  both have orders equal to a power of two, say 2K and 
2J-K, respectively, and there are generator matrices GSIT 
= ( g k ,  0 s k 1 K - 1 )  and G,,= { g k ,  K s k s J - 1 } ,  
respectively, such that [ S / T ]  = aGSlT and [ T / V ]  = 

a'GTIv, where a and a' are (0,l)-valued integer K-tuples 
and ( J -  K)-tuples, respectively. Then if U =  lS/T/VI4,  
the partition U/ V4 has generator matrix 

G U / V 4 =  G(4 ,3)GT/V + G(4,1)GS/T 
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which can be written out as 

G T / V  G T / V  

G U / V 4 =  l G T / V  G T / V  ' 1- 
The dimension of the partition lS /T/VI4/V4 is thus 
3 dim[ T/ VI + dim[ S /  TI. 

In summary, when we use squaring constructions or 
iterated squaring constructions with group partitions, we 
obtain groups comprising 2"-tuples of elements of the 
original groups. Partitions involving 2"-tuples can be ex- 
pressed as direct sums of the products of integer (0, 1)-Val- 
ued 2"-tuples with coset representatives of the original 
partitions, these integer 2"-tuples being m-fold Kronecker 
products of the 2-tuples go and g,. When the group 
partitions are binary group partitions, then partitions in- 
volving 2"-tuples are also binary group partitions and have 
generator matrices wluch are Kronecker products of inte- 
ger (0 ,  1)-valued 2"-tuples with the generator matrices of 
the original partitions. 

Note: When S / T  is a group partition, an alternative 
form of the squaring construction is 

G T / V  G T / V  G T / V  G T / V  

G S / T  G S / T  G S / T  G S / T  

U =  { ( s , s + t ) :  s E S ,  ? E T }  

because the first element of U =  lS/TI2 can be any ele- 
ment of S ,  while the second must then be from the same 
coset T +  s of T. This is the lulu + U I  construction of 
MacWilliams and Sloane [5 ,  ch. 2, section 91. The squaring 
construction can be defined whenever S / T  is a partition, 
whether or not S and T are groups. and thus is fundamen- 
tally a geometric construction. The lulu + U I  construction 
can be defined whenever the elements of S and T can be 
added, whether or not T is a subset of S ,  and thus is 
fundamentally an algebraic construction. The distance for- 
mula of Lemma 1, the trellis diagram, and the associated 
decoding method all depend on T being a subset of S ,  
rather than on group structure, and we therefore feel that 
the squaring construction better expresses the basic con- 
struction principle. However, when S / T  is a group parti- 
tion. the results of the two constructions are identical. 

E. The Squaring Construction for Group Partition Chains 

Now let S o / S , / . . . / S m  be a group partition chain. 
From the previous section, Slo/Sll/ . . . /S1,"-, is also a 
group partition chain, where S,, ~S,/S,+l~2, 0 I j I m - 
1; thus the squaring construction can be iterated on the 
new chain. Iterating m times, we arrive at an m-level 
iterated squaring construction of 2"-tuples denoted by 
ISo/Sl/. . . /SmlN, where N = 2". 

Let us define SnJ,  0 I n I m ,  0 I j I m - n ,  as the j t h  
group in the chain after n iterations. Thus So, = S,, 0 I j 
I m ,  and S m o = ( S o / S , / ~ - ~ / S m ( ' .  SnJ is a group of 2"- 
tuples of elements of S.  By iteration of Lemma 1, 

d ( S. / >  = min [ d ( S, + . > ,2 d ( sJ + . - , > , . . . ,2"d ( S, ) ] . 

From the previous section, a set of coset representatives 
for S,,,/S,,, J + l ,  0 I J I m - n - 1 ,  is 

[ sn, /Sn, + 1 1  = gl' [ Sn - 1 - 1  - 1. j + 11  

+go@ [ S n - l . J f l / S n - 1 , J + 2 ]  

where the indicated sum is again a direct sum. 
When the group partition chain is a binary partition 

chain, it is convenient to deal with generator matrices. Let 
G , 0 I n I m - 1, 0 I j I m - n - 1, be a generator ma- 
tnx for the set of coset representatives given by the above 
formula, with Go, = G, a generator matrix for SoJ/So, 1, 

0 I j I m - 1. Then we have the recursion 

? J  

again writing Kronecker products as ordinary products. 
The above recursions have the form of convolutions of a 

sequence Gn-, ,  or [S , - , ,  J/Sn-l, J + l ] ,  0 I j I m - n - 1, 
with the sequence (go, g,), except for end effects. To avoid 
end effects, let us extend the original chain So/S,/ . . . / S ,  
with dummy partitions So/So/ . . . /So and S, /S , /  
. - .  /Sm at each end. The generator matrix for the coset 

representatives of a dummy partition is the empty set 
{ 0 }, wluch serves as the zero element 0 in the addition of 
generator matrices, and the corresponding set of coset 
representatives is the trivial set (0). Thus in the extended 
chain, G,= { 0 )  = 0 ,  or [ S , / S J + , ] =  { 0 } ,  for j < O  or 
j 2 m .  Then the above recursion is true for all j .  

Fig. 8 illustrates these definitions with a tableau of 
partition chains. The original chain So/S,/ * . . /Sm = 

S,/Sol/ . . . /So" is extended in both directions by dummy 
partitions. The links of the chain are labeled with the coset 
representative generator matrices G,, where G, = 0 for 
j < 0 or j 2 m. The squaring construction then produces a 
second chain Slo/Sll/ . . . /Sl,m-l, extended at the top by 
dummy partitions S: = ISo/So12, and at the bottom by 
dummy partitions S; = ISm/Srnl2. Note that S;/Slo is not 
a dummy partition and has coset representatives generated 

Fig. 8. Tableau of iterated squaring constructions for partition chains. 
'(4,4)/(4.3) = {gogo);  G(4.3)/(4.1) = {gOgl,glgO); '(4.1) = {glg,). 
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by G,, = goG,; neither is Sl,mpl/Si, with generator 
matrix G,, m -  = g,Go, m -  1. Thus the nontrivial part of the 
tableau expands, rather than contracts, with increasing n .  
Nonetheless, after rn iterations, the center element S,, in 
the chain is the rn-level iterated squaring construction 

Generating functions are a convenient way of dealing 
with convolutions. Let us define formal power series in the 
indeterminate x as follows: 

ISo/S,/ . . . /SmlN, N = 2". 

GJX)  2 C G , , x J  

g ( 4  g, + gox-' 

I 

(We could replace GflJ by [ S f l I / S f l , , + , ]  if we preferred to 
use systems of coset representatives rather than generator 
matrices.) Then the recursion is expressed as the generat- 
ing function product 

G J - 4  = g ( x ) G f l - l ( x )  

where sums are direct sums and products are Kronecker 
products. Because the associative law applies to Kronecker 
products, we may iterate to obtain 

G A x )  = [ g ( x ) l " G o ( 4  

where the coefficients of [ g ( x ) ] "  are %"-tuples of {O,l}- 
valued integers which are n-fold Kronecker products of go 
and g,. If we define G a R M ( n ,  x )  2 [ g ( x ) ] " ,  then 

~ , , ( x )  = G a R M  ( n , x ) G o ( x ) .  

Thus 

~ n j  = C GaRM ( ' 9  n ) G o , J + r  
O c r s n  

where GaRM ( r ,  n )  is the coefficient of x-' in the polyno- 
mial GaRM ( n ,  x). 

Because of the generality of t h s  formula, it behooves us 
to examine the generating function GaRM ( n ,  x )  more 
closely. It is a polynomial in x - l  with n +1 nonzero 
terms. The coefficient GaRM ( r ,  n )  of x - ,  in this polyno- 
mial is the set of all n-fold Kronecker products of go and 
g, that comprise go r times and g, n - r times, in any 
order. The number of such products is the combinatorial 
coefficient c,,, A ( n ! ) / [ ( r ! ) ( n  - r ) ! ) ] .  If u is any vector, 
then the Hamming weight of the Kronecker product go@u 
is the Hamming weight of v ,  and that of g,@u is twice the 
Hamming weight of u; thus, by induction, every such 
product has Hamming weight 2"-'. 

Another way of expressing these facts is to consider the 
n-fold Kronecker product GcN, N )  A G;2,2) of the two-by-two 
matrix G(2,2) = {go,  g , }  with itself. G(2,2), G(4,4) = G;,,), and 
G(8,8) = G $ 2 )  look like ths:  

G(8,8) = 

1 0 0 0 0 0 0 0  
1 1 0 0 0 0 0 0  
1 0 1 0 0 0 0 0  
1 1 1 1 0 0 0 0  
1 0 0 0 1 0 0 0  
1 1 0 0 1 1 0 0  
1 0 1 0 1 0 1 0  

-1 1 1  1 1  1 1  1 
The rows of G , ,  N )  are all 2" n-fold Kronecker products of 
go and g,. A row corresponding to a product that includes 
go r times and g, n - r times has Hamming weight 2"-'. 
The set of all such rows is the coefficient of x P r  in 
G a R M  ( n ,  x ) ,  i.e., G a R M ( r ,  n). Any such matrix G ( N , N )  is a 
universal basis for N-space. 

The Reed-Muller code RM(r, n )  is a binary code of 
length 2" whch may be defined as the code generated by 
the generator matrix G,, ( r ,  n )  that consists of all rows of 
G ( N , N )  of weight 2"-' or greater. (In the next section, we 
will define it as the product of an iterated squaring con- 
struction; then we will show that such a construction leads 
to this generator matrix.) Then GaRM ( I ,  n ) ,  the matrix of 
the C,,, rows of weight exactly 2"-', can be identified 
as the generator matrix of the partition RM(r, n ) /  

example, the Reed-Muller codes of length 8 are RM(3,3) 
= (8,8), RM(2,3) = (8,7), RM(1,3) = (8,4), RM(0,3) = 

(8, l), and RM( - 1,3) = (8,O); correspondingly, GaRM (3,3) 
is the single row G(8,8)/(8,7) of weight 1 that generates 
(8,8)/(8,7), GaRM (2,3) is the set of three rows G(8,7)/(8,4) 
of weight 2 that generate (8,7)/(8,4), and so forth. 

The group SflJ is the direct sum SflJ = S t  +c, 
where N =  2", as can easily be seen from Fig. 8. Thus a 
generator matrix for SflJ/S," can be obtained by summing 
the coefficients of x k  for k 2 j in G,,(x). Therefore, if we 
define the generating functions 

RM ( r  - 1, n ). Thus G RM ( r ,  n ) = ,Ga,M ( r ' ,  n ). For 

S " ( X )  CS",XJ * 

u ( x - ' ) A l + x - ' + x - 2 +  . . . )  
J 

then 

There are two ways of expressing the SflJ in terms of the 
original partition chain, depending on how we group terms 
in the above expression. (We have this freedom since 
u ( x - ' )  commutes with GaRM (n, x) . )  On the one hand, we 
have 
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Hamming weight 2"- ' .  For example, 

s l ~ ~ G ~ R M ~ o ~ l ~ s O j ~ G ~ ~ ~ ~ l ~ l ~ s ~ , j + l  

= G(2,1)SJ + G(2,2)/(2,1)SJ+1 

= glSJ + gos,+ 1 

= { ( s + t , s ) :  SES,, f E S J + 1 } ,  

the lulu + U I  construction. The two-level generalization of 
the lulu + U I  construction is, for example, 

s 2 ~ = G a R M  ( o , 2 ) s O j + G a R M  (1,2)s0,j+l+ ' a R M  (2,2)s0, j + 2  

= G(4,1)Sj + '(4,3)/(4,l)'j+l + G(4,4)/(4,3)S~+2 

= g1glSJ + (gOg1' g,go)sJ+l + gogosJ+2 

= { ( s  + t , +  t2 + u , s  + t,,s + t 2 , s ) :  

t l , f 2 E S J + 1 ?  u E s J + 2 } ,  

a llulu + ullu + u'lu + u'+ u + u'll construction. 
Alternatively, we have 

s n ( x )  = [ u ( x - ' ) G a R M ( n , x ) ] G O ( x ) .  

However, observe that if we define the generating function 

G R M  ( n  , x) ' G R M  ( r , n ) x - ' ,  
r 

then 
GRM ( n , x )  = u ( X - ' ) G a R ,  ( n , x ) ,  

so that 

Hence 

When r 2 n ,  
can simplify 

s n j =  G R M  ( r y  n ) G O , j + r .  
r z O  

thenG,,(r,n)=G,,(n,n)=G(,,,,, so we 
this by using 

G R M ( r , n ) G O , j + r = G ( N , N )  G O , J + r  
r 2 n  r z n  

- 
- G( N ,  N )  '0, j + n 

N 
= ' 0 ,  J + n  

where N = 2", since G ( N , N ) @ R  = R N  for any group R, 
G , ,  N )  being a universal basis for N-space. Thus we have 

' f l J  ' ; J + n  + G R M  ( r ,  n ) G O , j + r '  
O s r s n - 1  

This yields expressions such as 

= so',j+ 1 + G R M  (0,1)GOj 

= + G(2,1)GJ 

= 'J? 1 + g1[ 'J / 'J  + 11 3 

the squaring construction, and 

S 2 ~ = S ~ , ~ + 2 + G R M ( 1 ~ 2 ) G 0 . j + l + G R M ( 0 ~ 2 ) G O ~  

= ':+2 + G(4,3)GJ+1 + G(4.1)G~ 

= s:+ 2 + (glg1' gOg1' glgo) [ ' J +  21 

+glgl[ s J / s J + l ]  3 

the two-level squaring construction, such as were intro- 
duced in the previous section. 

We summarize these results in the following lemma. 
Lemma 2: Let So/Sl/. . . /Sm be an m-level group 

partition chain. Let SnJ be the n-fold iterated squaring 
construction ~sJ/S,+l/-~~/sJ+fl~N, N = 2 " , 0 1 ~ 1 m - n .  
Then 

' n j  = c GaRM ( r ,  @'I+?; 
O s r s n  

also, 

s n j = s I y + n +  c G R M ( r , n ) @ [ s ~ + r / s ~ + r + , ] I  
O s r s n - 1  

where the sums are direct sums, GaRM ( r ,  n )  is the set of all 
rows in G ( N , N )  of Hamming weight equal to 2"- ' ,  and 
G R M  ( r ,  n )  is the set of all rows in G , ,  N )  of Hamming 
weight greater than or equal to 2"-'. Furthermore, if GJ is 
a generator matrix for SJ/SJ+l, 0 I J I m - 1, then 

Gnj  = GaRM ( r ,  '> @'j+r 
O s r s n  

is a generator matrix for SflJ/Sfl,J+l, 0 I J I m - n -1, 
where the sum indicates a union of generator matrices. 
Finally, the minimum distance of the iterated construction 
is 

d (  IsJ/'J+1/. * * 

= min [ d ( S, + n ) ,  2d ( S, + - , )  , . . ,2"d ( S, ) ]  . 

F. Duality 

The sets generated by the squaring construction often 
have nice duality properties. Although these properties are 
not needed for our other results, it would be a shame not 
to mention them, at least briefly. 

Let the set S consist of elements s from some space A 
such that the inner product (s, s') of elements of S with 
elements s' of some space B is defined. Here A and B will 
both be RN,  where R is some ring, and the inner product 
will be the sum of the products of the coordinates, an 
element of R .  

Two elements of R N  are said to be orthogonal if their 
inner product is zero. They are orthogonal mod r if their 
inner product is congruent to zero mod r for some r E R ,  
where R is a principal ideal domain. 

The dual S I  to a set S is the set of all elements of 
R N  that are orthogonal (possibly mod r )  to all elements 
of s. 

Let T be a subset of S. Then S I  is a subset of 
T I .  If S / T  is a partition chain, T'/S' is the dual 
partition chain. In general, the order (T I/S 1 is equal 
to lS/Tl. If So/Sl/.-./Sm is a partition chain, then 
Sd/Sd-l/ . .. / S /  is the dual partition chain. If 
So/Sl/. . . /Sm is a chain of two-way partitions, with g, 
the generator of SJ/SJt!, then S,'/S,' S,' is a 
chain of two-way partitions, and the generator gk of 
Sk+l/Sk is orthogonal to all elements of S k + l ,  so 
(g,, gk ) = 0 for k < j .  (It is usually possible and desirable 
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to choose the generators g$ so that (g,,g;) = 0 for 
k # j . )  

If S / T  is a group partition and U = IS/T 1 2 ,  then U' = 

IT ' / S  ' I 2 ,  where the dual squaring Construction is defined 
as 

lS/T12L - { ( t 1 + c , t 2 - ~ ) :  t , , t 2 E T ,  C E  [ S / T ] } ;  

that is, IS/T12 is the union of the cosets T 2  + ( c ,  - c ) ,  
c E [ S / T ] .  Thus IS/T12 is the very mildly twisted squaring 
construction in which the second coset representative is the 
additive inverse of the first (mod T). Alternatively, it is the 
squaring construction followed by a sign inversion of the 
second coordinate, if T = - T. Thus the distance expres- 
sion d(IS/T12) = min[d(T),2d(S)] of Lemma 1 holds for 
the dual squaring construction. 

follows because the inner product of 
an element ( t , +  c , t 2  + c )  of lS/TI2 with an element 
( s t  +c',s: + c ' )  of jT*/S1l2 is equal to the inner 
product of the coset representatives ( c ,  c )  and ( c  I, - c ), 
which is zero; and the orders of the partitions in the chains 
S2/(S/TI2/T2 and (TL)2/(T ' /SL(2/(SL)2 are both 
equal to IS/TI = ITL/S ' I. These chains are thus dual 
partition chains. 

The dual squaring construction lS/712 is actually equal 
Bto the squaring construction lS/TI2 if and only if every 
element c of S / T  has order 2, i.e., 2c = c + c = 0 (mod T), 
for then and only then will the coset T - c equal T + c for 
all c E [S/T]. In this case we say that the squaring con- 
struction is self-dual. If So/&/ * . . / S ,  is a selfdualparti- 
tion chain, i.e., if S, = Si-,, 0 I j I m ,  and the squaring 
construction is self-dual for all partitions in this chain, 
then the result of applying the squaring construction to 
each partition in this chain is another self-dual partition 
chain. 

- 
- 

- 

The duality of U 

- 

IV. BINARY CODES AND LATTICES OF LENGTH 2" 

It will not be a surprise at this point to note that the 
Reed-Muller codes themselves can be constructed by iter- 
ated squaring constructions, starting with the simple two- 
way exhaustive partition of the binary field. The general 
properties of the squaring construction lead immediately 
to the determination of the minimum distances of these 
codes, their duality properties, dimensions, generator ma- 
trices, trellis diagrams, and so forth, and give many interre- 
lationships between them. The development shows that 
generalized Reed-Muller codes, with the same parameters 
as the binary Reed-Muller codes, can be defined over any 
group. 

