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Reduced-State Sequence Estimation with Set
Partitioning and Decision Feedback
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Abstract—A reduced-state sequence estimator for linear intersymbol
interference (ISI) channels is described. The estimator uses a conventional
Viterbi algorithm (VA) with decision feedback to search a reduced-state
“ssubset trellis’’ which is constructed using set partitioning principles. The
complexity of maximum likelihood sequence estimation (MLSE) due to
the length of the channel memory and the size of the signal set is
systematically reduced. An error probability analysis shows that a good
performance/complexity tradeoff can be obtained. In particular, our
results indicate that the required complexity to achieve the performance
of MLSE is independent of the size of the signal set for large enough
signal sets. Simulation results are provided for two partial-response
systems. In addition, we describe a simple technique for quadrature
partial-response signaling (QPRS) that eliminates the ‘‘quasi-cata-
strophic’’ nature of the ML trellis.

I. INTRODUCTION

IN this paper, we are concerned with linearly modulated
uncoded data transmission systems subject to severe
intersymbol interference (ISI). It is well known that in such
systems, maximum likelihood sequence estimation (MLSE)
[1], implemented with the Viterbi algorithm (VA) [2], can
provide a significant improvement in detection performance
compared to the decision-feedback equalizer (DFE). How-
ever, in general, the implementation complexity of MLSE is
roughly M¥ times that of a DFE where K is the length of the
overall channel impulse response and M is the size of the
signal set.

A considerable amount of research has been undertaken to
achieve the performance of the MLSE at reduced complexity
[3]-[11]. Most of the earlier work concentrated on preprocess-
ing techniques to reduce the channel impulse response to a
shorter length [3]1-[6]. In [3], a linear equalizer was used to
force the overall impulse response to a desired shape of short
length. Falconer and Magee [4] and Beare [5]1 investigated the
optimization of the desired impulse response for a fixed given
length. Later, Lee and Hill [6] proposed the use of a DFE to
truncate the channel impulse response, in an effort to reduce
noise enhancement in the linear equalizer. Recently, Duel and
Heegard [11] incorporated the decision-feedback mechanism
into the sequence estimator to increase the overall reliability of
the feedback decisions. As we will see, this estimator (which
was developed independently) is a special case of the
algorithm that will be presented in this paper. We will refer to
it as a decision-feedback sequence estimator (DFSE).

For bandwidth-efficient modulation systems which use
large signal sets, reducing the length of the channel impulse
response alone is often not sufficient to reduce complexity. In
MLSE, the VA searches a trellis with M* states (this trellis
will be called an ML trellis), and therefore has to keep track of
MX paths. For large values of M, the complexity can be large,
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even for very small K. The works of Vermuelen and Hellman
(7] and Foschini [8] have shown, however, that the perform-
ance of MLSE can be achieved by following a smaller number
of the more likely paths. More recently, Clark et al. [9], [10]
and Wesolowski [19] have described interesting sequence
estimation algorithms which demonstrate the potential of this
approach.

In contrast to the algorithms presented in [9], which can be
characterized as ad hoc, the algorithms to be described in this
paper involve a highly structured reduced-state sequence
estimator (RSSE) which can achieve nearly the performance of
MLSE at significantly reduced complexity (RSSE was first
reported in [20]). The RSSE structure is very general and can
be used for modulation formats with large alphabet size and/or
for channels with long memory. The primary idea is the
construction of trellises with a reduced number of states.
These states are formed by combining the states of the ML
trellis using Ungerboeck-like set partitioning principles [12],
[13]. The RSSE is then implemented using the VA to search
this reduced-state trellis. It has the following characteristics.

1) Good Performance/Complexity Tradeoff: This is
achieved by a) retaining the structure of MLSE to preserve
ease of implementation, b) using Ungerboeck-like set parti-
tioning in constructing the reduced-state trellis to reduce
performance degradation, and c) using built-in decision
feedback in branch metric computations. In contrast to the Lee
and Hill [6] and Wesolowski [19] schemes, this RSSE does not
utilize a DFE, and therefore does not suffer from the relatively
poor performance of DFE on severely distorted channels.
Analysis and simulations indicate that substantial complexity
reduction can be obtained with little loss in performance. In
particular, we will show that quadrature 1 + D partial-
response systems can be decoded using only a two-state trellis
with only a very small loss relative to the MLSE, independent
of the size of the signal set; further, we will show that binary
(1 = D)? partial-response systems can be decoded using a
two-state trellis with 4.77 dB better performance than a zero-
forcing DFE.