We shall also show that a notable sequence of dense 
lattices of lengths N =  2" can be constructed by iterated 
squaring constructions, starting with the simple two-way 
partition of the integers into even and odd. These are the 
sequence of Barnes-Wall lattices, which begin with the 
important lattices Z 2  2: G, D4, and E,, and their principal 
sublattices. We will see that the most natural starting point 
for this sequence is in two dimensions, where we have an 

infinite partition chain of two-way partitions with mini- 
mum squared distances 1/2/4/.  . . . The general proper- 
ties of the squaring construction lead immediately to the 
determination of the minimum distances of these lattices, 
their duality properties, dimensions, generator matrices, 
trellis diagrams, and so forth, and give many interrelation- 
ships between them, as well as with Reed-Muller codes. 

A .  Reed - Muller Codes 

Consider the binary field GF(2) = (0, l}, which may 
also be considered to be the (1,l) binary code. The trivial 
(1,O) binary code has one codeword 0, and the exhaustive 
partition of the field is the two-way partition (l,l)/(l,O). 
The generator matrix for the (1,l) code, or for the coset 
representatives [(l, l)/(l, O)] is the one-by-one integer ma- 
trix G(l,lj whose single generator is the l-tuple l. 

Applying the squaring construction to the partition 
(l,l)/(l,O), we arrive at a binary block code U of length 2 
whose words are ( c ,  c ) ,  where c E GF(2) = (0, l}. Thus U 
is a (2 , l )  code (which may be regarded as either a repeti- 
tion or parity-check code). From the general properties of 
the squaring construction, the (2 , l )  code is a union of two 
cosets of (1,0)2 = (2,0), is a subcode of (1,1)2 = (2,2), has 
minimum distance d, = 2, has a generator matrix G(2,1) 
with the single generator g, = [ll], and has a trivial two- 
section two-state trellis diagram. 

A generator matrix G(2,2) for the (2,2) code that reflects 
the squaring construction and exhibits the coset decompo- 
sition (2,2) = [(2,2)/(2, l)] + (2 , l )  is the matrix G(2,2) = 

= {go} is the generator matrix of a system of coset repre- 
sentatives [(2,2)/(2, l)]. 

The (2 , l )  code is self-dual, and the (2,2) and (2,O) codes 
are each others' duals, so (2,2)/(2,1)/(2,0) is a self-dual 
partition chain. 

Applying the squaring construction to the two partitions 
(2,2)/(2,1) and (2,1)/(2,0), we arrive at two binary block 
codes of length 4, which may be seen to be the (4,3) 
parity-check code and the (4 , l )  repetition code. From the 
general properties of the squaring construction, there is a 
partition chain (4,4)/(4,3)/(4,2)/(4,1)/(4,0) with dis- 
tances 1/2/2/4/m. A generator matrix for the (4,3) code 
is the set of three integer 4-tuples G(4,3) = { g,g, = [llll], 
glgo = [1010], g,g, = [1100]}, corresponding to the rows of 
weights 4 and 2 in G:2,2), and g,g, = [1111] alone generates 
the (4 , l )  code. Both codes have two-section two-state 
trellis diagrams. Alternatively, we have the two-level 
constructions (4,3) = 1(1,1)/(1, l)/(l,O)I4 and (4 , l )  = 

l(1, 1)/(1,0)/(1,0)14, leading to four-section two-state trel- 
lis diagrams. These two codes are duals of each other. 

By continuing to iterate the squaring construction in t h s  
way, we can generate all Reed-Muller codes. The r th-order 
Reed-Muller code of length N = 2" is conventionally de- 
noted by RM(r,  n).  We define an initial partition chain 
with RM(0,O) as the (1,l) code, and RM( - 1 , O )  as the 
(1,O) code, and extend the chain with dummy partitions in 
both directions by defining RM(r,O) as the (1,l) code for 

G(2,2),(2,1) + G(2.1) = {go, 81) = {[101~[111}~ where G(2,2),(2,1) 
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r 2 0 ,  and as the (1,O) code for r < 0 .  We then define 
RM(r,  n) as the code obtained by the squaring construc- 
tion 

2 
RM ( r ,  .) I RM( r ,  - ~ ) / R M  ( r  - 1, n - 1) I . 

By the general properties of iterated squaring construc- 
tions, this definition produces a chain of nested codes of 
length N = 2" from the chain of codes of length N/2. By 
induction, RM ( r ,  n) is the single-element (N,O) code for 
r < 0, and RM(r,  n) is the ( N ,  N )  code [GF(2)IN of all 
binary N-tuples for r 2 n. By Lemma 1 and induction, the 
minimum Hamming distance of RM(r,n)  is 2"-' for 
0 I r .  

If we define M ( r , n )  as the dimension of [RM(r,n)/  
RM(r  - 1, n)] ,  then by the properties of the two-level 
squaring construction, M( r ,  n) = M( r ,  n - 1) + M( r - 1, 
n - l),  and 2M(r,n-1) is the number of states in a two-sec- 
tion or four-section trellis diagram for 

RM ( r ,  n )  = I RM( r ,  n - 1)/RM ( r  - 1, n - 1) I 2 

4 
= I RM ( r ,  n -2)/RM(r - 1, - 2)/RM( r -2, n - 2) I . 

Solving this recursion with the initial conditions M(r,O) = 1 
if r = 0 and M(r,O) = 0 otherwise, we obtain M ( r ,  n) 
equal to the combinatorial coefficient C,,, ( n  !)/[( r !)(( n 
- r ) ! ) ] ,  so the M ( r ,  n) array is the Pascal triangle. (The 
generating function for M ( r ,  n) is M,,(x)  = (1 + x)".) If we 
define K ( r ,  n) as the dimension of RM(r, n), or the di- 
mension of [RM(r,  n)/RM( - 1, n)], then K ( r ,  n) is the 
sum of M(r' ,  n) = Cnr, for r'< r .  From the recursion for 
M (  r ,  n), we obtain the recursion K (  r ,  n) = K(  r ,  n - 1) + 
K(  r - 1, n - 1). (The generating function for K( r ,  n) is 

Finally, every codeword c in a binary code has order 2, 
c + c = 0, so the squaring construction is self-dual for 
binary codes. The (1,l) and (1,O) codes are duals, so the 
initial partition chain is self-dual, and, by induction, all 
chains are self-dual; Le., RM(r, n) = RM(n - r - 1, n). 
Note that the trellis diagrams for dual Reed-Muller codes 
have state spaces of the same size; in the Appendix we 
prove that this relationship holds in general for dual codes. 

Fig. 9 is a tableau of the Reed-Muller codes of lengths 
up to N = 32, as generated by the squaring construction 
recursion defined above. The italicized codes are those 
corresponding to dummy partitions. The dimensions 
M (  r ,  n) are also shown in parentheses between RM( r ,  n) 
and RM( r - 1, n), where they are nonzero; from these 
dimensions, we can see the numbers of states in the trellis 
diagrams for the partitions in the next chain. 

Fig. 10 exhibits four-section trellis diagrams for 
Reed-Muller codes of lengths 8-32, with the associated 
two-level squaring construction RM ( r ,  n) = IRM ( r ,  n - 
2)/RM ( r  - 1, n - 2)/RM ( r  - 2, n - 2) I '. There are sur- 
prisingly few states: only four for the (8,4) code, eight for 
the (16,11) and (16,5) codes, 16 for the (32,26) and (32,6) 
codes, and 64 for the (32,16) code. (The single-parity-check 
and repetition codes all have two-state trellis diagrams, as 
shown in [6].) 

K , ( x )  = (1 + x)"u(x) . )  
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Fig. 9. Reed-Muller codes of lengths N 5 32, as generated by squaring 
constructions. 

Fig. 10. Four-section trellises for Reed-Muller codes of lengths 8-32. 

As we have noted, the total number of branches per 
section in a trellis diagram (the "branch complexity") is a 
more telling measure of complexity than the number of 
states. The number of branches in the middle sections of 
these four-section trellises is 2E('* "), where the exponent 
E ( r ,  n) is given by 

E (  r ,  n) = M ( r ,  n -2) + 2 M (  r - 1, n -2).  

Using the fact that the generating function M , ( x )  equals 
(1 + x)", we can determine the generating function E, (x )  
of E ( r , n )  as E f l ( x ) = ( 1 + 2 x ) ( 1 + x ) " ~ * .  For example, 
E(  r ,  n) is one for repetition codes, two for single-parity- 
check codes, three for the (8,4) code, four and five for the 
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(16,5) and (16 , l l )  codes, and five, seven, and nine for the 
(32,6), (32,26), and (32,16) codes, respectively. 

What is the relation of this construction to the generat- 
ing function formalism of Lemma 2, whch involves the 
sets G,, ( r ,  n) and GaRM(r, n) of K(r, n) and M(r, n) = 

C,,, of integer N-tuples? In the notation of that formalism, 
the original partition chain has elements So, equal to the 
( 1 , l )  code (or GF(2) = {0,1}) for j I 0 and to the (1,O) 
code (or the single-element set containing only 0) for j > 0. 
The generator matrix sequence Go, is nonzero only for 
j = 0, where it is the single generator 1. Thus the generat- 
ing function G,(x) is the “unit impulse” 1, and the gener- 
ating function So(x) is the “unit step function” u(x-’). 
Consequently, G,(x) = Ga,, (n, x)Go(x) = GaRM (n, x), 
and S , ( x )  = GaRM (n, x ) S o ( x )  = Ga,, (n, x)u(x-’) = 
G,, (n, x), where GaRM (r ,  n) is the set of all rows of the 
N x N integer matrix G , ,  N )  = G;2,2) with weight 2”-‘, and 
G R M ( r , n )  is the set of all rows of G(N,N) with weight 
greater than or equal to 2”-‘. Thus Lemma 2 shows that 
the code RM(r,  n) is equal to the set of all codewords 
generated by binary linear combinations of the set of 
generators G,,  ( r ,  n), using mod-2 vector addition. 

By substituting an arbitrary group S for GF(2), it is 
possible to show that codes with the parameters of the 
Reed-Muller codes can be constructed over any group S .  
Let Z be the trivial group containing only the single 
element 0 of S, and let S / Z  be the exhaustive partition of 
S. The single generator 1 still generates a system of coset 
representatives { s } = S for S/Z.  By repeating the deriva- 
tion of the previous paragraphs with S in place of GF(2), 
we arrive at a nested set of codes RM,(r, n) which consist 
of all sums of N-tuples of the form sG,, ( r ,  n), where s is 
a K(r ,  n)-tuple of elements of S ,  using vector addition in 
S. If S is a field, RM,(r, n) is a K(r, n)-dimensional 
vector space over S .  The minimum Hamming distance 
between codewords in RM,(r, n) is 2“-‘, even if S is not a 
field or S is not finite. The N X N integer matrix 
G,, ( n ,  n) = G , ,  N )  is a basis for S N ,  reflecting the fact 
that G(N,N.) is a universal basis for N-space. 

The binary Reed-Muller codes are the best binary codes 
of length N = 2” with minimum distances 2”-‘ for N s 32. 
At N = 64, the extended BCH codes with minimum dis- 
tances 8 and 16 are superior and can themselves be im- 
proved upon [2, table 5.41. Important special classes are 

RM( n, n )  = (N, N, 1): binary N-space [GF(2)] N ;  

RM (n, n - 1) = (N, N - 1,2): single-parity-check codes; 
RM(n, n -2)  = (N, N - n -1,4): extended Hamming 

RM (n, ( n  - 1)/2)) = (N, N/2,2( n + 1)/2) ( n  odd): even 

RM (n, 1) = (N, n + 1, N/2): first-order Reed-Muller 

RM(n,O) = ( N , l ,  N): repetition codes; 
RM (n, - 1) = ( N ,  0, GO): the code whose single code- 

None of these codes (except the even self-dual codes) can 
be improved upon, for any N .  

codes; 

self-dual codes; 

codes; 

word is 0 N .  

The nonbinary generalized Reed-Muller ( N ,  1, N )  repe- 
tition code and ( N ,  N - l, 2) generalized single-parity-check 
codes cannot be improved upon, in view of the Singleton 
bound, d ,  I N - K + 1. (Because they meet this bound 
with equality, they are “maximum distance separable.”) 
Thus the first generalized Reed-Muller code that can be 
improved upon is RM,(1,3) = (8,4,4); indeed, when S is 
a finite field with more than seven elements, there is an 
(8,5,4) Reed-Solomon code over S [5].  

Note that linearity was never used in any essential way 
in constructing the Reed-Muller codes or deriving their 
distance properties. This supports the view that these codes 
are fundamentally geometrical rather than algebraic con- 
structs. 

Notes: Reed-Muller codes were among the first to be 
constructed, and most of the properties derived here have 
been known for a long time. The first explicit iterative 
constructions of the Reed-Muller codes seem to be in [7], 
using a “product generator code” construction that is 
effectively the same as our iterated squaring construction, 
and in [8], using the lulu + U I  construction. A close retro- 
spective reading of Plotkin [9] reveals the same construc- 
tion. The iterative construction using the squaring con- 
struction is also stated in [5 ,  ch. 13, sec. 3, problem 61. 
These are also special cases of the “generalized concate- 
nated codes” of Blokh and Zyablov [IO] and Zinov’ev [ l l ] .  

The two-level constructions for the Reed-Muller codes, 
with their associated trellis diagrams, are believed to be 
new and unexpectedly simple. For example, Wolf [6] 
showed that an ( N ,  K )  code could be represented by a 
trellis diagram with no more than m i r 1 [ 2 ~ , 2 ~ - ~ ]  states, 
giving, for example, a trellis for the (15 , l l )  Hamming code 
with 16 states; our construction yields a regular eight-state 
trellis for the (16 , l l )  extended Hamming code. (A com- 
plete trellis would have 16 states; see the Appendix.) 

B. The Barnes -Wall Lattices and Their Principal 
Sublattices 

Consider now the two-way partition 2 / 2 2  of the inte- 
gers into even and odd integers. The set of coset represen- 
tatives [ 2 / 2 2 ]  is {O,l}, with generator 1. 2 and 2 2  are 
both groups under addition and are therefore one-dimen- 
sional lattices. 

Applying the squaring construction to the partition 
2/22, we arrive at a two-dimensional set U = 12/2212 = 
{22’+(c,c), C E  {O,l}}, which is a subgroup of 2’ un- 
der vector addition, and thus is a two-dimensional lattice. 
Since U is the set of all integers which are either both even 
or both odd or, equivalently, the set of all integers with 
even norm, we identify U as the lattice Rz2 obtained 
earlier by applying the two-dimensional rotation operator 
R to 2’. From the general properties of the squaring 
construction, RZ ’ has minimum squared distance d$,, = 
2, has a trivial two-section two-state trellis diagram, and is 
a union of two cosets of 22’,  while 2’ is a union of two 
cosets of Rz ’; RZ ’/22 ’ has a generator matrix with the 
single generator g, = [ l l ] ,  while 2 ’/RZ ’ has a generator 
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matrix with the single generator go  = [lo]. Since Z 2  and 
2 Z 2  may be regarded as each others' duals modulo 2, 
R Z 2  is self-dual modulo 2. 

Since Z 2 / R Z 2 / 2 Z 2  is a chain of two-way partitions 
with generators go  and g ,  and distances 1 / 2 / 4 ,  it follows 
that 2 Z 2 / 2 R Z 2 / 4 Z 2  is a chain of two-way partitions 
with generators 2g,  and 2g,  and distances 4/8/16, and so 
forth. Therefore, there is an infinite chain of two-way 
partitions Z ,/RZ , / 2Z  , / 2RZ , /4Z  '/ . . . with minimum 
squared distances increasing by a factor of two at each 
partition, and with generators go.  g , ,  2g,,2g1, . . . . (Note 
that Rg, = g , ,  Rg, = 2g,, and so forth.) As noted in [ l ] ,  
this chain can also be regarded as the one-dimensional 
chain G / $ B G / + ~ G / .  . . of complex lattices +PG, where G 
is the lattice of Gaussian integers and + is 1 + i, the prime 
of least norm in G; the generators are then the 1-tuples 
1, +, G2, . . . . This is an ideal chain to which to apply the 
squaring construction. 

Let us therefore extend the chain upwards with dummy 
partitions to obtain the chain . . . / Z 2 / Z 2 / Z 2 / R Z 2 /  
2 Z 2 /  1 . ; i.e., we define the two-dimensional lattices 
A(r,O) as Z 2  for r 2 0 ,  and as R - Z 2  for r IO (since 
R 2  = 2). The lattices A ( r ,  n )  are then defined recursively 
by the squaring construction 

A ( r , n )  + l ( r , n - l ) / A ( r - l , n  -1 ) l  . 
By the general properties of iterated squaring construc- 

tions, this definition produces a chain of nested lattices of 
length N = 2"+' from the chain of lattices of length N / 2 .  
By induction, A ( r ,  n )  is Z N  for r > n ,  and A ( r ,  n )  = 

R-rA(O, n )  for r I 0 (since the rotation operator R com- 
mutes with the squaring construction). We shall see that 
A(0, n )  is the N-dimensional Barnes-Wall lattice, and we 
shall call the sequence A ( r ,  n), 0 I r I n ,  its principal 
sublattices (although at this point we have shown only that 
A(0, n )  is a sublattice of A ( r ,  n )  for r 2 0). By Lemma 1 
and induction, the minimum squared distance of A( r ,  n )  is 
2"-' for 0 I r I n. 

If we define MA(r ,  n )  as the dimension of [ A ( r ,  n ) / A ( r  
- 1,  n ) ] ,  then by the properties of the two-level squaring 
construction, MA(r ,  n )  = MA(r ,  n - 1) + M,(r - 1, n - l), 
and MA(r ,  n )  is the binary logarithm of the number of 
states in a two-section or four-section trellis diagram repre- 
senting A ( r ,  n )  = IA(r,  n - l) /A(r - 1, n - 1)12 = lA(r ,  n 
- 2 ) / A (  r - 1 ,  n - 2 ) / A (  r - 2, n - 2)  14. Solving this recur- 
sion with the initial conditions M,(r,O) = 1 if r > 0 and 
M,(r,O) = 0 if r < 0, we obtain M,,(r, n )  equal to K ( r ,  n ) ,  
the dimension of RM(r,  n ) ,  since M,(r,O) = K(r,O) and 
the recursion is the same. 

Fig. 11 is a tableau of the Barnes-Wall lattices and their 
principal sublattices of lengths up to N = 32, as generated 
by the iterated squaring construction defined before. The 
italicized lattices are those corresponding to dummy parti- 
tions. We have preceded the initial chain A(r,O) defined 
above with a one-dimensional chain . . . / Z / Z / Z / 2 Z /  
2 Z / 4 2 / 4 2 /  . . . , as we may since I m Z / m Z  1 = mZ and 
J m Z / 2 m Z ) 2  = mRZ2. As we shall verify shortly, the 
Barnes-Wall lattices A(0,l) and ,1(0,2) are the Schlafli 

2 
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Fig. 11. Barnes-Wall lattices and principal sublattices of lengths 
N I 32, with minimum squared distances. 

lattice D4 and the Gosset lattice E,, respectively. The 
lattices A(0,3) and A(O,4) are simply called the 16- and 
32-dimensional Barnes-Wall lattices A,, and A,,, respec- 
tively. The lattices A(n  - 1, n )  are the checkerboard lat- 
tices D,, and the lattices A ( 1 , n )  are called HN (for 
half-lattices) wherever not previously named. The last un- 
named lattice A ( 2 , 4 )  is called X3,. R2 is replaced by 2 
wherever possible. The dimensions MA( r ,  n )  are also shown 
in parentheses between A ( r ,  n )  and A ( r  - 1 ,  n ) ,  where 
they are nonzero; from these dimensions, we can see the 
numbers of states in the trellis diagrams for the lattices in 
the next chain. 

The Barnes-Wall lattices themselves are generated by 
the recursion 

A ( 0 , n )  =IA(0 ,n -1 ) /RA(0 ,n -1 )12 ,  

since A( - 1, n - 1 )  = RA(0,  rz- 1 ) .  Thus A(0, n - 1)2/ 
A(0, n)/RA(O, n - 1)2 is a lattice partition chain with 
distances 2"-'/2"/2", where each partition has order 
IA(0, n - l ) /RA(O,  n - 1)l. Since RA(0,  n )  A IRA(0, n - 
1)/R2A(0,  n - 1)12, RA(0,  n - l ) , /RA(O, n)/R2A(0,  n - 
1)2 is also a lattice partition chain with the same partition 
orders. Thus the order of A(0, n)/RA(O, n )  is the square 
of the order of A(0, n - l ) /RA(O,  n - 1 ) .  Solving t h s  re- 
cursion with the initial condition IA(O,O)/RR(O,O)) = 2, 
we find that IA(0, n)/RA(O, n)l  = 2" 2,", a Fermat 
power of two. 

We also see that A(0, n )  and RA(0,  n - 1)2 have the 
same minimum squared distance 2", but A(0 ,n )  has 
lA(0, n - l ) /RA(O,  n - 1)1= 2N/2  as many points per unit 
volume of 2"-space as does RA(0, n -1)2, so the coding 
gain y ( n )  of A(0, n )  is IA(0, n - l ) /RA(O,  n - l)I1/N= 2'12 
as large as that of RA(0,  n - 1)2, which is the same as that 
of A(0, n - l), namely y (  n - 1). Since y(0) = 1, 

y (  n )  = 2"/2 .  

Thus the coding gain of the Barnes-Wall lattices increases 
without limit. 
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Since 0, and E8 are mod-2 lattices isomorphic to the 
(4,3) and (8,4) Reed-Muller codes, respectively, their trel- 
lis diagrams are the same, and have two and four states, 
respectively. These lattices achieve coding gains of 2ll2 
(1.5 dB) and 2 (3 dB). The Barnes-Wall lattices A,, and 
A,,, whch acheve coding gains of 2,12 (4.5 1B) and 4 (6 
dB), have trellis diagrams with only 16 and 256 states, 
respectively, illustrated in Fig. 12. In general, since 
A(0, n)/RA(O, n )  is a partition of order 2N, where N = 2", 
a two-section or four-section trellis diagram for A(0, n + 1) 
has 2N states. The trellis for A(0, n )  thus has 2,'-' states, 
and the number of states in the trellis for A(0, n + 1) is the 
square of the number of states in the trellis for A(0, n) .  
The first four numbers in th s  sequence, i.e., 2, 4, 16, and 
256, are well behaved, but then a combinatorial explosion 
occurs: 65 536 states for A,,, whch achieves a coding gain 
of 25/2 (7.5 dB), and more than four billion states for A128, 
which achieves a coding gain of eight (9 dB). This explo- 
sion might have been expected from capacity and R, 
considerations (Forney et al. [14]). 

Fig. 12. Schematic trellis diagrams for A,, = 1D4/RD4/2D414 and A,, 
= I E, / R E ,  /2 E~ 1 4 .  

The chain A ( r ,  n ) ,  V r ,  is obtained by applying the 
squaring construction n' times to the chain A ( r ,  n - n'), 
V r .  Thus we can express any lattice A ( r ,  n )  by an n'-level 
iterated squaring construction on an n'-level lattice parti- 
tion chain from the chain A ( r ,  n - n'), namely, 

A ( r , n ) = I A ( r , n - n ')/ . . . /A ( r - n' , n - n') I " 
, 

N'= 2"'. 
From Lemma 2, therefore, 

[ A ( r t n ) / ~ ( r - l > n ) ]  = 1 ~ a R M ( r ' , n ' )  
0 c r' 5 n' 

. [ A ( r - r ', n -- n') /A ( r - r ' - 1, n - n')] 

A ( r , n ) = 1 GaRM ( r ', n ') A ( r - r ', n - n') 
0 5 r' 5 n' 

A ( r , n )  = A ( r - n ' , n - n ' )  N' +- G R M ( r ' , n ' )  
0 5 r '  < n' 

. [ A ( r  - r' ,  n - n ' ) / A ( r  - r'-1, n - n ' ) ] .  

In particular, if we let n'= n ,  

A (  r ,  n )  = l A ( r , O ) / A (  r - l , O ) / .  . . /A(  r - n,O) I , N 

= IZ '/ . . . / Z  */ . . . / R n -  'Z I N ,  0 I r < n , 
where N = 2", and we obtain 

A ( r ,  n )  = A ( r  - n,O)N + GRM(r', n )  
0 c r ' ~ : n  

. [ A ( r  - r ' , O ) / A ( r  - r ' - l , O ) ] ,  N = 2", 

which, for 0 I r I n ,  is equal to 

A ( r ,  n )  = Rn-rZ2N 

+ GRM(r',n)[Rr'-rZ2/Rr'-r+1Z2]. 

This shows that Rn-'Z2N-+"-rGN is a sublattice of 
A ( r ,  n ) ,  but Rn-r+1Z2N= +nn-r+lGN is not, so the depth 
of A ( r ,  n )  is p = n - r .  Since RrZ2/Rr+'Z2 = +'G/+'+lG, 
and [+'G/+'+'G] is generated by f, we arrive at the 
complex code formula 

A ( r , n )  =@- 'GN+ RM(r ' ,n )+r 'p r  

where the expression RM( r', n)Gr'-' is to be interpreted 
as the set of all 2K(r'*n) codewords in RM(r', n) ,  regarded 
as integer 2"-tuples, multiplied by the Gaussian integer 
+"pr ,  and where the sum is a direct sum over all linear 
combinations of these generators. Thus the whole expres- 
sion is a coset decomposition involving 2K*(r,n) cosets of 
+n-rGN, where K * ( r ,  n )  = E r s r r < n K ( r ' ,  n) .  Because of the 
symmetry of the sequence K ( r ' ,  n )  around N/2, we have 
K*(O, n )  = nN/2 ,  where N = 2"; therefore, the Barnes- 
Wall lattice A(0, n )  is the union of 2nN/2 cosets of +"GN, 
which shows again that its coding gain is y ( n )  = 2"12. For 
example, 

r s r ' i n  

r s r ' i n  

D4=A(0 ,1 )  = + G 2 + ( 2 , 1 , 2 ) ;  

4 = A (1,2) = +G4 + (4,3,2) ; 

E8 = A (0,2) = @2G4 + $I (4,3,2) + (4,1,4), 

and so forth, since RM(0,l) = (2,1,2), RM(1,2) = (4,3,2), 
and RM (0,2) = (4,1,4). This means, for example, that E,  
is the lattice of all complex 4-tuples h that are congruent 
to +cl + co modulo G2, where c1 and c, are codewords in 
the (4,3,2) and (4,1,4) binary codes, respectively. 

By going one step further back, we arrive at the one- 
dimensional chain . . . /2/2/2/22/22/42/42/ .  . . . 
In this chain, So, is 2Jl2Z for j even, and 2('-')l2Z for j 
odd, so that the generator matrix Go, is the single genera- 
tor 2('-')12 for j odd, and the empty set for j even. 
Consequently, in the general formula of Lemma 2 involv- 
ing GRM ( r ,  n + l), every other term drops out, and we are 
left with the real code formulas 

A ( r ,  n )  = 2(n-r)/2Z2N 

+ c RM ( r ' ,  n + 1)2('-'')12, 
r + 1 <  r ' c  n ,  n - r'even 

n - r even; 
A ( , . ,  .) = 2(n-r+1)/222N 

+ c RM ( r ' ,  n + 1)2('-'')/,, 
r + 1 5 r ' s  n ,  n - r' even 

n - r odd, 

where the expression RM(r', n + 1)2(n-r')/2 is to be inter- 
preted as the product of the codewords of RM( r', n + l),  
regarded as integer 2"+l-tuples, with the integer 2(npr')/2. 
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For example, A N  consists of two parallel subtrellises, each representing 
one of the two cosets of RH, of which A, is the union. 

The duals A( r, n) ' of these lattices may be defined by 

A( r ,  n )  ' A IG/+G/. . . /+"-%/. . . /+"-'GIN, 
A16= A(O,3) =4Z'6+2(16,15,2)+(16,5,8)  O S r I n ,  N = 2 "  
A,,= A(0,4) =4Z32+2(32,26,4)+(32,6,16)  where the notion of duality is as a complex lattice modulo 

+ n p r ,  and the chain is the dual modulo + n p r  to that which 
gives A(r, n )  in the expression A(r, n) = IG/. . . /G/ 
+ G / .  . . /+"-'GI '. Then we arrive at the complex code 
formula 

D, = A (0 , l )  = 2Z4 + (4,3,2) 

E,  = A(0,2) = 2 2 ,  + (8,4,4) 

and so forth. since R 
struction, we also have 
RR(,., .) = 2(n-r+1)/222N 

with the squaring con- 

+ c RM( r', n + 1)2(fl-r'-1)'2, 

n - r odd; 
r 5 r ' <  n ,  n - r 'odd 

RA(,., .) = 2(n-r+2)/222N 

+ c RM (r' ,  n + 1)2("-r'-1)/2, 

n - r even. 
r 5 r ' <  n ,  n - r 'odd 

For example, 

RD, = A (  -1 , l )  = 2Z4 + (4,1,4) 

RE, = A ( - 1,2) = 4 Z x  + 2(8,7,2) + (8,1,8) 

R A16 = A ( - 1,3) = 4 2  l6 + 2( 16,11,4) + (16,1,16) 

RA3,= A(-1,4) ~ 8 2 ~ ~ + 4 ( 3 2 , 3 1 , 2 )  

+ 2(32,16,8) 4 (32,1,32), 

and so forth. These code formulas exhibit the relationships 
between Reed-Muller codes and Barnes-Wall lattices that 
were developed in [12] and allow us to verify that indeed 
these are the Barnes-Wall lattices, including D4 and E,. 

From these code formulas, it is easy to verify that 
A(0, n)/RA(l, n)/ . . . /R"A(n, n) is a lattice partition 
chain, because each lattice involves a subset of the genera- 
tors for the previous lattice. For example, 

E, = A(0,2) =G2G4++(4,3,2)+(4,1,4) ,  

RD,= RA(1,2) = + 2 G 4 + ~ ( 4 , 3 , 2 ) ;  

R2A(2,2) = G2G4; 

A,, = A(0,3) = G3G8 + G2(S,7,2) 

+ +(8,4,4) + (8,1,8) ; 

RH,, = RA(1,3) = +,G8+ G2(8,7,2)+ +(8,4,4); 

R2D,, = R2A(2,3) = G3GS+ +2(8,7,2); 

R3A(3,3) = G3GX. 

Note that every lattice in such a partition has the same 
minimum squared distance 2"-'. The partition A ( r ,  n)/ 
RA(r  + 1, n) has order 2K(r,n), where K(r, n) is the dimen- 
sion of the code RM(r,n);  the points in A(r, n) are 
therefore 2K(r9n) times as dense in 2"'l-space as the points 
in RA(r  +1, n). This allows us to determine the coding 
gain of each of these lattices, which is given in [l,  tables I 
and 111. The partition AN/RHN always has order 2, which 
is why HN is called a half-lattice; the trellis diagram for 

A( r ,  n )  I = 1 RM(r' ,  n)+". 
0 5 r' < n - r 

For example, 

0; = A ( O , l ) I  = + G 2 + ( 2 , 1 , 2 ) = D 4  

D: =A(1 ,2) '  =+G4+(4 ,1 ,4)  

E; = A (0,2) ' = G2G4 + +(4,3,2) + (4,1,4) = E, 

and so forth. Thus A(0, n) is self-dual modulo +", because 
the code formulas of A(0, n) and A(0, n) are the same; 
the depth of A ( r ,  n) is p = n - r, the same as the depth 
of A ( r ,  n); the minimum squared distance of A(r, n) ' is 
2" = 2"-', the same as that of A(r, n); and the complex 
code formula for A(r, n) ' involves the codes whch are 
the duals of the codes in the complex code formula for 

(Note that D,I has +G4 as a sublattice of order 2; D,I 
is therefore a mod-2 lattice, with 2 2 '  as a sublattice of 
order 25, so D,I must be isomorphic to some (8,5,2) code; 
but the real code formula D,I = 2 2  + (8,5,2) is not nearly 
as nice as the complex code formula. The lattice RD,I is 
the mod-2 dual to D, and has real code formula RD,I = 

2Zs+(8,1,8),  whch is dual to the real code formula for 

To display these dual sublattices, we may begn with the 
two-dimensional chain . . . /G/G/G/+G/+2G/ . . . / 
+pG/+pG/+pG/ . . , which is self-dual modulo +'. Re- 
peated application of the squaring construction to th s  
chain results in a self-dual chain of 2p++'-dimensional 
depth-p lattices. The 2"+'-dimensional lattices comprise, 
on the one hand, the lattices A(r, p), 0 I r I p, and, on 
the other hand, lattices +pA(r, p )  ' which involve their 
duals A( r, p) ', 0 I r I p. Since the Barnes-Wall lattice 
A(0, p )  appears in the middle of t h s  self-dual chain, it is 
self-dual. This construction is illustrated for p = 4 in 
Fig. 13. Note that this tableau illustrates the chain 
A(0, p )  '/+A(l, p) "/ . . . /+pA(p, p) I, with distances 
2p/2p/. . . /2', which is the dual chain to A(p, p)/A(p - 
1 , p ) / .  . . /A(O,p), modulo 2p; there is also a chain 
A(p,  p )  '/A(p - 1, p )  '/ . . . /A(O, p) with distances 
1/2/ /2p which is dual to the chain A(0, p)/ 
+A(l ,  p)/. . . / + P A @ ,  p), modulo 2'. In [l, fig. 91 is an 
illustration of all of these chains in a single diagram. 

It seems to us that these lattices are best regarded as 
complex lattices, for a number of reasons. The two-dimen- 
sional chain is a more natural starting point than the 

N r ,  n>. 

DX.) 



Fig. 13. Barnes-Wall lattices, principal sublattices, and dual principal 
sublattices of lengths N 5 32 with minimum squared distances. 
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one-dimensional chain, and the two-dimensional chain is 
best regarded as a one-dimensional complex chain. Multi- 
plication by a complex scalar + is nicer than rotation by 
the 2 x 2  matrix R;  for instance. it is easier to see that 
multiplication by + commutes with the squaring construc- 
tion. (Also, we avoid the abuse of notation that occurs 
when we operate with R on 2N-dimensional vectors.) The 
complex code formulas are more regular than the real 
ones. The depth (+depth) seems a more significant struc- 
tural parameter than the 2-depth. Duals are most naturally 
defined for the complex lattices modulo +p and are natu- 
rally expressed by complex code formulas. 

Notes: The infinite series of lattices A(0, n )  is due to 
Barnes and Wall [13], who essentially constructed them 
from rows of G ( N , N ) .  (The principal sublattices and their 
duals also appear in [13], although without special notice.) 
Their iterative construction by the squaring construction, 
their construction by the two-level construction with the 
associated four-section trellis diagrams, and the general 
multilevel constructions are believed to be new. Forney 
et al. [14] gave constructions for D4, E,, and A,, in terms 
of repeated binary partitions of a two-dimensional rectan- 
gular grid and gave a four-section trellis diagram for E,. 
Cusack [15] derived a general construction for Barnes-Wall 
lattices equivalent to our complex code formula, using 
partitions from the two-dimensional chain Z2/RZ2/22 '/ 
2RZ2/  . . . and Reed-Muller codes. The real code formu- 
las that we derive from one-dimensional partitions, involv- 
ing alternate Reed-Muller codes, amount to construction 
C of [12] or construction D of Barnes and Sloane [16]. 
There are also constructions involving nonbinary Reed- 
Solomon codes in [16] and [17] that turn out to be equiva- 
lent to our squaring construction and two-level construc- 
tions; t h s  happens because the binary (2,1), (4,3), and 
(4,l) codes are "maximal distance separable," so that the 
Reed-Solomon code does not improve on the Reed-Muller 
or generalized Reed-Muller codes. 

V. CUBING CONSTRUCTIONS 

We now give constructions that generate codes and 
lattices of length 3N from those of length N. These will be 
applied in the next section to yield codes and lattices of 
length 3.2", notably the Golay code and Leech lattice, 
from those of length 2" that have already been con- 
structed. 

A .  Cubing Constructions for Two-Level Partitions 

Let S / T / V  be a two-level partition chain, with IS/TI 
= M and IT/Vl= N .  Then S /T /V  is represented by a 
partition trellis as in Fig. 1, with M clusters of N nodes 
each, each cluster corresponding to a subset T, of S. 

Let U = lS/TI2 and W ,  = IT,/V,I2. We saw in Fig. 5(a) 
that the partition U/W is represented by a two-section 
trellis, also terminating in M clusters of N nodes each, 
each cluster corresponding to a subset T, of S. It seems 
natural, therefore, to paste these two trellises together to 
arrive at the three-section trellis of Fig. 14. We respect the 
integrity of the clusters, but otherwise the clusters and the 
nodes within clusters may be pasted together (twisted) in 
any arbitrary way. We call such a construction a cubing 
construction lS/T/V13.  It is closely related to the two-level 
iterated squaring construction lS/T/VI4, whose trellis (Fig. 
5(b)) is the same as that of Fig. 14, except with one more 
middle section. 

(a) (b) 
Fig. 14. Trellis diagrams for cubing construction IS/T/V13. (a) For 

IS/TI = 2, JT/VJ = 4. (b) Schematic. 

Decoding a cubing construction involves decoding the 
partition U/ W,  whose complexity is MN(2 N - 1) binary 
operations, followed by decoding what is essentially an 
MN-state squaring construction, whose complexity is 2 MN 
- 1, for a total of 2MN2 + MN - 1 binary operations. The 
branch complexity in the middle section is MN 2 ,  so that 
the decoding complexity per section approximates 2/3 the 
branch complexity for large N. 

From the trellis diagram, we obtain a lower bound on 
the minimum distance for any cubing construction, again 
using the partition distance lemma. 

Lemma 3: If S / T / V  is a two-level partition chain with 
distances d ( S ) / d ( T ) / d ( V ) ,  and U = lS /T/VI3 ,  then 

d ( ~ )  2 min[d( v ) , M ( T ) , ~ ~ ( s ) ] .  

Proof: If two distinct elements of U correspond to 

a) the same-then at least one component differs by at 
least d( V ) ,  so d ( U )  2 d( V ) ;  

b) distinct but in the same subtrellis (cluster)-then at 
least two components differ by at least d ( T ) ,  so 
d ( U )  2 2 d ( T ) ;  

paths in the trellis which are 
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c) in different subtrellises-then all three components 
differ by at least d ( S ) ,  so d ( U )  2 3d(S). 