2) Analyzability: In contrast to most earlier RSSE work,
analysis of the performance of our estimator is as straightfor-
ward as that of MLSE, when the effects of error propagation
are neglected. We will show that the first error event
probability can be accurately characterized by a minimum
distance parameter d .. which can be related to the minimum
(free) distance dpix of MLSE.

3) Flexibility: The performance and complexity of RSSE
are controlled by K parameters. By choosing them appropri-
ately, we can obtain a tradeoff between desired performance
and complexity, ranging between that of a zero-forcing DFE
and that of MLSE.

It is well known that for 1 + DV partial-response signaling,
MLSE can achieve the same effective minimum distance as
ISI-free transmission. However, as the signal set size is
increased, the performance of MLSE deteriorates. This fact is
true even with precoding. In fact, as we will show, MLSE for
al + D partial-response system with M = 16 and precoding
performs about 1 dB worse than ISI-free transmission. This
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phenomenon has frequently been overiooked. Recently, it was
also observed by Forney and Calderbank [17] who correctly
connect it to the fact that the ML trellis in these systems is
what they call quasi-catastrophic. In Section IV, we will
discuss this phenomenon, and then show that in 1 + DV
quadrature partial-response signaling (QPRS), it can be
eliminated by a method that can be characterized as a shift of
the carrier frequency with respect to the center frequency of
the transmitted signal.

The paper is organized as follows. In Section II, we briefly
describe the system model. Our RSSE structure is described in
Section III. Section IV contains analysis and simulation
results. This section starts with the general analysis of the
RSSE, followed by the discussion on the quasi-catastrophic
behavior of MLSE that was mentioned above and ends with a
brief analysis of the DFSE. Finally, in Section V, we
summarize our results and indicate some directions for future
research.

II. SYSTEM MODEL

We consider a generic uncoded quadrature amplitude
modulation (QAM) system [14], as shown in Fig. 1. During
each signaling interval nT < ¢ < (n + 1)7, g input bits are
collected and mapped into a complex-valued symbol Xx,
selected from a two-dimensional signal set with M = 27 signal
points. [We assume that the bit sequence is independent and
identically distributed (i.i.d.).] As is often the case in practice,
the signal points are assumed to be chosen from a rectangular
lattice with odd-integer coordinates (+1, +3, ---). (RSSE
can be easily generalized to other lattices.) The real and
imaginary coordinates of x,, are filtered and modulated on in-
phase and quadrature carriers which are superimposed for
transmission over a linear additive white Gaussian noise
(AWGN) channel. The received signal is passed through a
matched filter, demodulated with correct carrier phase into its
quadrature components, and sampled at the symbol rate with
correct timing phase.

Further, a discrete-time noise-whitening filter can be used
to generate a sequence {r,} such that [1]

I'n=Xn+ (P, )+ Wn 0))

where {w,} represents a complex white Gaussian noise
sequence with zero mean and variance 2u?. The expression
(pn, f) is an inner product between the state vector

Pnz[an, Xn-2, "' ", xn—](]’ (2)

which has the K most recent transmitted symbols as its
elements, and the vector f representing the complex postcursor
ISI coefficients (assumed known) associated with the overall
channel impulse response, i.e.,

f=[‘fl’.f2’ “"fK]' (3)

(Without loss of generality, f; is assumed to be unity.) The
length K of channel memory is assumed to be finite.

In contrast to MLSE, the performance of an RSSE may be
affected by the phase response of the noise-whitening filter. If
the z transform FA(z) of the noise autocorrelation sequence at
the matched filter output has no zeros on the unit circle, the
noise-whitening filter can be chosen as an anticausal but stable
filter with poles corresponding to the zeros of H(z), which are
outside the unit circle. This ensures that the overall channel
response is minimum phase, and shifts the signal energy
towards the earliest sample of the channel response. In
particular, the minimum phase condition implies that the
energy in the first K’ samples is maximized for every K’ [18].
Zeros on the unit circle can be handled by combining the
matched filter and the noise-whitening filter into a whitened
matched filter [1]. Recall that a whitened matched filter is also
the optimum feedforward filter for a zero-forcing DFE. The
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Fig. 1. QAM transmission system.

DFE uses K previous decisions to cancel the postcursor ISI
contributions. However, even in the absence of error propaga-
tion, it is strictly suboptimum, since in the decision process, it
ignores the signal energy embedded in the ISI terms.

III. REDUCED-STATE SEQUENCE ESTIMATION

Recall that in MLSE, the trellis states are defined as p, =
[Xn-1» Xn-2, ** *» Xn_x], i.€., the state of a sequence at a given
time is equal to its K most recent symbols. Since each element
in the state vector can take one of M values, the ML trellis has
MX states and there are M transitions to and from each state.

To reduce the number of states, for each element x,,_ in the
vector p,, we define a two-dimensional set partitioning
denoted as (k). Specifically, for the kth element x,_x, the
signal set is partitioned into J; subsets where J; can range
anywhere from 1 to M (further specifics of set partitioning will
be described shortly). The index of the subset of a symbol x; in
the partitioning Q(k) is, in general denoted as a;(k), which can
be taken as an integer between 0 and J;, — 1. We constrain the
set partitionings such that a) the numbers J are nonincreasing
G.e., J; = J, = --+ = Jg), and b) the partitioning Q(k) is a
further partition of the subsets of Q(k + 1) for each k between
1 and K — 1. These restrictions allow us to define the subset
state of a sequence at time » as

tn=[an—l(1): a,-2(2), **, a_k(K)], “

representing the subsets of the K most recent symbols in the
respective partitionings. Conditions a) and b) assure that,
given the current state ¢, and the subset a,(1) of the current
symbol, the next state #,,; of a sequence is uniquely
determined. Therefore, the subset states define a proper
trellis, which we will call a subset trellis, representing all
possible sequences {x,}.

Since in (4), a,_x(k) can take one of J, values, the total
number of states in the subset trellis is given by the product of
the J;. Furthermore, there are again, in principle, M
transitions from each state, one for each possible value of the
current symbol x,. However, for any current state, there are
only J; distinct next states, one for each subset in the
partitioning Q(1) [clearly, two paths originating from the same
state will undergo the same state transition if their current
symbols x, and x, belong to the same subset in the partitioning
Q(1)]. When J; < M, the trellis thus has parallel transitions
that start in a common state and end in a common state. We
may say that from each state there are J; ‘‘subset transitions,’’
each consisting of as many parallel transitions as the number
of symbols in the corresponding subset.

Now, we discuss the set partitioning in more detail. This
should be selected with the objective of optimizing the
performance/complexity tradeoff for the RSSE. Note that each
subset state consists of the union of a number of ML states.
Therefore, in the subset trellis, certain paths will merge earlier
than in the ML trellis. Hence, the set partitioning should be
such that these ‘‘early merging’’ paths can be reliably
distinguished at the point of merging without any further
delay. It appears that good results are generally obtained if, for
each partitioning Q(k), the minimum intrasubset Euclidean
distance, denoted by A, is maximized. In [12], Ungerboeck
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Fig. 2. Ungerboeck partition tree for the rectangular 16-QAM signal set.

showed that when J; is a power of two, maximum Ay can be
obtained by successive two-way partitions, as illustrated in
Fig. 2 for a 16-point signal set partitioned into two, four, and
eight subsets. Forney points out [21] that more generally,
there is a Jy-way partition of the rectangular lattice with
maximum A2 = 4J; as long as Ji is the magnitude of a
Gaussian integer 8, squared (norm) a complex number with
integer real and imaginary parts. If G is the original
rectangular lattice, then the number 3 induces the desired
partition G/BG. The sublattice 3G is also rectangular, except
it is rotated by the phase of B. Of course, when J is not a
power of two, the subsets will not have the same number of
symbols; however, as will become apparent, this will be of
little concern.

As an example, in Fig. 3(a), we show the four-state subset
trellis for the case K = 1, J; = 4. Similarly, using the subset
labeling of Fig. 2, in Fig. 3(b) we show the eight-state subset
trellis for K = 2, J, = 4, and J, = 2. In both figures, parallel
transitions are shown by single lines and the corresponding
subsets are indicated on the left. Note that the size of the signal
set affects only the number of parallel transitions. Otherwise,
the trellises are fully specified by the selection of Ji, &k = 1,
- K.