'. I' Elements corresponding to the same path always exist ,7 n -1 ,-, .,--, 
Fig. 16. Alternative partition chains (3,3)/(3,2)/(3,0) and (3,3)/ that differ by d( V ) ,  so d ( U )  I d( V ) .  Whether or not there 

connection of the branches. If the cubing construction 
are elements that differ by 2d( T )  or 3d( S )  depends on the ( 3 , 1 ~ 3 , 0 ) .  

- 
contains squaring constructions within two adjacent sec- 
tions of a single subtrellis, however, then d ( U )  I 
min[d(V),2d(T)], by Lemma 1. 

As special cases of cubing constructions, we have the 
repetition 3-construction lS/T/TI3, defined as the set of all 
3-tuples of elements of S that all belong to the same coset 
of T, with a trellis diagram as shown in Fig. 15(a) or (b), 
and with minimum distance equal to min[d( T ) ,  3d( S)]; 
and the parity-check 3-construction IS/S/T 1 3 ,  defined as 
any cubing construction with a single subtrellis, as shown 
in Fig. 15(c) or (d) and with minimum distance lower- 
bounded by min[d(T),2d(S)]. 

T 

( 4  (dl 
Fig. 15. Schematic trellis diagrams. (a) For repetition 3-construction 

IS/T/TI3, if IS/TI = 4. (b) Same as (a), schematically. (c) Parity-check 
3-construction lS /S /TI3 .  if IS /T l=  4. (d) Same as (c), schematically. 

B. The Cubing Construction for Group Partitions 

Now let S/T/V be a two-level group partition chain, 
with systems of coset representatives [S/T] and [T/V]. As 
with the squaring constructions, we seek to define a cubing 
construction in terms of these coset representatives such 
that the resulting groups have desirable properties. 

The squaring construction involves the integer matrix 
G(2,2) = { g o ,  gl}, which is a basis for S 2 ,  where S is any 
group. The two generators in G(2,2) generate all of the good 
binary codes of length 2. 

Let us consider then the integer matrix G(3,3) A 
{G(3,2),G(3,1)}, where G(3,2) is the set of two integer 3- 
tuples {[110],[011]}, and G(3,1) consists of the single 3- 
tuple [ l l l ] .  The two generators in G(3,2) generate the 
binary (3,2,2) code, and, in fact, as integer 3-tuples they 
generate a (3,2,2) code over any group S .  The single 
generator in G(3,1) generates a (3,1,3) repetition code over 
any group. As a 3 x 3  integer matrix, G(3,3) has determi- 
nant 1, so G(3,3) is a universal basis for 3-space, i.e., a basis 
for S 3 ,  where S is any group. 

Because G(3,2) and G(3,1) together span 3-space, there are 
two distinct chains of partitions of the (3,3) code (or 
indeed of any S 3 ) ,  illustrated in Fig. 16: (3,3)/(3,2)/(3,0) 
and (3,3)/(3,1)/(3,0). Thus Go,,, is also a set of genera- 
tors G(3,3),(3,1) for the coset representatives [(3,3)/(3, l)], 

and G(3,1) = G(3,3),(3,2) generates coset representatives for 
[(3,3)/(3,2)]. Note also that the generators in G(3,2) are 
dual to those in G(3,1) modulo 2, so that these two partition 
chains are dual to each other modulo 2. 

We now define the following cubing construction, based 
on a two-level group partition S /T /V  with systems of 
coset representatives [ S/T] and [ T/V] and the generator 
matrices just defined: 

IS/T/ VI A G(3,3)V + G(3,2) [ T/ V 1 + G(3.1) [ s/ T 1 
= { ( u1 + c1 + d ,  v2 + c1 + c2 + d,u3 + c2 + d ) :  

V ~ , ~ Z , U ~ E V ,  c ~ Y c ~ E  [T/V], d E  [S/T]} 
where the second expression shows how to interpret the 
direct sum of Kronecker products denoted by the first 
expression. When we say the cubing construction, we mean 
this cubing construction. 

The elements of lS/T/VI3 corresponding to c2 = d = 0 
are the 2-tuples in the squaring construction IT/VI2 fol- 
lowed by a 1-tuple in V. The elements U ( c , , d )  of 
lS/T/VI3 corresponding to fixed c2 and d are the coset 
U(0,O) + ( d ,  c2 + d,  c2 + d )  of the elements U(0,O) corre- 
sponding to c2 = d = 0. Thus lS/T/VI3 has a trellis dia- 
gram of the form of Fig. 14, where each set U ( c 2 , d )  
corresponds to all the paths going through a given node 
(which may be labeled ( c 2 ,  d ) )  at the end of the second 
section, and the union of all such sets for a fixed d 
corresponds to a subtrellis. Similarly, the set of all ele- 
ments of lS/T/VI3 corresponding to fixed c1 and d 
correspond to all the paths going through a given node 
(which may be labeled (cl, d ) )  at the end of the first 
section. 

It follows that this is indeed a cubing construction, and 
the lower bound on distance of Lemma 3 applies. Because 
the construction contains a squaring construction, 

min[d(V),2d(T)] > ~ ( I S / T / V ~ ~ )  

2 min [ d (  V )  ,2d( T) ,  3d( S ) ]  . 
If there is an element d E [S/T] with wt(d) = d ( S ) ,  then 
the lower bound holds with equality; however, if there is 
no such element, then we may be able to improve on the 
lower bound, as we shall see in the construction of the 
Golay code and the Leech lattice in the next section. 

As special cases of this construction, we have the repeti- 
tion 3-construction lS/T/TI3 and the IT/T/VI3 parity- 
check 3-construction lS/T/VI3. For these special cases, we 
have the distances 

d(lS/T/TI3) = min[d(T),3d(S)] 

d(  IT/T/VI3) = min [ d (  V),2d(T)].  
Equality holds in the first case because the repetition 
3-construction contains all 3-tuples (s, s, s), s E S .  
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I t  is easy to see that IS/T,/V13 is a group. Also, 
lS/T/VI3 is a subset of lS/T/TI3,  which is a subset of 
S 3 ;  and V 3  is a subset of \T/T/V13, which is a subset 
of IS/ T/ V 1 '. Consequently, s 3/ IS/ T/ T 1 3/ 1 S/  T/ v 1 3/ 

lT /T /VI3 /V3 is a group partition chain. The order of 
S3 / lS /T /T I3  is the square of IS/TI, and the Kronecker 
product G(,,,,[ S/T] generates a system of coset represen- 
tatives for S 3 / ( S / T / T I 3  (since S 3  = G( , , , ) (T+[S /T] )  = 

G(,,,,T + G(3.1)[S/T]). The order of lS/T/TI3/lS/T/Vl3 
is IT/ VI, and the Kronecker product G(,, , ,[T/V] generates 
a system of coset representatives for ( s / T / T ( ~ / ( s / T / v ( ~  

q , . , , ~  + G(, ,dS/T]  + G(,,,,P/ 771 and i ~ m 7 7 ~  = 

(since IS/T/TI~ = ~ ( ~ , ~ ) ( v  + [T,W + G(,,,,[s/TI, and 
IS/T/VI~ = G(,,,,v+ G(3,2dT/v]-+ G ( ~ , , ) [ S / T I ) .  similarly, 
lS/T/V13/(T/T/V(3 has order ( S / T (  and generator ma- 
trix G(,,,)[S/T], while (T/T/VI3,/V3 has order equal to 
the square of IT/Vl and generator matrix G(3 ,2 ) [T /V] .  

Now suppose that S,,/S,/ . . . /S,, is a group partition 
chain. The cubing partition may be applied to each two- 
level partition in this chain to yield groups TJ = 

(S,/S,+1/S,+213, 0 < j I m -2. However, in general T,,, 
is not a subgroup of T,. 

Fig. 17 shows the subgroup relationships that do exist, 
in general. These are based on the chain S3/IS/T/T13/ 
( S / T / V 1 3 / ( T / T / V ( 3 / V 3  already noted, as well as the 
a1 ternative central chain IS/ T / T  1 3/T3/ (T /T/  VI3 (since 
T 3  = lT/T/TI3). We see that the subgroups can be ar- 
ranged in a sort of double helix structure, with a periodic- 
ity corresponding to two levels in the original chain. 

s .3 

Fig. 17. Subgroup relationships for cubing constructions 

Using the generator matrix identity G(!,3) = G(33,) + G(,,,,, 
we have an alternative form for the cubing construction, 

IS/ v I 
- 
- q 3 , 2 1 P +  [T/VI)+ G(3,1lP+ [S/Tl) 
=Go.,,T+Go.,,T*, where T * A V + [ S / T ]  

= { ( t ,  + t * ,  t , +  t ,  + r * , t , +  r * ) :  t , ,  t ,  ET, t * E  T * } .  

This is in the form of the la + xJb + x la + b + X I  construc- 
tion mentioned in [ 5 ,  ch. 18, sec. 7.41. The direct sum of 
the coset representatives [ T / V ]  with the group T*, defined 
as the direct sum V+[S/T], is S ;  therefore, T* is the 
intermediate group in an alternative partition S /T* /V  to 
the partition S / T / V ,  as shown in Fig. 18. This shows that 
the cubing construction does not depend on the choice of 

'""/ \c" 
T T' 

Fig. 18. Alternative partition chains S / T / V  and S / T * / V  

coset representatives [ T / V ] ;  it does, however, depend on 
the choice of coset representatives [ S / T  1, or equivalently 
on T*; thus, we shall indicate this choice explicitly when 
necessary. 

Given T and T*, an alternative definition of the cubing 
construction would therefore be the (a + x(6 + xla + b + XI 
construction 

ITvT*I3 

G(3,2)T+ G(,,,)T* 
= { ( 2 ,  + t * ,  t , +  t 2 +  t * ,  2 ,  + t * ) :  t , ,  t ,E  T ,  t* E T * } .  

We would then define V as the greatest common subgroup 
(intersection) of T and T*, and S as the direct sum 
V + [ T/ VI  + [ T*/ VI, i.e., the least common supergroup of 
T and T*. This definition has the advantage of completely 
specifying the construction, whereas the earlier definition 
needs to be augmented by a specification of [ S / T ] ,  and is 
the preferred form when there is a natural parallel- 
ism between T and T*. On the other hand, the earlier 
definition is more natural for such constructions as 
)(4,4)/(4,3)/(4, l)I3, where the set T* = (4,l) + [(4,4)/(4,3)] 
has no particular significance. 

From this expression and Lemma 3, we have the dis- 
tance bounds 

min [ d (  V )  , 2d (  T ) ,  3d( T*)] 

> ~ ( I T V T * ~ ~ )  2 min[d(~),2d(~),3d(~)], 
so that if we want to improve on the lower bound, we will 
need to choose T* (or [ S / T ] )  so that d(  T*) > d(  S ) .  

For the repetition and panty-check 3-constructions, the 
above form reduces to 

1w7/77i3 = G ( 3 , 2 ) T +  G ( ~ , , ) ( T +  W I )  

I T / ~ V I ~  = G{,,JV+ [T/VI) + G(3,1)V 

= G ( 3 , 2 ) T +  G,,,,,s = ITVSI~  

=G(3,2)T+ G,,,,,V= ITVV13, 

showing that in these cases the choice of coset representa- 
tives does not matter. 

The cubing construction is not self-dual in general, when 
applied to binary groups; that is, it is not necessarily 
true that the dual of lS/T/VI3 is IV*/T'/S'l3. In 
fact, if u E G ~ ~ , ~ ) T + G ( , , ~ ) ( V + [ S / T ] )  and u ' E G ( ~ ~ ) T '  
+ G(,,,)(S' + [ V ' / T ' ] )  are elements of IS/T/Vl' and 
(V ' / T  * / S  * 1 3 ,  respectively, then their inner product 
(u, u') can be seen to be equal to ( d ,  d I), if d and d are 
the elements of [ S / T ]  and [V ' /T ' ]  that enter into the 
construction of u and u', respectively, when all elements 
of S / T  and T/V  are of order 2. Hence these two cubing 
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constructions are each others' duals when and only when it 
is possible to choose systems of coset representatives [ S / T ]  
and [ V * / T  * ] such that every element of [ S / T ]  is orthog- 
onal to every element of [ V ' / T * ] .  (However, it is true 
that ITvT*I3 is the dual of IT'v(T*)*I3, at least when 
all elements of S / T  and T/V are of order 2; consequently, 
the repetition and parity-check 3-constructions are 
duals, (lS/T/T13)' = lT'/T'/S'13, or (ITvSI3)' = 

Examples: Let (2,2)/(2,1)/(2,0) be the partition chain 
of binary length-2 codes considered earlier, and let go = [lo] 
be the generator for (2,2)/(2, l), and g, = [ l l ]  the gener- 
ator for (2,l). The cubing construction applied to this 
partition chain yields a (6,3) code with generator matrix 
G(3,2)gl + G(,,,,gO with minimum distance at least 3, and in 
fact since G(3,1)g0 = [101010], the minimum distance is 
three. Although the chain (2,2)/(2,1)/(2,0) is self-dual, 
this (6,3,3) code is not self-dual, because (go, go) = 1. 
However, if we construct another code (6,3,3)* by using 
the cubing construction on the same chain, but with the 
generator g; = [Ol] for (2,2)/(2, l ) ,  then since (go, g;) = 0, 
the (6,3) and (6,3)* codes are duals. (The (2,1,1) code 
generated by go is dual to the (2,1,1)* code generated by 

Secondly, let (2,2)/(2,1)/(2,0) be the partition chain of 
length-2 generalized Reed-Muller codes over the field 
GF(4). Choose go = [ o w * ]  as the generator for (2,2)/(2, l),  
where o and its conjugate a* are the elements of GF(4) 
other than zero and one, and again let g, = [ l l ]  be the 
generator for the (2,l) code. The cubing construction 
applied to this partition chain yields a (6,3) code with 
generator matrix G(3,2)gl + G(3,1)go with minimum distance 
at least three. In fact, it is possible to show that all 
codewords must have even weight, so the minimum dis- 
tance is four, and this is the (6,3,4) hexacode over GF(4). 
Now, defining the inner product as the sum of products of 
the components of one vector with the conjugate of the 
components of the other, go is orthogonal to itself over 
GF(4), so the hexacode is self-dual. (Both the (2,1,2) code 
generated by g, and the (2,1,2)* code generated by go are 
self-dual.) Since (2,2)/(2,1)/(2,0) is a chain of four-way 
partitions in this case, the hexacode has a 16-state three- 
section trellis diagram. 

(T ' O S  * 13.) 

g6-1 

VI. BINARY CODES AND LATTICES OF LENGTH 3.2" 

The constructions of Section V may be applied to the 
codes and lattices of Section IV to generate binary codes 
and lattices of length N=3.2".  We shall briefly discuss 
the codes obtained for N = 3, 6, 12, and 24. We omit the 
corresponding lattice constructions. 

The (24,12) code obtained by the cubing construction 
1(8,7)/(8,4)/(8,1) I has a minimum distance of only six if 
the standard coset representatives for the partition 
(8,7)/(8,4) are used. We observe that there is an alterna- 
tive choice of coset representatives that produces a (24,12) 
code of minimum distance 8, namely the Golay code. 
Similarly, a nonstandard choice of coset representatives 

for the partition E8/RE8 in the cubing construction 
1 E,/RE,/2 E,I produces the 24-dimensional Leech lat- 
tice, which occupies an even more remarkable place among 
lattices than the Golay code does among binary codes. 
These constructions lead to three-section trellis diagrams 
for the Golay code and the Leech lattice that have only 64 
and 256 states, respectively, and that in both cases lead to 
efficient maximum likelihood decoding algorithms. 

A .  Codes of Length 3 .2" 

The (3,l) and (3,2) codes may be obtained from the 
Reed-Muller codes of length 1 by the trivial constructions 

whle even more trivially (3,3) = (1,1)3 and (3,O) = (l,0)3. 
Their nesting properties, minimum distances, la + x ( b  + 
x J a  + b + X I  representations, generator matrices, trellis dia- 
grams, and duality properties are all determined as special 
cases of the general properties of their constructions. In 
particular, the (3,l) and (3,2) codes have minimum dis- 
tances 3 and 2; they each have a two-state trellis diagram; 
and they are duals of each other. 

Fig. 19 shows all codes of lengths 3, 6, 12, and 24 that 
can be derived in this way, with their minimum distances 
and their subcode relationships. 

1)/(LO)/(LO)13 and 1(1,1)/(L 1)/(1,O)l3, respectively, 

(1.1)3 

Fig. 19. Codes of lengths 3, 6, struction. 12, and 24 generated by cubing con- 

We note that Fig. 19 illustrates the general properties of 
the constructions shown in Fig. 17. The codes of a given 
length that are formed by parity-check constructions form 
a partition chain, as do those formed by repetition con- 
structions, but the codes formed by full cubing construc- 
tions are, in general, subcodes not of the next higher such 
code but of the code two levels higher. 

Of these codes, the best with distances equal to powers 
of two are those constructed by parity-check constructions, 
while the best with distances equal to three times a power 
of two are those constructed by full cubing construc- 
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tions. The repetition construction nowhere produces the 
best code, except for the elementary cases (3N, 1) = 
I( N ,  1)/( N ,  O)/( N,O)I3. However, the repetition codes do 
serve as the duals of the parity-check codes. 

The cubing construction codes have the right dimensions 
to be duals of each other but are not, as can be verified by 
examining inner products ( d ,  d ). For example, we have 
already seen that the (6,3) code is not self-dual, but rather 
is dual to a closely related code (6,3)* that can also be 
expressed as )(2,2)/(2, l)/(2,O)I3, but with a different coset 
representative for the partition (2,2)/(2,1). In general, 
there do exist cubing construction codes of the dimensions 
shown here that are duals of each other, including self-dual 
codes of dimension half their length, but we must choose 
nonstandard coset representatives [RM (r, n)/RM ( r  - 
1, n)]* to obtain them. This will be illustrated in the next 
section for the (24,12) Golay code. 

B. The (8,4)* Code and the Golay Code 

The reason that the (24,12) code obtained by the cubing 
construction l(8,7)/(8,4)/(8,1)l3 has a minimum distance 
of only six is that the standard system of coset representa- 
tives [(8,7)/(8,4)], namely the words generated by the 
three rows G(8,7)/(8,4) of weight 2 in G(8,8) = G:,,,), lead to 
codewords Go,l,d = ( d ,  d ,  d )  of weight 6. Furthermore, 
the reason that this code is not self-dual is that there are 
coset representatives in [(8,7)/(8,4)] that are not orthogo- 
nal to each other modulo 2, e.g., [llOOOOOO] and [10100000]. 

Therefore, we introduce another basis G&) for binary 
8-space that has many attractive properties. In addition to 
the standard matrices G(s,l) and G(8,4)/(8,1), it includes 
nonstandard generator matrices G6,7)/(8,4) and G&)/(8,n, 
as follows: 

G$,8) ’ { G6,8)/(8,7)7 G$,7)/(8,4), G(8,4)/(8,1)3 G(8,1) 1 
where 

G($,8)/(8,7) e 1 l110 1 
0111 1000 

G(f,7)/(8,4) e 1001 1100 I,, 01101 
r l l l l  O O O O ~  

G(8,4)/(8,1) = [lloo l1O0 1 
1010 1010 

G(8,1) = [ 1111 11111. 