Now, we describe the use of the VA to search a subset
trellis. First recall that in MLSE, for transitions originating
from a state p,, the VA computes branch metrics according to

b[rn;pmxn]=lrn_(pmf)—xn|2' (5)

The branch metrics depend on the K most recent symbols,
which are uniquely specified by the ML state p,. In a subset
trellis, however, the states specify only the subsets to which
these symbols belong. Therefore, we modify the VA slightly
by introducing decision feedback into the branch metric
computations. Specifically, for transitions from a state 7,, we
use the branch metrics

b[l',,; tn, xn]=lrn_(ﬁn(tn)sf)_xn|2 (6)

where p,(t,) represents the K most recent symbols stored in
the path history associated with the state f,. Note that in
MLSE, path histories usually contain the surviving state
sequences leading to the current states. In our RSSE, however,
when J; < M, it may be more appropriate to store the actual
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Fig. 3. Subset trellises (a) K = L=40GK=2J =4/ = 2.

surviving symbols since there is no one-to-one correspondence
between state and symbol sequences.

When the subset trellis has parallel transitions (i.e., J <
M), then for each subset transition, the VA can first select the
symbols with the minimum branch metric; in effect, for each
state, the VA makes delay-free decisions between symbols
within the subsets of @(1), using past decisions obtained from
path histories as feedback. When the partitioning (1) has
enough symmetry, this can be done without explicitly comput-
ing the branch metric for every symbol. For example (see Fig.
2), in an Ungerboeck partition of a rectangular signal set,
signal points in a subset always lie on a rectangular grid. (This
holds more generally for any partition G/BG where 3 is a
Gaussian integer.) Therefore, signal points with minimum
branch metric can be determined by simple slicing operations.
That is, for each state, only J; explicit branch metric
computations will be necessary.

In each iteration, this first step in the VA reduces the
number of possible extensions of the N path histories from
NM to NJ,. This is then reduced to N by selecting the paths
with minimum accumulated metric for each possible next state
t,.1 (i.e., the RSSE retains one ““survivor>’ path for each
possible combination of the K most recent subsets). Note that
reducing the number of possible extensions in this manner
requires only N(J; — 1) binary comparisons. This is
considerably simpler than selecting the N extensions with
minimum accumulated metric, as in the M algorithm or its
variations [9]. Decisions are made, as usual, after some delay
by tracing back the path history of the state with the smallest
accumulated metric. The required delay should not be greater
than in MLSE since (as will become apparent) the error events
in RSSE are no longer than those in MLSE.

If J, = 1 for all k, the RSSE degenerates into a zero-forcing
DFE. If J, = M for all k, the RSSE becomes an MLSE. Thus,
by choice of the Ji, a tradeoff of performance versus
complexity between a DFE and MLSE can be obtained.

In practice, there are- still many applications (e.g., binary
transmission) where the principal source of MLSE complexity
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is the length of channel memory. In this case, a reduced-state
trellis can be formed by simply truncating the ML state vector
to some suitable length K’ < K and defining the reduced state
vector as p,; = [X,_1, X,-2, *y Xp-k+]. In our subset
formulation, this is equivalent to choosing J, = M for k
between 1 and K’ and J;, = 1 for k between K’ + 1 and XK.
This is a special case of the RSSE, which will be called a
decision feedback sequence estimator (DFSE). To explore this
case further, we write the received sequence {r,} in the
form

In=Xa+ (P, [+ (P, ")+ w, Q)]
where the vectors f” and f” are defined according to
S=U 1]
= o el fe v o0y Sl ®8)
and
p=lp,lp,]
=[Xn1s s Xnok | Xnko i 1s 0ty Xnok] ©)

The term (p), f”) represents residual ISI which is
eliminated using decision feedback. In contrast to the approach
taken in [6], which uses a DFE separate from the sequence
estimator, in a DFSE, the feedback mechanism is incorporated
into the sequence estimator. To see this, we rewrite the branch
metric in the form

blrus b,y Xal=|ra= (B, (P,), f)= (P, f) =%, 2 (10)

Here, the term (J(p,), f”) represents an estimate of the
residual ISI for the state p .- The feedback decisions §,(p,)
are obtained from the path histories. This guarantees that the
branch metric of the correct path is the ML metric, as long as it
is not discarded in favor of some incorrect path. Hence, in
contrast to the approach taken in [6], the first-error probability
of the sequence estimator does not depend on a DFE, which
can exhibit a relatively poor performance on bad channels. Of
course, the primary difference between MLSE and DFSE is
that in the (reduced) trellis used by the DFSE, two paths merge
earlier (when they agree in K’ rather than K most recent
symbols). As we will see, this generally increases the first-
error probability for discarding the correct path; however, the
performance should be superior to that of the preprocessing
techniques described in [3]-[6].