Note that all generators are linearly independent, so that 
the complete set generates the (8,8) code; since all 8-tuples 
in G(g,7)/(8,4) have even weight, the last seven gener- 
ators generate the (8,7,2) code. The four generators 
{ G(8,1), Gd,7)/($4)} generate an (8,4) code, and since the 
columns of G(8,n/(8,4) run through all 3-tuples, G6,7)/(8,4) is 
a column permutation of G(8,4)/(8,1), so this is a permuta- 
tion of the (8,4,4) code, which we shall denote as (8,4,4)*. 
Fig. 20 illustrates alternative partition chains (8,8)/(8,7)/ 

may be obtained with these generators. 
(8,4)/(8, I)/@, 0)  and (8, 8)/(8,7)/(8,4)*/(8, 1)/(8, 0) that 

(Note that G($2)/(8,n has been chosen so that the seven 

ate all the good codes of length 7, including (7,6,2), 
(7,4,3), (7,4,3)*, (7,3,4), (7,3,4)*, and (7,1,7) codes, if we 
disregard the last component which is always zero.) 

generators G(?,7) = { G(8,4)/(8,1)7 G6,7)/(8,4),,G6,8)/~8,7) 1 gener- 

The generator matrix 

G6,7) { G(8,1), G(8,4)/(8,1)7 G6,7)/(8,4) 1 
for the (8,7,2) code has the following nice properties, 
which characterize all of the inner products of the genera- 
tors: 

a) the weights of all seven generators are multiples of 

b) all generators are orthogonal modulo 2, except for 
four; 

the pairs 
g, =11110000 
g, = 1100 1100 
g, = 1010 1010 

g: = 0111 1000 

g2* = 1001 1100 
g: = 0101 0110. 

Since G(z,7) is a generator matrix for the (8,7) code, any 
codeword c in that code can be uniquely represented as 

‘(‘0, a*)  = uOG(8,1) + uG(8,4)/(8,1) -k u*G(z,7)/(8,4) 

(mod 2) 
so that (u,, 4 ,  a*) is a 7-bit label for c. In view of the inner 
product properties of the generators, the inner product of 
two (8,7) codewords satisfies 

(c14,) = (a , ,a ; )+ (a : ,aJ  ( m o w  
where c1 = c(ao1, a,, a:)  and c2 = c(aO2,  a2 ,  a ; ) .  

The codewords in the (8,4) code are the words in the 
(8,7) code with a* = 0, and those in the (8,4)* code are 
those with a = 0. If c is an (8,4) codeword, then its weight 
1 1 ~ 1 1 ~  = Clka,ak(g , ,  gk) contains diagonal terms which are 
multiples of four, plus twice the cross product terms, 
which are all multiples of two, so the weight of any (8,4) 
codeword is a multiple of four. Similarly, the weight of any 
(8,4)* codeword c* is a multiple of four. 

Now let c = c(aol, a,O) be an (8,4) codeword, and let 
c* = c(u,,,O,a*) be an (8,4)* codeword. The weight of 
their mod-2 sum c@c* is governed by the following lemma. 

Lemma 4: If c(aol, a,O) E (8,4) and c(u,,,O, a*) E 
(8,4)*, then the weight of their mod-2 sum ( I c @ c * ~ ~ ~  is 
congruent to 2(a, a*) modulo 4. 

Proof: If c and c* are regarded as integer 8-tuples, 
then I ~ C @ C * ( ( ~  is equal to the Euclidean distance 

\ IC  - c*112 = I(c112 -2( c ,  c * )  + (Ic*(12. 
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However, llc112 and llc*112 are both multiples of four, and 
(c, c*) = ( a ,  a*)  (mod2). 

an (8,4) codeword and an (8,4)* codeword. Using Lemma 
4, therefore, 

The (8,7) code may be regarded as the union of 64 
cosets (8 , l )+  c ( a ,  a*) of the (8,l) code, where c ( a ,  a*) = 

+ u*G(;,,)/(~,~) (mod2). Each coset thus consists 
of c ( a ,  a*)  and its complement. T h s  implies that these 64 
cosets fall into the following classes: 

a) one class ( a  =a*  = 0 )  in which both weights are 
multiples of 8, i.e., 0 and 8; 

b) 7 x 4 = 2 8  classes ( ( a , a * )  -1mod2) in which both 
weights are congruent to 2 modulo 4, i.e., 2 and 6; 

c) 35 classes ( ( a ,  a*) = Omod2, but not a = a *  = 0) in 
which both weights are congruent to 0 modulo 4, i.e., 
4 and 4. 

The following eight-by-eight map shows exactly where 
the numbers of these classes are located, where octal 
notation is used for a and a*, and 0 indicates class a), 1 
indicates b), and 0 indicates c): 

a* 
a 0 1 2 3 4 5 6 7  

0 0 0 0 0 0 0 0 0  
1 0 1 0 1 0 1 0 1  
2 0 0 1 1 0 0 1 1  
3 0 1 1 0 0 1 1 0  
4 0 0 0 0 1 1 1 1  
5 0 1 0 1 1 0 1 0  
6 0 0 1 1 1 1 0 0  
7 0 1 1 0 1 0 0 1  

The Golay code may now be defined by the cubing 
construction 1(8,7)/(8,4)/(8, l)I3, using as the system of 
coset representatives for [(8, 7)/(8,4)] the words generated 
by G(;,7)/(8,?) or, equivalently, by the la + xlb + xla + b + 
x 1 construction 

(24,12) A I(8,4)v(8,4)*13 

= { ( c l  + c * ,  c1 + c* + c* ,c2  + c*):  

c1, c2 E @4), c* E (8,4)*}, 

with addition modulo 2. (This is a “Turyn construction” 
[5, ch. 18, sec. 7.41 (see also Sloane et al. [lS]).) The 
generator matrix corresponding to the cubing construction 
IKS, 7)/(8,4)/(8,1) I is 

where as always the expression is to be interpreted as a 
union of Kronecker products, and we have used the nota- 
tion G(x.4)*,,(x,1) for G(R,7)/(8,4); the generator matrix can 
also be written as 

‘(24.12) = G(3,2)G(X.4) + G(3,1)‘(X.4)*’ 

corresponding to the I(8,4)0(8,4)*1~ form of the construc- 
tion. 

This (24,12) code has minimum distance 8, which may 
be proved as follows. Let c = ( c1 + c*, c1 + c2 + c*, c2 + c * )  
be a codeword. Each of the 8-tuples is the mod-2 sum of 

llCll E 2( u l ,  a*)  + 2( a ,  + a 2 ,  a* )  + 2( a 2 ,  a* )  (mod4) 

= 4 ( a 1 + a 2 , a * )  

O(mod4). 

Thus all weights are multiples of four. By the cubing 
construction lower bound of Lemma 3, however, the mini- 
mum distance is at least six; therefore, it must be eight. 
(Since each 8-tuple is an (8,7) codeword, minimum-weight 
codewords must have weights 2, 2, and 4 or 0, 0, and 8 in 
their three 8-tuple components.) 

This (24,12) code is self-dual, because both the (8,4) and 
(8,4)* codes are self-dual. It is part of the self-dual parti- 
tion chain (24,15)/(24,12)/(24,9); i.e., it is a union of 
eight cosets of (24,9) = I(S,4)/(8,4)/(8,1)13, and (24,15) = 

I(S,7)/(8,4)/(8,4)1’ is a union of eight cosets of (24,12). 
Fig. 21 is a schematic trellis diagram for the Golay code, 

based on the cubing construction. It has 64 states ( a ,  a * )  
at each section boundary, where aG(8,4)/(x,l) E [(8,4)/(8, l)] 
and U * G ( , , ~ ) * / ( ~ , ~ )  E [(8,4)*/(8,1)]. It may be regarded as a 
union of eight subtrellises, each subtrellis representing a 
coset of the eight-state (24,9) code and having a coset 
representative (d*, d*, d*), where d* = U * G ( , , ~ ) * / ( , , ~ ) .  Each 
branch represents a coset of the (8, l )  code and thus 
represents two 8-tuples which are binary complements of 
each other. 

Fig. 21. Three-section 64-state trellis diagram for (24,12,8) Golay code. 

C. R*E,  and the Leech Lattice 

The Leech lattice is a 24-dimensional lattice that seems 
to be the most remarkable lattice of all. It is exceptionally 
dense for its dimension, it contains all good lattices of 
lower dimension, and it plays a pivotal role in the mathe- 
matical theory of lattices (and of finite groups). 

In a development analogous to that of the previous 
section, we shall now show that the Leech lattice A24 is 
expressible as a cubing construction IE,/RE,/2E813, if we 
replace the standard coset representatives for E,/RE, by 
another system [ E,/RE,]* .  

In t h s  case we introduce as our deus ex machina the 
following set of eight 8-dimensional generators. We may 
call them small miracle octad generators (SMOGS) in 
analogy to the well-known set of twenty-four 24-dimen- 
sional miracle octad generators that is often used for Leech 
lattice manipulations (Conway and Sloane [2]) and to 
which they are intimately related. In addition to the stan- 
dard generators G = { G(8,1),2G(8,,)/(*.4)} for RE,/2E8, 
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they include a nonstandard set G* for &/RE, ,  as follows: 

A go* 

1 - 1 2  0 1  1 o o = g :  

g? 1 0 1  0 1  0 - 1 2 A  

1 1 1  - 1 2  0 o o = g :  I ] :  G*= [ 1 -1 1 -1 1 -1 

1 1  1 1  1 1  1 1 , g o  

2 0 2 0 0 0 0 0 A g ;  
2 0 0 0 2 0 0 0 =g1  

2 2 0 0 0 0 0 0 I A g 3  A 

That these are a generator matrix for E , / 2 E ,  can be seen 
as follows. G is a standard generator matrix for RE, /2E, .  
RE,  + [ g , * ]  is the lattice RD& = 2 2 ,  +(8,1), because go* 
= [11111111] - [02020200], and the latter 8-tuple with 
2G(,, ,) /(8,4) generates 2 2  , / 2  E,. The remaining three gener- 
ators, G: = { g p ,  g?, g;  }, are congruent modulo 2 to the 
standard generators G(8,4)/(8,1) for E , / R D ; .  Thus the 
SMOG'S generate a system of coset representatives for 
E 8 / 2 E , .  They are linearly independent, thus a basis for 
8-space. The generators G* are in fact also generators for 
E 8 / 2 Z 2 ,  since they are congruent to the standard genera- 
tors modulo 2. 

The lattice R*E, is defined as R*E,A 2 E , + { a G * } ,  
meaning (as usual) that R*E, is the union of the 16 cosets 
of 2E8 whose representatives are the binary linear combi- 
nations of the generators in G*. Then E,  = R*E, + { a G } ,  
so we have the alternative partitions illustrated in Fig. 22. 
We shall show shortly that d&,(R*E,) = 8, the same as 
d;,(RE,),  so R*E, has the same coding gain as RE, or 
E,, and since E, is the unique eight-dimensional lattice 
with this coding gain [2] ,  this implies that R*E, must be a 
version of E,. 

Fig. 22. Alternative partition chains E 8 / R E , / 2 E n  and E n / R * E n / 2 E n .  

The eight generators { G, G * ]  have the following nice 
properties, which characterize all of the inner products of 
the generators: 

a) the weights of all generators are multiples of eight; 
b) all generators are orthogonal modulo 4,  except for 

the pairs ( g k ,  g ; ) ,  0 I k 2; 3, whose inner products 
are congruent to 2 modulo 4 .  

Since { G, G * }  is a generator matrix for E8/2E, ,  the 256 
cosets 2 E ,  + c of 2E,  whose union is E, can be uniquely 
represented as 

c ( a ,  a* )  aG + a*G* (mod2E,), 

so that ( a ,  a*) is an 8-bit label for the coset 2E,  + c ( a ,  a*).  
In view of the inner product properties of the generators, 

the inner product of two elements of E,  satisfies 

( C 1 , C Z )  = 2 ( a , , a ; ) + 2 ( a : , a 2 )  (mod4) 
where c1 is an element of the coset 2E, + c(al, a : )  and c2 
is an element of the coset 2E, + c (a2 ,  a ; ) ,  and we use the 
fact that any element of E,  is orthogonal to any element of 
2E,  modulo 4 (since Z 8 / E , / R E , / 2 E S / 4 Z 8  is a self-dual 
partition chain modulo 4) .  

The elements of RE, are the union of the 16 cosets of 
2 E ,  with a* = 0, and those in R*E, are those with a = 0. 
The inner products of any two elements of RE, (resp. 
R*E,) are thus congruent to 0 modulo 4. Since the weights 
of all generators are eight, this suffices to show that the 
weight of any element of RE, (resp. R*E,) is a multiple of 
eight. In turn, this shows that diin( R*E8) = 8, as claimed. 

Now let c be an element of RE, in some coset 2E,  + 
c(a,O) of 2E,,  and let c* be an element of R*E, in some 
coset 2E,  + c(0, a*)  of 2E,. Their squared distance is 
governed by the following lemma. 

Lemma 5: If c E 2E, + c(a,O) and c* E 2E,  + c(0, a*), 
then IIc - c*)I2 is congruent to 4(a, a*) modulo 8. 

Proof: IIc - c*1I2 = 1 1 ~ 1 1 ~  - 2(c ,  c * ) +  I(c*1I2; but l)c112 
and llc*112 are both equal to multiples of eight, and ( c ,  c*)  
= 2 ( a ,  a*) (mod4). 

This implies that the 256 cosets 2E, + c ( a ,  a*) fall into 
the following classes: 

a) one class ( a  = a* = 0) in which all weights are multi- 
ples of 16; 

b) 15 X 8 =120 classes ( ( a ,  a*)  = 1mod2) in whch all 
weights are congruent to 4 modulo 8; 

c) 135 classes ( (a ,  a*) = Omod2 but not a =a*  = 0) in 
whch all weights are congruent to 0 modulo 8. 

The Leech lattice may now be defined by the cubing 
construction 1 E , / R E , / 2  E,I3, using as the system of coset 
representatives for [ E, /RE, ]  the 16 8-tuples generated by 
G* or, equivalently, by the ( a  + xlb + xla + b + x(  con- 
struction 

A24 JRE8VR*E8I3 = ( ( ~ 1 +  c* ,  C I +  ~2 + c * ,  ~2 + c * ) :  

cl, c2 E RE,, c* E R*E,}  

with ordinary vector addition. (Ths is a generalized Turyn 
construction; see [2, ch. 8, sec. 21 and the references 
therein.) The generator matrix corresponding, to the cubing 
construction I E,/RE,/2E,I3 is 

GA24 = G ( 3 , 3 ) G 2 E , +  G(3,2)G + G(3,1)G* 

where, as usual, the expression is to be interpreted as a 
union of Kronecker products. Thus A24  is a union of 212 
cosets of 2E2, and E2 is a union of 212 cosets of A 2 4 .  The 
generator matrix can also be written as 

corresponding to the IRE, VR*E813 form of the construc- 
tion. 

The Leech lattice is self-dual modulo 4,  because both 
RE, and R*E, are self-dual modulo 4 .  
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The Leech lattice has minimum squared distance 16, 
whch may be proved as follows. Let h = (cl + c*,  c1 + c2 
+ c * ,  c, + c* )  be a point in the lattice, where cl, c, E RE,, 
c* E R*E,. Each of the 8-tuples is the sum of an element of 
RE, and an element of R*E,. Using Lemma 5 ,  therefore, 

l l h 1 1 2  E 4(a17 a*) +4(a1 -l a*)  +4(a2'  '*) 
Fig. 23. Three-section 256-state trellis diagram for Leech lattice AI4 = 

= 8(a1 + a, ,  a*)  ~ E ~ / R E ~ / ~ E ~ ~ ~  = I R E ~ V R * E ~ ~ ~ .  

E O  (mod8). 

Thus all weights are multiples of eight. By the cubing 
construction lower bound of Lemma 3, however, the mini- 
mum distance is at least 12; therefore, it must be 16. (Since 
each 8-tuple is an element of E,, minimum-weight code- 
words must have weights 4,4,  and 8 or 0, 0, and 16 in their 
three 8-tuple components.) 

Since Z 2 4 / E , 3 / R 2 4 / 2 E ~ / 4 Z 2 4  is a chain of 212-way 
partitions, and d,!&,( A2,) = 16, its coding gain is y(  A,,) = 

16.2-24/ '2  = 4 (6 dB). This is the same normalized density 
as is achieved in 32 dimensions by the Barnes-Wall lattice 
A,, and is very close to a sphere-packing bound called the 
Rogers bound [2 ] .  A,, is exceptionally dense for its dimen- 
sion. 

Fig. 23 is a schematic trellis diagram for the Leech 
lattice based on the cubing construction. It has 256 states 
( a ,  a*) at each section boundary, where aG E [ R E , / 2 E , ]  
and a*G* E [ R*E8/2E,] .  Each branch represents a coset 
of 2E,,  and the 256 distinct branches in each section 
represent the cosets in the partition E8/RE, /2E , .  There 
are a total of 212 paths through the trellis, representing 
the 212 cosets of 2E: of which A,, is the union. The 
trellis may be regarded as a union of 16 subtrellises, each 
subtrellis representing a coset of the 16-state lattice 
IRE,/RE,/2 E8I3 whose code formula is 4Z2, + 2(24,18,4) 
+ (24,2,16)  and having a coset representative (d* ,  d*, d*), 
where d* = a*G*. The trellis is identical in form to that for 
A,, = IE,/RE,/2E,14, except that it has three sections 
rather than four. 

The Leech lattice is more commonly encountered in the 
rotated form RA, , ,  defined as R A , ,  = IRE,/2E,/2RE813 
= 12E, vRR*E8I3 where we use the rotated SMOGS: 

R G E u / 2 E u =  G R E u / 2 R E a =  { RG*, RG 1 
0 2 0 2 0 2 2 O = R g , *  
2 0 0 2 2 2 0 O = R g p  
0 2 2 2 2 0 0 O = R g :  
1 1 1 1 1 1 1 - 3  i = R g :  

RG* = 

2 0 2 0 2 0 2 
2 2 0 0 2 2 0 
2 2 2 2 0 0 0 
4 0 0 0 0 0 0 

The generators in RG are now the standard generators 

tors in RG* are a nonstandard set {2G$,7),(8,4), G&)} for 
R E , / 2  E,, consisting of twice the generators G(;,7)/(8,4) for 

{2G(8,4)/(8,1)>4G(8,8)/(8,7)} for 2 E 8 / 2 R E S ,  the genera- 

(8,4)*/(8,1) that we used earlier, plus a special generator 
Rg:, which is the only one with odd components. 

In this representation, the rotated Leech lattice RA24 
has minimum squared distance 32 and is self-dual modulo 
8. The generator matrix corresponding to the cubing con- 
struction \ E , / R E , / 2  E,\, is 

G R A 2 4 = G ( 3 . 3 ) G 2 R E a +  G(3 .2 )RG + G(3,1)RG*3 
from which the miracle octad generators can easily be 
obtained, and the generator matrix corresponding to the 
12E, vRR*E,I3 construction is 

G R A 2 4  = G(3,2)G2Eu + G ( 3 , 1 ) G R R * E u .  