IV. ERROR PROBABILITY PERFORMANCE
A. General Analysis of RSSE

With RSSE, the VA will make an error for the first time at
time j if up to that time, the correct path {x,} accumulates a
worse ML metric than some incorrect path {x_ '} that merges
with {x,} in the subset trellis at time j. Note that in a subset
trellis, two paths merge if the subsets of the K most recent
symbols are the same, while in an ML trellis, merging occurs
only if these symbols are identical. Also, in an RSSE, once the
correct path is discarded, there is a possibility of error
propagation since the probability of discarding the correct path
again may increase for the next few symbols. We should note
that error propagation can occur only if the paths {x,} and
{x,} are different in one or more of the K most recent
symbols, i.e., if x,_x # x,_, for some k between 1 and X.

The exact error probability of the RSSE is somewhat
difficult to analyze because of decision feedback. However,
significant insight can be gained by examining the probability
P, of a first-error event occurring at some time j. We prefer to
assess the effects of error propagation through simulations.

If {x,} is the correct sequence and {x} is the estimated
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sequence and they are ‘‘merged’’ at times n = iand n = j and
unmerged in between, we represent such an error event by the
vector e = |e;, €4y, ", €_;] where the ¢, = x, — x are
error symbols. We assume that the ending position j is fixed,
while the starting position i < j is arbitrary. The set of all such
error events, denoted as E’, depends on the subset trellis in
use, and in general will be different from the set of error
events in the ML trellis. Specifically, an error event e is in the
set E’ if and only if the following hold.

1) The first element e; is nonzero.

2) The last K elements, e;_x through e;_;, satisfy the
‘‘merging condition,’’ i.e., e;_; is equal to x;_, — X/ 4 where
the correct symbol x;_, and the estimated symbol x ,-'.- « belong
to the same subset in the partitioning Q(k) fork = 1,2, «--,
K.

3) No earlier K elements satisfy the merging condition.

We define the squared distance d?(e) of an error event e as

K 2
e,+ E en—kfk

k=1

(=5,

n=i

11

with e, = O for n < i. (Here we assume that, up to time J, the
correct path has not been discarded by the VA.) Then, using
union bound arguments, at sufficiently large SNR, P, can be
approximated by

P,=~C'Q(d,;,/2p) (12)
where d . is the minimum distance, i.e.,
dn’qin: min d(e), (13)
eEE’

and C’ is an error coefficient equal to the average (averaged
over all possible transmitted sequences) number of error
events at distance d . .

Note that when J;, = M for all &, (12) gives the MLSE error
event probability. For this case, we define C’ = Candd, =
dpin- To establish the relationship between dni, and d, ., we
first observe that in the MLSE, the merging condition 2)
implies that the error events must have their last X elements
equal to zero. In RSSE, however, the subset trellis will
generally have a set E, of what may be called *‘early merging
error events’’ which are not present in the ML trellis. We
denote the minimum distance of such error events as dix (E[,).
Then, it is straightforward to show that

dr;lin =min (dmin: dmin(Elrz))' (14)

Note that certain error events in the ML trellis may not belong
to the set E’ because of condition 3) above. However, either
these error events have a distance greater than dy,;, or there
will be an error event in the set E|, which has a smaller
distance. Therefore (14) holds.

When J; < M, it is useful to represent the set £, by the
disjoint union

E/,=E| U Ej (15)

where E | represents the (early merging) error events of length
1, associated with parallel transitions. The minimum distance
duin(E]) is the minimum intrasubset distance A, for the
partitioning Q(1). For a partition induced by a Gaussian
integer, it is easily shown that

drin(E ) =2V ;. (16)
Then, (14) can be written as
d,;ﬁn =min (dmina 2JJ4}1 dmin(Ez’ )) (17)

where dpin(E) is the minimum distance among the remaining
early merging error events that are longer than one symbol
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interval. Therefore, to achieve the same minimum distance as
the MLSE, the number of subsets J; should be chosen to be no
less than d2, /4.

Example: Consider a channel of length K = 1 with fi real
and with | f;| < 1 (minimum phase condition). The size of the
signal set is arbitrary (say M = 4). The minimum distance dyn
of the MLSE, given by

a2, =4(1+/3), (1)
is achieved by error events e = [+2, 0} and e = [ £2j, 0].

Suppose that the RSSE is based on a Ji-way Ungerboeck
partitioning. Clearly, d?, < 8, and therefore using (16), we
find that dyin(E]) > dpin as long as J; = 2. Thus, a two-way
partition is sufficient to guarantee that the distance between
parallel transitions is greater than the minimum distance of
MLSE. Next, we consider other critical early merging error
events. These are of the form e = [e;_,, ej_;] where ¢;., =
+2o0re_, = +2jande,_, is an intrasubset error with fej-1]?
= 4J,. Using (11), it is then straightforward to show that if J;
= 2, d(e) > dumn; thus, we can conclude that the distance of
early merging error events is always greater than duin,
provided that J; = 2. Hence, we have shown that with just two
states, RSSE can achieve the same asymptotic performance as
MLSE, i.e., d/, = dm,and C’' = C.

When f; = =1, it can be shown that two states are again
sufficient to achieve d ;. = dmin; however, at least four states
are needed to achieve the MLSE error coefficient.

These results may not hold in general when f; is complex
valued. For example, when f; = e*/™, it takes a five-state
RSSE based on a five-way partitioning (8 = 2 + j) to achieve
the MLSE performance.

Note that in the above example, the asymptotic performance
of the RSSE does not depend on the size of the signal set. In
fact, we conjecture that for any channel (not necessarily of
memory length 1), the complexity of RSSE required to achieve
MLSE performance is independent of the size of the signal set,
at least for large enough signal sets, and only depends on the
channel coefficients.

The case K = 1, fi = =1 also corresponds to 1 = D
QPRS over an ideal channel (here and in what follows, we
assume that in partial-response systems, all the shaping is done
at the transmitter). We have simulated our RSSE for 1 + D
QPRS with precoding, transmitting four bits per symbol, i.e.,
with M = 16. As shown in Fig. 4 with four states, there is no
noticeable degradation (at large SNR’s) relative to the MLSE,
and with two states, the degradation is only 0.2 dB. Note that
in this example, the critical error events are primarily ML
error events. Therefore, the effects of error propagation
should be negligible. (In all simulation results, a long decoding
delay is assumed for MLSE and RSSE.)

B. MLSE: Avoiding Quasi-Catastrophic Behavior

In Fig. 4, it can be observed that MLSE performance for
1 + D QPRS is about 1.0 dB worse that ISI-free transmission
(at P, = 10~%), although there is no difference in the effective
minimum distance. This can be explained as follows. In the
ML trellis, there are an infinite number of error events of the
form e = [e;, —e;, €, —e;, -+, 0] (with error symbols
having alternating signs and a zero element at the end) where ¢;
= *2ore = =2/, all achieving the minimum distance of 8.
The average number of such error events and hence the error
coefficient C is finite. However, C increases with the size of
the signal set as the likelihood of an error symbol e, increases
with enlarging signal set boundaries. In fact, C = 4(M —
1), whereas for ISI-free transmission, the error coefficient is
at most 4. The error coefficient for symbol error probability is
2C if precoding is used. Without precoding, it can be
significantly larger. Note that precoding does not affect the
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Fig. 4. Simulated performance for (1 + D) quadrature partial-response
signaling with precoding (M = 16).

error coefficient for the error event probability. Another
undesirable effect of this ‘‘quasi-catastrophicity”” is that it
necessitates an infinite decoding delay to cover potentially
infinitely long minimum distance error events. When a finite
delay is used, the effective minimum distance will be that of a
DFE.

We now show that this quasi-catastrophic behavior can be
eliminated by simply rotating the signal set in the transmitter
by /4 rad every symbol interval. (Rotating the signal set to
improve MLSE performance has been previously advocated
by Acampora [15] in a more general context.) That is, the
symbol transmitted at time 7 is X e/ where x, is chosen
from the original (fixed) signal set. Such a rotation does not
affect the transmitted spectrum since the transmitted sequence
is still uncorrelated. Rotating the signal set in this manner can
also be viewed as shifting the carrier frequency by 1/8T Hz,
while the spectruim of the transmitted signal remains un-
changed. The received signal is processed by the receiver front
end in the same way as described in Section II, and at the
output of the noise whitening filter, we have

rr; :x"ej(vr/tt)n +X,_ 1ej(1r/4>)('l— D4 w';
(19

It can be observed that by multiplying r; by e ~/(*4" prior to
sequence estimation, we obtain an equivalent channel with
transfer function 1 + e /4D with input symbols chosen from
the original signal set. It is easy to see that for this equivalent
channel, the MLSE minimum squared distance is again 8.
Furthermore, as in ISI-free transmission, the minimum dis-