(The lattice RR*Es is simply a rotated version of 
R*E,, RR*E, = 2RE, + { aRG*}.)  

The lattices A,, and R A , ,  are indecomposable [l], but 
we may nonetheless characterize them by code formulas 
under a broadened definition. A,, is the union of 224 
cosets of 4 Z 2 ,  whose representatives may be taken as the 
224 24-tuples whose components are integers modulo 4 
that are obtained by binary linear combinations of the 24 
generators {2G(3,3)9(8,4), G(3,2)G, G(,,,,G*}, where the first 
12 generators are simply the generators of 2E,3/4Z24 in 
standard form, while the remaining 12 are the generators 
for A 2 , / 2 E ; ,  by the cubing construction. Of these 24 
generators, 18 are multiples of two, namely, 2G(3,3)G(8,4) + 
2G(3,2)G(8,7),(8,4), whch are the generators for the (24,18,4)  
code 1(8,7)/(8, 7)/(8,4)13, multiplied by two. The remain- 
ing six generators are a set of six 24-tuples of integers 
modulo 4 whose binary linear combinations modulo 4 
must all have weight at least 16, since all are Leech lattice 
vectors. Hence we may write 

A,, = 4Z24+2(24,18,4)+(24,6,16)' 

where (24,6,16)' is simply a notation for the 64 binary 
linear combinations (modulo 4 )  of the aforementioned set 
of six generators. Note that the generators of the (24,6,16)' 
code are congruent to those of the binary (24,6,8)  code 
defined by ~(8 ,4 ) / (8 ,1 ) / (8 ,1 )13 ,  whch is dual to the 
(24,18,4)  code, and also a subcode of it. 

Similarly, R A , ,  is the union of 224 cosets of 4RZ2, ,  or 
236 cosets of 8Z2,, whose representatives may be taken as 
the 236 24-tuples whose components are integers modulo 8 
that are obtained by binary linear combinations of the 36 
generators {G(3,3)[4G(8,7) + 2 G ( s , ~ ) , l ,  G ( 3 , 2 ) R G 3  G ( 3 . 1 ) R G * ) ~  

where the first 24 generators are simply the generators of 
2RE,3/8Z2,  in standard form. Of these 36 generators, 23 
are multiples of four, namely 4G(3.3)G(8,7) + 46(3,2)6(8,8)/(8,7), 
which are the generators for the (24,23,2) code I(S,8)/ 
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(8,8)/(8, 7)13, multiplied by four. We then recognize a set 
of 12 generators which are those of the (24,12,8) 
Golay code, multiplied by two, namely, 2G(3,3)G(8,1) + 
tor G(3,1)RgT is a special Leech generator” which we 
denote by (24,1,32)’. (Its weight is actually 16 X 3 = 48, but 
there are elements in the coset 2 RE, + (24,1,32)’ of weight 
32.) Hence we may write 

RA,, = 8Z2,  + 4(24,23,2) + 2(24,12,8) + (24,1,32)’ 

These code formulas show the existence of certain sub- 
lattices of A2, and RA,, that can themselves be obtained 
by cubing constructions, as follows: 

2G(3,2)G(8,4)/(8,1) + 2G(3,1)G(X,4!:/(8,1)- The remaining genera- 

2 H,, = 82 24 + 4(24,23,2) + 2(24,12,8) 

= 12D,/2E,/2RE,J3 

2x,, = 4Z2, +2(24,18,4) = (2o,/2D,/2E8I3 

4D,, = 8z2, +4(24,23,2) = 14z8/4z8/4D813. 

(Caution: RA,, is not a sublattice of A,,.) Thus there is a 
partition chain h,,/RH,,/2 X,,/2 RD2,/4Z 24 of 24- 
dimensional lattices, all with minimum squared distances 
equal to 16, with partition orders 2, 25, 27, and 2l’. 

A complex version of the Leech lattice can be defined by 
expressing the generators { G*, G )  in complex form, using 
+ = l + i  and + * = l - i , a s w e l l a s a = - 1 + 2 i :  

= SP 

A complex code formula for A,, can be developed as 
follows. A,, is the union of 224 cosets of 4G”, whose 
representatives may be taken as the 224 complex 12-tuples 
whose components are Gaussian integers modulo G4 (or 
modulo 4) obtained by binary linear combinations of the 
24 generators {2G(3,3)G(8,4), G(3,2+;, G,,,,,G*}. The first 12 
generators are the generators of 2E;/4Gl2 in standard 
form, which are obtainable from the code formula 2 4  = 
4G4 + 2+(4,3,2) + 2(4,1,4). Thus of the 24 generators, 11 
are multiples of 2+ (or G~), namely, 2+(G(3,3)G(4,3) + 
G(3,2)G(4,4)/(4,3)) which are the generators for the (12,11,2) 
code ((4,4)/(4,4)/(4,3) l 3  multiplied by 2+; seven are 
multiples of two (or +*), namely, 2(G(3,3)G(4,4)/(4,3) + 
G(3,2)G(4,3)/(4,1)) which are the generators for the (12,7,4) 
code 1(4,3)/(4,3)/(4, l)I3 multiplied by @; five are multi- 

= { g,*, g:, g; }, which we denote as +(12,5,8)’; and one 
final odd generator G(,,,,g,*, which we may denote as 
(12, I, 16)’. (Again, these codes are congruent modulo 2 to 
the (12,5,4) code l(4,3)/(4,l)/(4,l)l3 and (12,1,12) code 
[(4,1)/(4,0)/(4,0) 1 3 ,  respectively, which are the duals of 

ples Of +? +(G(3,2)G(4,1) + G(3,2)G($,3)) where G(2,3) 

the other codes in the code formula.) Hence we may write 

A,, = 4G12 + 2+(12,11,2) + 2(12,7,4) 

+ +(12,5,8)’+ (12,1,16)’. 

Now the principal sublattices of the Leech lattice are 
simply defined as 

H2, = 2+G12 + 2(12,11,2) + + (12,7,4) + (12,5,8)’ 

= I~8/E8/RE813 

X,, = 2G12 + +(12,11,2)+ (12,7,4) = ID8/D,/E,13 

D,, = +G’* + (12,11,2) = [G4/G4/D,l3 

and the existence and orders of the partition chain 
/+H24 /+2X,,/+3D24 /+,G l2 follow immediately. The 

cubing construction expression shows that three-section 
trellis diagrams exist for these lattices with 128, 8, and 2 
states, respectively. These are the same values as for their 
32-dimensional relatives, except for X2,; this lattice 
achieves a coding gain of y( X,,) = 4.2-6/’2 = 23/2 (4.5 
dB) with only eight states. 

Notes: Much literature on the Leech lattice is available, 
and it is doubtful whether anything here is fundamentally 
new. In particular, an (a  + xlb + xla + b + X I  construction 
of A,, using two versions of E, is described as “well 
known” in [2, ch. 8, sec. 21. We are not familiar with any 
previous use of the mod-4 SMOGS. The structure illus- 
trated in the trellis diagram is also believed to be new. 

VII. NONLINEAR CONSTRUCTIONS IN SIXTEEN 
DIMENSIONS 

In general, for fewer than 32 dimensions, the best block 
codes are linear and the best packings are lattice packings. 
An exception occurs in 16 dimensions, where the best 
known binary block code with 256 codewords is the non- 
linear Nordstrom-Robinson code, which has minimum 
Hamming distance 6 between codewords. 

At one time, it was conjectured [19, pp. 336-3371 that 
there might be an analogous nonlattice packing in 16 
dimensions, consisting of 16 translates of the Barnes-Wall 
lattice A,, (in analogy to the Nordstrom-Robinson code, 
which can be expressed as eight translates of the (16,5) 
first-order Reed-Muller code). Ths would imply numer- 
ous properties, including a coding gain that would be a 
factor of 3 - T 3 l 2  (0.26 dB) greater than that of A16. 
However, Conway and Sloane later showed in unpublished 
work that such a construction was possible with nine but 
no more than nine translates (see [2, ch. 7, th. 141). This 
packing falls just short of the density of A16. (If there were 
a construction consisting of ten translates, it would be 
denser.) 

In t h s  section, we first construct the Nordstrom-Robin- 
son code using the nonstandard generators for two ver- 
sions of the (8,4) code that were used in the previous 
section in constructing the Golay code. We then give an 
analogous construction of a nine-translate nonlattice pack- 
ing N16, using the SMOG’S for two versions of the E, 



FORNEY: COSET CODES-PART I1 1179 

lattice that were used in the previous section in construct- 
ing the Leech lattice. These constructions seem to fit 
naturally into the family of constructions that are the 
subject of t h s  paper. In addition, it seems worthwhile to 
publish a construction for N,,; although N16 fails to im- 
prove on A,, in any known respect, it is somewhat surpris- 
ing that it comes as close to matching A16 as it does, and it 
would seem to merit further study. These constructions 
also illustrate that twisted squaring constructions some- 
times improve on squaring constructions and that we are 
really more interested in the distance properties of a coset 
code construction than in whether it is linear or not. 

A .  The Nordstrom - Robinson Code 

The Nordstrom-Robinson code may be defined as the 
set of all 16-tuples consisting of two (8,7) codewords of the 
form 

where, as in the previous section, 

(This may be regarded as an la + xla + b ( x ) +  X I  construc- 
tion.) The function f ( a )  is any one-to-one map from 
3-tuples to 3-tuples with the properties 

1) if a = 0, f ( a )  = 0; 
2) if a,  # a 2 ,  the inner product ( a ,  + u2,  f ( a , ) +  ! (a2) )  

is congruent to 1 modulo 2 (implying that if a # 0, 
( a ,  f ( a ) )  =lmod2).  

We shall shortly investigate what functions f ( a )  satisfy 
these conditions. 

The code thus consists of 64 translates of (8, 1)2 and has 
28 codewords, labeled by the binary 8-tuples (u,, u2 ,  a ,  a*). 
In fact, it is a twisted squaring construction, since the 
coset of (8,l)  in the second section is a function of the 
coset of (8,l) in the first section. The set of c with 
a* = 0 is the squaring construction l(8,4)/(8, 1)12 = 

{ ( c ( a l ,  a,O), c ( a 2 ,  a,O))}, whch is the linear (16,5,8) 
first-order Reed-Muller code. This definition thus ex- 
presses the Nordstrom-Robinson code as a union of eight 
translates (16,5)+(c(O,O, a*), c(0, f ( a * ) ,  a*))  of the (16,5) 
code. It is therefore natural to express the construction as 
1(8,7)/(8,4)/(8, 1)12, which is illustrated by the 64-state 
trellis diagram of Fig. 24. The trellis simply consists of the 
end sections of the trellis diagrams for the (24,12,8) = 

l(8, 7)/(8,4)/(8, 1)13 or (32,16.8> = I@, 7)/(8,4)/(8, Ill4 
codes, connected in a way specified by the function f ( a )  
that respects the integrity of the clusters. 

Fig. 24. 64-state trellis diagram for (16,8,6) Nordstrom-Robinson code 
based on twisted sauaring construction 1(8.7~/(8.4~/(8.1~12. 

~ 

1 -  ,~ ,, \ ,, \ I ,, lisis that of the (16,5,8) code, namely 1 word at distance 0 

The minimum distance between codewords can be shown 
to be six, as follows. Since the code is nonlinear ( f (  ul@ a 2 )  

# f (  a,) @f( a 2) in general), we must consider every possi- 
ble pair of codewords (c, ,  c2) ;  their Hamming distance is 
the weight of their modulo 2 sum, which by Lemma 4 is 

IIc,e3c2(12= 2(a,+a2,a:  +a:)+2(a,+a2+f(a:)  

+ f ( a : ) ,  a: + a : )  (mOd4) 

from the properties of f ( a ) .  Furthermore, 

1) if a: = a : ,  then cl@c2 is a (16,5,8) codeword and 
has weight 0, 8, or 16; 

2) if a: fa:, then c1@c2 is a 2-tuple of nonzero (8,7) 
codewords and thus has weight at least 4. However, 
since \l~,@c,11~ = 2mod4, the weight must be at least 
six. (In fact, in this case the weight must be six or 
ten, four in one 8-tuple and two or six in the other.) 

Thus the construction is a twisted squaring construction 
that pairs the 28 cosets of (8 , l )  in (8,7) that have weights 
congruent to 0 modulo 4 and are not in (8,4) with the 28 
cosets of (8,l) in (8,7) that have weights congruent to 2 
modulo 4, and vice versa. 

We now consider the set of all possible f ( a )  satisfying 
conditions 1) and 2). The function f ( a )  may be specified 
by a table of 3 X 8 = 24 bits giving the value of f ( a )  for 
each value of its argument. Condition 1) fixes three bits. 
Condition 2) gives a total of 28 inhomogeneous linear 
equations in the remaining 21 unknowns. These equations 
could have no solution, a unique solution, or a space of 
solutions. Happily, in this case there is a three-dimensional 
space of eight solutions, given in Table I. The table also 
gives two particular solutions fo( a )  and fl( a ) ;  the total set 
of solutions consists of the two solutions that can be 
obtained as column permutations of fo(u) ,  and the six 
solutions obtained in this way from f , (a) .  

TABLE I 
SOLUTIONS FOR f (  a )  

OOO 
001 
010 
100 
01 1 
101 
110 
111 

0,030 
5, b , j  
c,L b 
1, C, a 
a i c,b, b 
a,  b 4 c, ii 
F, c, a t b 
a t  2, b i  ?,a  i b  

OOO 
101 
01 1 
110 
010 
001 
100 
111 

OOO 
001 
011 
111 
110 
100 
101 
010 

The number of near neighbors and indeed the entire 
distance distribution is the same for each codeword (the 
code is distance-invariant) and is easily enumerated. For 
any codeword c, the distance distribution within a subtrel- 
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(itself), 30 at distance 8, and 1 at distance 16 (its comple- 
ment). The distances to the 32 words in any other subtrel- 
lis (coset of (16,5)) are equally divided between 6 and 10. 
Thus from any codeword there are 7 X 16 = 112 words at 
distance 6, 30 at 8, 112 at 10, and 1 at 16. 

B. 16-Dimensional Nonlattice Packings 

We now construct 16-dimensional nonlattice packings 
analogous to the Nordstrom-Robinson code. We shall 
denote any such packing as NI6.  Its centers are the set of 
all 16-tuples consisting of two elements of E, of the form 

c = ( w, + c ( a ,  a* ) ,  w2 + c (  [ a  +f(a*)] ,  a * ) )  

where w, and w2 are elements of 2E,,u, a*, and f(a*) are 
binary 4-tuples, the sum a + f (a*)  may be taken modulo 
2, and, as in the previous section, 

c ( a , a * )  = a G + a * G * .  

The function f (a)  is a one-to-one map from a subset S of 
binary 4-tuples, including 0, to another subset f( S ) ,  with 
the properties 

1) f(0) = 0; 
2) for all ( a , , a 2 ) ~ S 2  such that a , # a 2 ,  the inner 

product ( a ,  + a,,  f(a,)+ f ( a 2 ) )  is congruent to 1 
modulo 2. 

We shall show shortly that these conditions cannot be met 
for the set of all 16 4-tuples but can be met for a large 
number of sets S of size IS1 = 9. Thus NI6 consists of 144 
translates of 2E:. 

This construction is again a twisted squaring construc- 
tion, since the coset of 2E, in the second section is a 
function of the coset of 2E, in the first section. The set of 
c with a* = 0 is the squaring construction IRE,/2E,I2 = 

2E,2+(c(a,O),c(a,O)), which is a version (RAI6) of the 
Barnes-Wall lattice A,, with dLn = 16. This construction 
thus expresses NI6 as a union of nine translates RA,,+ 
(c(0, a*), c ( f ( a * ) ,  a*)) of RAI6. We may therefore express 
the construction as IE,/RE,/2E,12, whch is illustrated by 
the 144-state trellis diagram of Fig. 25. The trellis consists 
of 9/16 of the end sections of the trellis diagrams for the 
A,, = ]Es/RE8/2Es13 or A3, = IE,/RE8/2E,14 lattices, 
connected in a way specified by the function f(a) that 
respects the integrity of the clusters. 

Fig. 25. 144-state trellis diagram for N16 = I E 8 / R E R / 2 E S l 2 .  

There are nine times as many points of NI6 per unit 
volume of 16-space as are in RAI6. We shall next show 
that the minimum squared distance between its points is 
12. This implies that it is 3lo/2l6 as dense as A,, in 
16-space, with normalization for minimum distance, Le., 

that its coding gain is y(N, , )  = 35/4.2p1/2 = 2.792 (4.46 
dB), or 0.06 dB less than y(A,,) = 23/2 = 2.828 (4.52 dB). 

Again, we must consider the distance between every pair 
of centers ( c,, c,) in NI6. Using Lemma 5 and the proper- 
ties of f ( a ) ,  we have 

I l c , - c 2 ~ ~ 2 ~ 4 ( a , + a , , a :  +a:)+4(a,+a2+f(a:)  

+ f(a:), a: + a : )  (mods) 

= 8 ( ~ ,  + ~ 2 ,  U :  + u : )  

+4(f(a:)+f(a:),a: + a : )  

0 (mods), if a ; = a ?  
4 (mods), if a ; # a z '  

If a: = a: ,  then c, and c,  are in the same translate of 
RAI6, so that their minimum squared distance is in fact 
16. (If a ,  = a, ,  then they are in the same translate of 2E:, 
whose minimum squared distance is 16. If a , # a , ,  then 
their difference consists of two nonzero elements of RE, 
and thus has weight at least 8 + 8 = 16.) 

If a: # a:,  then the difference c1 - E, consists of two 
nonzero elements of E, and has weight at least 4 + 4  = 8. 
However, since llc, - c21I2 = 4mod8, the weight of the 
difference must be at least 12. (When it is 12, the two 
8-tuples of the difference must have weights 4 and 8.) 

We now show that while the conjectured 16-translate 
packing fails, many nine-translate packings work. It is easy 
to show that condition 2) on f ( a )  cannot be satisfied when 
S is the set of all 16 4-tuples; indeed, it is sufficient to 
consider any set including the four weight-1 4-tuples and 
the six weight-2 4-tuples, for which condition 2) gives a set 
of 55 equations in 44 unknowns which are inconsistent. 
However, for many sets S of size IS1 = 9, there are six- 
dimensional spaces of solutions to the set of 36 equations 
in 32 unknowns implied by condition 2). General and 
particular solutions for the sets S ,  = (0000,0001; . . , lOOO} 
and S, = (all 4-tuples of weight 0, I, or 3) are given in 
Table 11. 

TABLE I1 
SOLUTIONS FOR f ( a )  

m 
OOO1 
0010 
0100 
1OOO 
0011 
0101 
0110 
0111 

m 
OOO1 
0010 
0100 
lo00 
0111 
1011 
1101 
1110 

o,o,o,o 
d,  U ,  h , l  
e ,  c, 1, b 
f ,  C, a- 
l , f , e ,  d 
d i Z,a i c,b, h 
d i f? a, 6 i c, U 
e if, C, c, a + h 
d t e i f ,  0 + C, h + C, a i b 

o,o,o,o 
d ,U,h , l  
e ,  c, 1, b 
f C, a- 
l , f . e , d  
d i e + f , a  + C, h +  ?,a i b  
d t e , a  t c +  f , b +  e ,  h + d 
d i  f , a +  f , h + c i e , U + d  
e i f , ? i f , c +  e ,  a + h + d 

oooo 0000 
0101 1101 
001 1 1011 
0110 1110 
1111 1000 
1010 0010 
1001 OOO1 
1100 0100 
0111 1111 

oooo OOOO 
0101 1101 
001 1 1011 
0110 1110 
1111 1000 
0111 1111 
0010 0101 
OOO1 0110 
0100 001 1 
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Since the roles of a* and f ( a * )  can be interchanged in 
the construction of N16, the range f(S) of any set S for 
which the construction works is another set of nine 4- 
tuples for which the construction works. Any column VIII. DECODING: EXAMPLES 

which A16 would be the union of nine translates) is supe- 
rior to A,, for covering? 

permutation applied to both a and f ( a )  also gives a set S 
and a function f ( a )  for which condition 2) is satisfied. 
Thus there are a large number of sets S of size IS1 = 9 that 
work. 

If there were a union of ten translates of RA, ,  with 
d$,=12, its normalized density would be a factor of 
10-(3/4)' = 65 610/65 536 times that of RA,,. However, 
Conway and Sloane [2] state that no such ten-translate 
construction exists. 

The number of near neighbors (lussing number) and 
indeed the entire distance distribution (theta series) is the 
same from each center and may be enumerated using the 
following facts about the 256 cosets of 2E8 in the quotient 
group E,/2E8, identified by the label ( a ,  a*):  

1) the zero coset (2E, itself,) has weight enumerator 

2) any of the 135 nonzero cosets with ( a ,  a*)  = Omod2 
has weight enumerator 16x' + 1 2 8 ~ ' ~  + 4 4 8 ~ ~ ~  + 

3 )  any of the 120 nonzero cosets with ( a ,  a*) = 1 mod2 
has weight enumerator 2x4 + 5 6 ~ ' ~  + 2 5 2 ~ ~ '  + 

1 + 2 4 0 ~ ' ~  + 2 1 6 0 ~ ~ ~  + . . . ; 

1 0 2 4 ~ ~ ~  + . . . ; 

6 8 8 ~ ~ ~  + * . . . 
(These are derived from the theta series for E, given in 
[19].) The weight/distance enumerator (theta series) for 
N , ,  is then computable as 1 + 4 0 9 6 ~ ' ~  + 4 3 2 0 ~ ' ~  + 
1 4 7 4 5 6 ~ ~ '  + 6 1 4 4 0 ~ ~ ~  + 1 5 4 8 2 8 8 ~ ~ '  + 5 2 2 7 2 0 ~ ~ ~  + 
9011 200x3, + . . . , the terms corresponding to weights 
congruent to 0 modulo 8 being those of R A , ,  and being 
the distance enumerator within an RA, ,  translate, and the 
remaining terms being the distance enumerator to the 
other eight translates. The kissing number of N16 is thus 
4096, slightly less than the lussing number of A,,, wluch is 
4320. (Again, if there were a ten-translate construction, the 
kissing number would be greater than that of A,,, namely, 
4608.) 

The facts that the nonlattice Nordstrom-Robinson 
packings N16 are just slightly less dense than the 
Barnes-Wall lattice A,, and have a slightly smaller lussing 
number are perhaps not too surprising since, whereas there 
is no very good (16,8) linear code, the Barnes-Wall lattice 
packing has excellent density for its dimension, better than 
the best packings known in nearby dimensions in the 
Leech normalization (see [2, fig. 1.51). What may perhaps 
be regarded as remarkable is the existence of another 
packing with density even close to that of A,, in 16 
dimensions. 

The Barnes-Wall lattice A16 is not quite as good for 
covering; the square of its covering radius is three times 
the square of its packing radius, unlike D4, E,, and A,,, 
for wluch the ratio is two. Also, its mean-squared error as 
a quantizer is further away from a conjectured bound of 
Conway and Sloane than that of D4, E,, and A14 [2, fig. 
2.91. Is it possible that N,, (or perhaps a dual packing, of 

As we have seen, the constructions of this paper give 
codes and lattices that can be represented by simple regu- 
lar trellis diagrams with relatively few states. The general 
decoding methods suggested by these trellis diagrams have 
already been discussed. In this section we give a few 
concrete decoding algorithms for the (8,4) first-order 
Reed-Muller code (as well as the E, lattice), the (24,12) 
Golay code, and the Leech lattice In all cases the 
decoding algorithms improve on the best maximum likeli- 
hood decoding algorithms previously known, where we 
take as a benchmark the recent work of Conway and 
Sloane [20]. 

A .  Decoding Binary Codes and Lattices 

A maximum likelihood decoding algorithm for a code C 
or lattice A is an algorithm that, given an N-tuple r = { rJ, 
1 I j I N }, finds the closest N-tuple c in C or A to r. We 
assume once more that the distance measure (metric) has 
the additive property d ( r ,  c )  = Z J d ( r J ,  c , ) .  

Efficient maximum likelihood decoding algorithms, such 
as the general algorithms given earlier or the Viterbi algo- 
rithm, operate by successively determining the best partial 
sequences withtn sets of partial sequences, such that the 
ultimately decoded sequence must contain one of these 
best partial sequences, called suruiuors. 

If C is a binary code, it is typically assumed that 0 and 1 
are mapped into +1 and -1 for transmission, that the 
received level r, is a real number, and that the symbol 
distance measure is ( r, - 1)2 or ( r, + 1)2 for 0 or 1, respec- 
tively; or, equivalently, that the metric is - r, for 0 and 
+ r, for 1, the smaller (more negative) metric being better. 

If A is a binary lattice with 2-depth m ,  then 2mZN is a 
sublattice of A ,  and A is a union of 2K cosets of 2"ZN, 
with coset representatives that can be taken as N-tuples of 
integers mod2". As a first step in decoding, therefore, we 
can find the closest integers i,, to each coordinate rJ 
among the set of integers congruent to k modulo 2" for 
1 s j I N ,  0 I k I 2" - 1-i.e., the survivor of each coset 
of 2"Z in the partition Z/2mZ-since the finally decided 
lattice point must have one of these integers as its j t h  
coordinate (because any other integer congruent to k mod- 
ulo 2" could be replaced by i,, to give another lattice 
point with improved metric). We shall assume that these 
integers and their metrics dJk 4 ( r, - i J k ) 2  are precom- 
puted and available. 

If A is a mod-2 binary lattice, then it is the set of all 
integer N-tuples that are congruent modulo 2 to code- 
words in some binary ( N ,  K )  code C ;  i.e., A = 2 Z N  + C .  
To decode a mod-2 lattice, we may first find the closest 
even and odd integers, i,, and i,,, to the received level rJ, 
and their metrics d and d J l .  However, it is more conve- 
nient to use the metnc m, A d,, - d,, = i f o  - i;, - 2rJ(.iJ0 - 
i,,) for the closest even integer, and - m, as the metric for 

J? 
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the closest odd integer. (In fact, m, = 21rJ - iJol- 1, so no 
multiplication is required.) After this precomputation, we 
can proceed as though decoding the binary code C. For 
example, since E, = 2 Z 8  +(8,4), it can be decoded by the 
method to be given now for the (8,4) code. 

B. Decoding the (8,4) Code or E, Lattice 

The (8,4) code is a case of a first-order Reed-Muller 
code, for which the fast Hadamard transform (Green ma- 
chne) has been suggested [20] as an efficient decoding 
algorithm. Since (8,4) = (8,l) + [(8,4)/(8, l)], the (8,4) code 
consists of the eight coset representatives in [(8,4)/(8, l)] 
and their complements. The fast Hadamard transform 
computes the inner product of r with each of these eight 
coset representatives in 3 x 8 = 24 binary operations, as 
illustrated in Fig. 26. The sign of each inner product 
indicates whether the corresponding word or its comple- 
ment is better; the magnitudes (absolute values) of the 
eight inner products are then compared to select the clos- 
est code word. 

Fig. 26. Decoding (8,4) code or E, lattice via fast Hadamard trans- 
form. Operator R produces outputs (x  + y ,  x - y )  from inputs (x, y ) ;  
operator 1 . 1  takes absolute magnitude 1x1 of its input x. 

The general decoding algorithm for iterated squaring 
constructions gven earlier, or the trellis for (8,4) = 

(1,0)1*, specifies an iterative decoding algorithm that can 
be put into very similar form as follows. 

a) For each of the eight coordinates, and for each of the 
two cosets of (1,O) in the partition (l,l)/(l,O)-i.e., for 
each of the two bits 0 and l-find the best element in that 
coset and its metric. Since there is only one element in 
each coset, t h s  reduces to the trivial operation of letting 
- r, be the metric for 0 and + rJ be the metric for 1. (In 
the case of the E8 lattice, however, this step requires 
finding the best element in each coset of 2 2  in the 
partition 2 / 2 2  -i.e., the closest even integer and the 
closest odd integer-and their metrics, as just discussed.) 

b) For each of the four 2-tuples of coordinates, and for 
each of the four cosets of (2,O) in the partition (2,2)/(2,0) 
-i.e., for each of the four possible bit pairs-find the best 
element in that coset and its metric. Again, since there is 
only one element in each coset, no comparisons are re- 
quired, and the metric of the pair is just the sum of the 
metrics of the two elements of the pair. Only the two 
metrics rlf r2 need to be computed, the metrics of the 
complementary bit pairs being the negatives of these two 
metrics. 

l(4, 3 ~ 4 ,  1 1 1 2  = i(2,2)/(2,1)/(2,o)i4 = I ~ ~ J ~ ~ ~ w ~ ~ ~ ~ ~ ~  

c) For each of the two 4-tuples of coordinates, for each 
of the four cosets of (4,l) in the partition (4,3)/(4, l), find 
the best element in that coset and its metric. Each coset 
consists of a (4,3) codeword and its complement. Only the 
four metrics r1 * r, * r3 * r4 with an even number of minus 
signs need to be computed; the sign of the result indicates 
whether the corresponding codeword or its complement is 
better, so the negative of the absolute value of the result is 
the survivor metric. 

d) Finally, to find the best 8-tuple7 form four sums of 
survivor metrics from corresponding cosets of (4,l) in the 
two halves of the code, and choose the best. 

T h s  algorithm is illustrated in Fig. 27. We see that the 
first two operations are identical to those in Fig. 26 and 
amount to taking the fast Hadamard transform of each 
4-tuple. The trellis-based algorithm then aclueves a modest 
simplification: elimination of four binary operations (ad- 
ditions/subtractions), and replacement of a best-of-eight 
by a best-of-four select (equivalent to eliminating four 
binary operations). Similar modest improvements can be 
obtained for all first-order Reed-Muller codes. (The same 
simplification could have been achieved directly in Fig. 26 
from the observation that max[lx + yl, Ix - yl] = Ixl+ Iyl.) 

Fig. 27. Decoding (8,4) code or E, lattice via iterative trellis-based 
algorithm. Operator Z produces sum x + y of its inputs (x, y ) .  

C. Decoding the Golay Code 

The trellis diagram of the (24,12) Golay code (Fig. 21) is 
based on the cubing construction 1(8,7)/(8,4)/(8, l)I3 and 
displays it as the union of eight cosets of the (24,9) code, 
which has a simple eight-state trellis due to its parity-check 
construction 1(8,4)/(8,4)/(8, l)I3. 

The first step in decoding is to compute all of the 
8-tuple branch metrics, for each of the three sections, 
Le., to decode the partition (8,7)/(8,4)/(8,1). Since 
each branch represents a coset of (8,l) in the parti- 
tion (8,7)/(8,1)-i.e., an (8,7) codeword and its comple- 
ment-we need to find only the absolute values of 64 
8-tuple inner products. These can be computed by the 
general method for decoding partition chains resulting 
from iterated squaring constructions, as follows. 

1) For each 2-tuple, compute the metrics of the cosets 
of (2,O) in the partition (2,2)/(2,0) by computing (as 
above, using the fact that only one metric of a complement 
pair need be computed) r1 * r,, r3 * r,, r, r6, r-, f rs (eight 
binary operations). 

2) For each 4-tuple, compute the metrics of the cosets 
of (4,O) in the partition (4,4)/(4,0) by computing rl * r, + 
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r3 f r,, rs f r6 f r7 5 r, by combinations of 2-tuple m' trics 
(16 binary operations). 

3) For each %tuple, compute the metrics of the cosets 
of (8 , l )  in the partition (8,7)/(8,1) by computing r, f r2 f 
r3 & r4 f rs f r6 f r7 5 r, for all combinations in which the 
number of minus signs is even by combinations of 4-tuple 
metrics (64 binary operations). 

4) Take absolute values of each of these 64 sums. (Again, 
thts accomplishes the comparison of the metric of a code- 
word and its complement.) 

Thus decoding the 64-way partition requires 88 binary 
operations, and this must be done for each of the three 
sections. Now, with all needed metrics in hand, we can 
find the best codeword in each of the eight cosets of the 
(24,9) code-i.e., in each of the eight subtrellises-by use 
of the general method for cubing constructions, which is 
effectively the Viterbi algorithm. No merges occur, and 
thus no decisions are required until the end of the second 
section. At this point, for each of the eight states, metrics 
must be computed for each of eight competing paths, each 
metric requiring an addition of the metrics corresponding 
to the first and second 8-tuples. The best of these eight 
sums must then be selected. At the final node, eight 
competing metrics must again be computed, each requiring 
one addition, and the best selected. Thus the decoding of 
one (24,9) coset requires 9 X 8 = 72 additions and nine 
best-of-eight selects or, equivalently, 9 X 7 = 63 binary 
comparisons. This coset computation has to be done eight 
times, with one final best-of-eight select to choose the 
champion. In total, therefore, trellis decoding requires 
1351 binary operations, namely, 

1) 3 x 88 = 264 binary adds/subtracts to compute 8- 
tuple branch metrics; 

2) 8 X 72 = 576 binary additions and 7 + 8 X 63 = 511 bi- 
nary comparisons to find the best path in the three- 
section trellis. 

While comparisons always depend to some extent on 
implementation technology, this method seems superior to 
either of the decoding techniques proposed in [20], one of 
which is based on regarding the Golay code as the union 
of 128 (24,5) cosets and takes 1584 steps, and the other of 
which is based on regarding it as the union of 512 (24,3) 
cosets and takes 1728 steps. Our algorithm uses the fact 
that the (24,12,8) code consists of eight cosets of 
the (24,9,8) code, which in turn consists of 64 cosets 
of the (8,1)3 code via a parity-check 3-construction 
)(8,4)/(8,4)/(8, l)I3 that yields an eight-state trellis dia- 
gram. 

D. Decoding the Leech Lattice 

The Leech lattice A24 is a mod4 lattice and has the 
256-state three-section trellis based on the cubing con- 
struction (E,/RE,/2E,I3 that is shown in Fig. 23. Decod- 
ing involves the following three stages. 

a) Determine the metrics d,,,, djl, dj2,  dj3 of each inte- 
ger modulo 4 for each of the 24 coordinate positions. This 

step is hghly implementation-dependent but has complex- 
ity of the order of only a small multiple of 96, so we shall 
not include the complexity of this stage when we add up 
the complexity of the whole algorithm below. We can 
normalize these metrics as follows: let i, be the greatest 
integer not greater than rJ, and let e, = rJ - i,; then the 
normalized metrics mJk A dJk - ( r, - i J ) 2  have values 4 - 
4e,, 1 - 2eJ, 0, and 1 + 2eJ; or, more symmetrically, if we 
define e; = 1 - eJ and subtract e; from each value, the 
normalized metric values become 3e(, - e,, - e;, and 3e,. 

b) For each of the three sections, decode the 256-way 
partition E,/2E, to determine the metrics of the 2, dis- 
tinct branches in that section. Since E,/RE,/2Es is a 
partition chain that results from an iterated squaring con- 
struction, i.e., E8/RE,/2E, = 1D4/RD4/2D4/2RD412 = 

lZ2/RZ2/2Z2/2RZ2/4Z214, the general method can be 
applied, as follows. 

1) For each 2-tuple, compute the metrics of the cosets 
of 4 Z 2  in the 16-way partition Z2/4Z2 by computing all 
16 possible 2-tuple metrics (16 binary additions per 2- 
tuple, or 4 X 16 = 64 total). 

2) For each 4-tuple, compute the metrics of the cosets 
of 2RD4 in the 64-way partition D4/2RD4 by computing 
the 128 4-tuple metrics corresponding to the 128 possible 
branches D4/4Z4, and then select the better of each 
complement pair to give the 64 4-tuple branch metrics (128 
binary additions and 64 binary comparisons per 4-tuple, or 
2 X 192 = 384 total binary operations) 

3) For each 8-tuple, compute the metrics of the cosets 
of 2E, in the 256-way partition E,/2E, by computing the 
1024 8-tuple metrics corresponding to the 1024 cosets of 
2 R D j  in E,, and then, for each of the 256 cosets of 2E,, 
select the best of the four cosets of 2RD: whose union is 
that coset (256 x 4 = 1024 binary additions and 256 X 3 = 

768 binary comparison, or 1792 total binary operations). 
c) With all 8-tuple branch metrics in hand, find the best 

path through the trellis. For each of the 256 states at the 
end of the second section, 16 pairs of branch metrics must 
be summed and compared to find the best. At the final 
node, 256 paths must be compared, each path requiring a 
further binary addition to determine the metric. T h s  stage 
thus requires 256 X 16 + 256 = 4352 binary additions and 
256 X 15 + 255 = 4095 binary comparisons. 

The computation of 256 8-tuple metrics requires 64-t 
384+ 1792 = 2240 binary operations per section, or 6720 
in all. Finding the best of the 4096 paths through the trellis 
then requires 8447 binary operations. Given the initial 
normalized metrics, therefore, decoding requires a total of 
15 167 binary operations. Ths would seem to be a sub- 
stantial improvement over the method of Conway and 
Sloane [20] which requires 55 968 steps. While that algo- 
rithm is also based on a Turyn construction of the Leech 
lattice, and indeed on the recognition that with th s  con- 
struction RAZ4 consists of 4096 cosets of 2RE2, it 
does not exploit (as ours does) the two-level decomposi- 
tion of A24, which consists of 16 cosets of the lattice 
IRE,/RE,/2E,I3, which in turn consists of 16 X 16 = 256 
cosets of 2E: via a parity-check 3-construction that leads 
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to a 16-state trellis diagram. Our main improvement, how- 
ever, comes from the iterative method of computing 8- 
tuple metrics. 

E. Notes 

The notion of a trellis diagram was introduced by 
Forney [21] to show that Viterbi’s “asymptotically opti- 
mum” decoding algorithm for convolutional codes [22] was 
actually optimum (equivalent to maximum likelihood de- 
coding). Trellis decoding of block codes has been sug- 
gested before, e.g., in [6] where it is shown that an ( N ,  K )  
code can be represented by a trellis of not more than 
min [2K, 2N-K] states. However, the trellises given here 
have fewer states and more regular structure than would 
have been expected; for instance, the Golay trellis has only 
64 states, not 212 = 4096. (The appendix shows, however, 
that a complete trellis has 256 states at the center, and 
actually 512 states at the adjacent positions.) Solomon 
et al. [23], [24] have gven a characterization of the Golay 
code as a 256-state convolutional code, but with 256 
starting states connected to 256 final states; i.e., the trellis 
has a “ tail-biting’’ form. 

For lattices, the trellis representation and the associated 
decoding algorithms are essentially new, although simple 
trellis diagrams for D4 and E,  were given in [14] (where we 
also guessed, wrongly, that A,, would require a 64-state 
trellis, and A24 an 8192-state trellis). For partitions, the 
concept of a trellis diagram, as shown for example in Figs. 
1, 4, 5, or 7, and the associated decoding methods are also 
new. 

Ix. CONCLUSION 

The lattices developed in this paper are useful both in 
themselves, as lattice codes, and also as building blocks for 
more general coset codes, such as the trellis codes of [l]. 
They are all generated by rather simple constructions. We 
regard the constructions as more geometric than algebraic 
and have structured the development to reflect this empha- 
sis. The binary codes to which they are closely related may 
be regarded as being contained in the corresponding lat- 
tices-e.g., the Barnes-Wall lattices contain all the binary 
Reed-Muller codes, and the Leech lattice contains the 
Golay code-so that these codes may be regarded as 
fundamentally geometric also. 

The constructions have common character. We first 
partition a low-dimensional group of N-tuples-e.g., bi- 
nary N-space, or an integer lattice ZN-into a sequence of 
subgroups of progressively increasing distance. For an 
N’-construction, we seek a universal basis for “-space 
which can be partitioned in the same way. To construct a 
set of NN’-tuples, we then convolve one partition with the 
other (as in [7]). It seems to be desirable if one or both of 
these partition chains are self-dual in some sense; also, if 
there are alternative partition chains using the same gener- 
ators, it is desirable that both have a favorable distance 
progression. In [25] we shall use similar construction prin- 
ciples to construct families of ternary codes and lattices, 

which include most of the remaining densest lattices in 24 
or fewer dimensions. 

The constructions are associated with simple, regular 
trellis diagrams that suggest efficient maximum likelihood 
decoding methods. In fact, the examples given all seem 
simpler than previously published decoding algorithms. 
The Appendix shows that the number of states shown 
in these diagrams is minimum (for the given coordinate 
ordering), so that there is some doubt whether these 
algorithms can be simplified further in any substantial 
way. There is always room for tricks such as Wagner 
decoding [6], doing comparisons by taking absolute mag- 
nitudes (as above), regrouping the coordinates or the 
order of the computations, and so forth. However, subopti- 
mal bounded-distance decoding methods that effectively 
acheve the full minimum distance often can be found for 
constructions that are decomposable, and these are more 
likely candidates for substantial simplifications. 
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APPEND I x 
ALGEBRAIC DERIVATION OF TRELLIS DIAGRAMS 

The trellis diagrams of the main text are obtained directly from 
our various constructions and depend only on the constructions 
and the set partitions to which they are applied, which need not 
even be groups. In fact, if the sets are groups of N-tuples, then 
trellis diagrams can be derived algebraically, as we shall show in 
this Appendix for codes, lattices, and partitions. Because the 
trellis diagrams obtained are minimal, they in some sense give 
lower bounds to the complexity of any maximum likelihood 
decoder. 

A .  The Trellis Diagram of a Code 

Let C be a linear binary (N, K )  block code, with coordinates 
arranged in a definite order. For any position Np, let the first Np 
coordinates be called the past and the remaining N, = N - Np 
the future. Let C, be the subcode consisting of all codewords 
whose span (the range between the first and last nonzero coordi- 
nates) lies within the past (i.e., which are all-zero in the future), 
and let C, be the subcode of all codewords whose span lies in the 
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future; let the dimensions of these subcodes (which are easily 
seen to be linear vector spaces over the binary field) be K, and 
K f ,  respectively. We may regard these either as ( N ,  K,)  and 
( N ,  Kf  ) codes or ( Np, K p )  and ( N, , Kf ) codes, respectively. 

We may obtain K generators for C by starting with Kp 
generators for Cp and Kf for Cf ,  and adding K, = K - Kp - Kf 
generators which must necessarily span both past and future. We 
say that K, is the dimension of the state space (for this particular 
partition into past and future), and we may identify the IZI = 2; 
combinations of the state space generators as states. 

(While a block code is a static construct, we prefer to continue 
using the dynamical terms past, future, and state because of their 
conceptual richness. Abstractly, the state is the past modulo the 
future; the states are the equivalence classes of past histories 
modulo future possibilities. In statistical terms, the states are 
sufficient statistics for the past with respect to prediction of 
future possibilities; the probability of a particular future given 
the entire past is the same as the probability of that future given 
the state.) 

The code C may be described in terms of a trellis diagram 
(similar to a squaring construction trellis) that has an initial 
node, 1x1 intermediate nodes (corresponding to the states), and a 
final node. The branch connecting the initial node to the zero 
state represents the code Cp (whose codewords may be consid- 
ered to be parallel branches), and the other branches connecting 
the initial node to the other states represent cosets of Cp. Simi- 
larly, the branches connecting the states to the final node repre- 
sent C, and its cosets. The set of all paths through the trellis 
corresponds to all of the 2K codewords. Clearly, any trellis 
diagram for C must have at least a state space of dimension K, 
at this point, else there would be some past or future branch 
corresponding to more words than there are in Cp or Cf ,  which, 
by linearity, would be a contradiction to the definition of these 
subcodes. 

From the trellis diagram, we see that the set CP of all trunca- 
tions of codewords to the past is an ( Np, Kp + K,)  code, and the 
states correspond to the cosets of the partition CP/C,. Each 
truncated word has a set of extensions to the future which form a 
coset of Cf of dimension K,, so that C P  is also isomorphic to 
C / C f .  CP has dimension KP = K - Kf = Kp + K,. Similarly, the 
set C f  of all truncations of codewords to the future is an 
( N  K + K , )  code, and the states correspond to the cosets of the 

f ' .  . f  partition cf/c,. 
The past or future may be further subdivided, resulting in state 

spaces of computable dimension at each position selected as a 
partition boundary, which may be connected appropriately with 
branches to form a multisection trellis diagram. Since we can 
select boundary positions in any order, the dimension of the state 
space at a particular position cannot depend on the order of 
selection, and thus can be computed once and for all. 

A trellis-oriented generator matrix is a useful tool for calculat- 
ing and exhibiting state space dimensions. Let us first fix a set of 
positions for which we wish to exhibit states; this could be the 
positions between every adjacent pair of coordinates, or a subset 
of such positions, such as the positions corresponding to the 
boundaries of the sections in our few-section trellis diagrams in 
the main text. A generator matrix is called trellis-oriented if, at 
each position for which we wish to exhibit states, there are 
precisely K,  generators whose span covers that position, where 
K, is the dimension of the state space at that position. Any 
generator matrix can always be brought into trellis-oriented form 
by elementary row operations. 

Example: Let us compute state space dimensions for the (16,5) 
Reed-Muller code, with the coordinate order determined by the 

construction from G(16,16) = C&,. Considering all 17 possible 
positions (including the trivial ones where the entire code is in 
the past or future), a standard generator matrix based on the 

oriented generator matrix are as follows: 
construction '(16.5) = '(4.3)'(4.1) + G(4,1)G(4,3)/(4,1) and a 

1111 1111 m m 1111 1111 m 0000 
1111 m 1111 m m 1111 1111 m 
1100 1100 1100 1100 m m 1111 1111 
1010 1010 1010 1010 0011 0011 1100 1100 
1111 1111 1111 1111 0101 0101 1010 1010. 

The spans of each generator in the trellis-oriented generator 
matrix have been highlighted. The dimensions Kp,  K,, and K, 
for all 17 possible positions are then 

K p O O O O O O O 0 1 1 1 1 2 2 3 4 5  
K , 5 4 3 2 2 1 1 1 1 0 0 0 0 0 0 0 0  
K y 0 1 2 3 3 4 4 4 3 4 4 4 3 3 2 1 0  

This is consistent with the trellis diagram of Fig. 9, which has 
23 = 8 states at positions 4, 8, and 12, although we now see that 
we have concealed 16-state state spaces at positions 5-7 and 
9-11 (this seems fair enough, because there are no mergers or 
divergences at these positions). 

Note that the sizes of the state spaces do depend on the 
ordering of the coordinates. For example, the (8,4)* code has a 
16-state trellis (as large as it could have, given the bound of Wolf 
[6]), as opposed to four states for the (8,4) code. 

We now show that a code C and its dual C ' have state spaces 
of the same dimension, as expected. 

Lemma 6: Let C and C ' be dual codes; then C p  and (C ' ),, 
are dual codes. 

Prooj ( C  ' ) p  is the set of all codewords in C that are zero 
in the future. Since words in C ' are orthogonal to every word in 
C, every word in (C ) p  is orthogonal to the past portion of 
every word in C, i.e., to Cp. Hence (C ) p  c (CP) ' . Conversely, 
every word in the code (CP) ' dual to CP, extended with zeros in 
the future, is orthogonal to all words in C; hence ( C p )  ' E (C ' ),. 

Corollary: For any partition into past and future, the dimen- 
sions of the state spaces of C and C' are identical. 

Proof: From the lemma, (C ' ) p  is dual to CP, and (C ' ) P is 
dual to Cp. Thus (C ) p  has dimension N, - KP, and ( C  ) P has 
dimension N, - K p .  The partitions Cp/Cp and (C ) P / (  C ' ) p  

thus both give state spaces of dimension K, = KP - Kp = 

( Np - K,)  - ( Np - KP). 

Example: The (16,ll) Reed-Muller code is dual to the (16,5) 
code. A standard generator matrix based on the construction 

lis-oriented generator matrix are as follows: 
'(16.11) '(4.4)'(4.1) + '(4,3)'(4.3)/(4.1) + G(4.1)'(4.4)/(4.3) and a trel- 

1111 
1100 
1010 
1111 
1100 
1010 
1111 
lo00 
1100 
1010 
1111 

m 
1100 
1010 
1111 
m 
m 
m 
lo00 
1100 
1010 
1111 

m 
m 
m 
m 
1100 
1010 
1111 
lo00 
1100 
1010 
1111 

m 
m 
m 
m 
m 
m 
m 
lo00 
1100 
1010 
1111 

1111 
0011 
m 
m 
m 
m 
m 
0101 
m 
m 
o001 

m 
1100 
1111 
0011 
m 
m 
m 
1010 
0101 
m 
o001 

0000 
m 
m 
1100 
1111 
0011 
m 
m 
1010 
0101 
lo00 

m 
0000 
m 
m 
m 
1100 
1111 
m 
m 
1010 
1000 
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The dimensions K/,, K / ,  and K, for all 17 possible positions are 
then: 
K,, 0 0 0 0 1 1 2 3 4 4 5 6 7 8 9 1 0 1 1  
K , 1 1 1 0 9 8 7 6 5 4 4 3 2 1 1 0 0  0 0 
K )  0 1 2 3 3 4 4 4 3 4 4 4 3 3 2  1 0 .  

This is consistent with both the result just obtained and the trellis 
of Fig. 9. Note that the maximum branch complexity of a 
16-section trellis diagram is 32, the same as for the four-section 
trellis diagram, so that decoding on a sequential bit-by-bit basis 
with the Viterbi algorithm could in fact be as efficient as our 
iterative decoding procedure. 

The generator matrix for the Golay code, from the cubing 
construction 

G(24.LZ) = G(3.3)G<8.11 + G(3.2)G(X.4)/(X.1) + G(3.1)G(8.4)*/(X.11' 

is 
1111 
0000 
0000 
1111 
oooo 
1100 
OOOO 
1010 
OOOO 
0111 
1001 
0101 

1111 
OOOO 
OOOO 
0000 
m 
1100 
OOOO 
1010 
m 
1000 
1100 
0110 

m 
1111 
m 
1111 
1111 
1100 
1100 
1010 
1010 
0111 
1001 
0101 

0000 
1111 
0000 
oooo 
oo(H) 
1100 
1100 
1010 
1010 
loo0 
1100 
0110 

0000 
OOOO 
1111 
0000 
1111 
m 
1100 
m 
1010 
0111 
1001 
0101 

0000 
0000 
1111 
0000 
OOOO 
m 
1100 
m 
1010 
1OOO 
1100 
0110. 

If we put this into trellis-oriented form, we arrive at a matrix 
such as 

1111 
OOOO 
0000 
0000 
0000 
001 1 
oooo 
01 10 
OOOO 
OOO1 
oooo 
oooo 

1111 
1111 
m 
m 
OOOO 
0011 
OOOO 
0110 
0000 
0001 
0101 
0011 

m 
1111 
1111 
m 
0000 
1100 
0011 
0110 
0110 
0001 
0011 
0110 

ooo13 
OOOO 
1111 
1111 
0000 
1100 
001 1 
01 10 
0110 
1110 
1001 
1010 

m 
OOOO 
m 
1111 
1111 
OOOO 
1100 
0000 
0110 
1000 
1010 
1100 

m 
0000 
OOOO 
OOOO 
1111 
0000 
1100 
OOOO 
0110 
1000 
m 
OOOO, 

showing that the state space dimensions are 
K 3  0 1 2 3  4 567 6 789  8 987  6 765 4 321 0 

This is consistent with the three-section trellis diagram of Fig. 
21 but shows that that diagram conceals a state space of 256 
states at the center of the code, and even 512 states one position 
away from the center (where, however, there are no mergers or 
divergences). This indicates the advantages of the decoding algo- 
rithm given in the main text over straightforward Viterbi decod- 
ing. 

B. The Trellis Diagram of u Lattice 

The analysis used for block codes may be extended to lattices 
(or any additive group of N-tuples). L.et A be a lattice, and, given 
a partition of coordinates into past and future, let A,, and A, be 
the sublattices consisting of elements of A that are zero in future 
and past, respectively. Then the state space 2 consists of the 
equivalence classes of A modulo the union of A p  and A,: 
Z = A/(  Ap U A,). If A P  and A' are the restrictions of A to past 

and future, respectively, then Z is also isomorphic to AP/A, or 
to Af/A,. A trellis diagram for A (resembling a squaring con- 
struction) consists of 1x1 past branches, each representing a coset 
of A!) in the partition Ap/Ap, concatenated with 121 future 
branches, each representing a coset of A, in the partition Af/A,. 

For calculation, if A is a binary mod-2"' lattice, then it is 
convenient to use generators that are N-tuples of integers modulo 
2"'. 

For example, if A is Al,, and the past is the first 8-tuple, then 
A,, and Af are each equal to RE, (in the respective 8-tuples 
where they are nonzero), and Ap and A/ are each equal to Ex, so 
the state space Z is the set of equivalence classes in the partition 
E 8 / R E 8 ,  which has order 16. On the other hand, if we take the 
first 4-tuple as the past, then A,, is 2D4, while A P  is D4, and the 
states are the cosets of the partition D4/2D4, which also has 
order 16. By using a trellis-oriented generator matrix for R A , , ,  
we can compute the (binary) dimension K,  for each possible 
position: 

Position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

K ,  0 2 3 4 4 5 5 5 4 5 5  5 4 4 3 2 0 

This could also be deduced by regarding the state space as the 
Cartesian product of the (16,ll) and (16,l) [or (16,15) and 
(16,5)] state spaces. 

A trellis-oriented generator matrix for the Leech lattice is 
2222 
0022 
oooo 
oooo 
oooo 
oooo 
oooo 
oooo 
0000 
oooo 
oooo 
0202 
oooo 
oooo 
m 
oooo 
0002 
oooo 
1111 
oooo 
oooo 
OOOO 
0011 
0101 

OOOO 
2200 
2222 
0022 
m 
m 
m 
m 
m 
m 
m 
2020 
0202 
m 
m 
0000 
0002 
m 
1111 
m 
0002 
1111 
001 1 
0101 

m 
m 
m 
2200 
2222 
0022 
m 
m 
m 
m 
m 
m 
2020 
0202 
m 
OOOO 
2000 
0002 
1111 
1111 
1111 
0002 
021 1 
2101 

- 

m 
m 
m 
m 
m 
2200 
2222 
0022 
m 
m 
m 
m 
OOOO 
2020 
0202 
m 
2000 
0002 
1111 
1111 
1111 
1111 
001 1 
0101 

- 

oooo 
m 
m 
m 
m 
m 
m 
2200 
2222 
0022 
OOOO 
m 
m 
m 
2020 
0202 
OOOO 
2000 
m 
1111 
2000 
1111 
1100 
1010 

OOOO 
m 
m 
m 
m 
OOOO 
m 
m 
OOOO 
2200 
2222 
m 
m 
m 
m 
2020 
m 
2000 
OOOO 
1111 
m 
m 
1100 
1010, 

where i denotes - 1, showing that the state space dimensions are 
K ,  0 246 6 888  8 -10- 10 -10- 8 888  6 642  0 

This is consistent with the three-section trellis diagram of Fig. 
23, but shows that that diagram conceals a state space of 1024 
states at the center position. The center sections of the last four 
generators are an alternative set of SMOG generators. 

C. The Trellis Diagram of a Partition 

Let S/T be a partition of a group S of N-tuples into M cosets 
of a subgroup T. A trellis diagram for such a partition has one 
initial node and M final nodes; the set of all paths from the 
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initial node to each final node represents the elements of each 
subset T, and the union of all these paths represents S. (Alterna- 
tively, of course, we could have M initial nodes and one final 
node.) Again, we are interested in the minimal state space at each 
intermediate position. 

Again, let the first Np coordinates be the past and the remain- 
der the future. Let Tp be the subgroup of T which is nonzero 
only in the past, and let SP be the group of all restrictions of S 
to the past. Then the state space at position Np is the set of 
equivalence classes of SP modulo T p ,  and each past branch 
represents a coset of Tp in the partition S P / q .  Similarly, each 
future branch represents a coset of T, in the partition Sf/T, .  

Example: Let us compute state space sizes for the eight-way 
partition (8,7)/(8,4). For each Np, let KP be the dimension of 
(8,7)P, and let K p  be the dimension of (8,4),; then K, = KP - Kp 
is the dimension of the state space: 

Position N. 0 1 2 3 4 5 6 7 8 
~~ 

KP 0 1 2 3 4 5 6 7 7  
K 0 0 0 0 1 1 2 3 4  d 0 1 2 3 3 4 4 4 3  

It is no coincidence that this is the same as the first eight 
positions of the (16,ll) trellis, since (16,ll) = l(8,7)/(8,4)I2. 

For a lattice example, take the 256-way partition E8/2E8 that 
occurs in Ar4 and A,,, with computation using mod-4 genera- 
tors (as in the Leech lattice matrix): 

Position N. 0 1 2 3 4 5 6 7 8 

KP 0 2 4 6 7 9 10 11 12 

d 0 2 4 6 6 8 8  8 8 
K 0 0 0 0 1 1 2  3 4 

This shows that there are four-way mergers not only at the 
position Np = 4 but also at 6,7, and 8, as we have already seen in 
the initial and final sections of the Leech lattice. 
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