= el (x, + x, 1€~ ITD £ w,).
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Fig. 5. Simulated performance for (I + D) quadrature partial-response

signaling with carrier frequence offset (M = 16).

tance is achieved only by the error events e = [ +2, 0] and e
[+2j, 0]. Therefore, the asymptotic performance of
MLSE should be as good as ISI-free transmission. Since long
critical error events are avoided, the decoding delay is also
significantly reduced. It can be shown that signal set rotation
also reduces the peak-to-average ratio of the transmitted
signal. This may reduce the effects of any nonlinear distortion
which may be present in the transmitter or in the channel.

The simulation results shown in Fig. 5 illustrate that with
rotation, the performance of MLSE asymptotically approaches
that of ISI-free transmission, as predicted above. We also
show in Fig. 5 the performance of RSSE in this case. It can be
observed that a five-state RSSE is needed to approach MLSE
performance. The five-state RSSE uses the five-way partition-
ing shown in Fig. 6. Note that with five-way partitioning, the
minimum intrasubset distance A, is larger than that of
Ungerboeck’s four-way partitioning by 0.97 dB.

The more general class of 1 + DY QPRS can be treated in a
similar manner using the appropriate rotation and demodula-
tion strategy to obtain an equivalent 1 + e~/*4 DN channel,
and similar conclusions can be drawn.

It should be mentioned that when the signal set is square and
the channel is real (as in conventional QPRS), both MLSE and
RSSE can be formulated as two interleaved one-dimensional
partial-response systems to reduce complexity. However, this
is not possible with rotation since in the equivalent channel,
the in-phase and quadrature components become cross coup-
led.

C. Analysis of DFSE

Now, we consider the case of the DFSE with truncated
memory K’ < K. Here, the set E’ consists of error events (all
of the early merging type) which have their last K’ elements
equal to zero. From (11), it can be seen that additional zero
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Fig. 6. Five-way set partitioning for the rectangular 16-QAM signal set.
elements at the end of an error event can only increase the
distance. Therefore, d,, can only increase as K’ is increased
towards K. For K’ = K, we have d, = duin, while for K’
= 0 (where DFSE becomes a zero-forcing DFE), d. is the
minimum Euclidean distance between symbols in the signal
set.

For a DFSE, the relationship given by (14) is trivial.
Instead, when the minimum distance error events of the MLSE
are known, a simple upper bound on d/, can be found by
subtracting the maximum possible contribution of the last K —
K’ zero elements of these error events from d;,.

Example: Consider binary signaling (x, +1) over a
length K = 2 channel with real coefficients f; = 0, f; = 0.
We assume f; < 1 + f; and f, < 1 (minimum phase
condition). In this case, it can be shown that the minimum
distance error events in the DFSE (K’ = 1) are the same as
the minimum distance error events of the MLSE, except for a
missing zero element at the end. Therefore,

2
da=d? —4f%

min (20)
Thus, in this particular example, d_, achieves the bound
mentioned above. Also note that the reduction in squared
minimum distance is equal to the energy in the ‘‘neglected”’
portion of the channel impulse response (this may not be
expected to be true in general).

Now, consider a (1 + D)? partial-response system with
binary signaling (i.e., fi = *2, f; = 1). In this case, DFSE is
only 1.25 dB worse than the (four-state) MLSE, and it is 4.77
dB better than a zero-forcing DFE. These estimates closely
agree with the simulation results shown in Fig. 7 for the (1 +
D)? channel. Also shown in Fig. 7 is the performance that
would be obtained if the true path always used the correct
feedback decisions in the branch metric computations. This
illustrates the effects of error progapation. Note that error
propagation affects the DFSE less than it affects the DFE; in
particular, at high SNR, the effect is negligible. This
encouraging result might have been expected since in DFE,
both ISI terms are cancelled with feedback, while in DFSE,
only the second ISI term is subtracted with feedback.

V. SUMMARY AND CONCLUSIONS

We have shown that effective reduced-state sequence
estimation for linear ISI channels can be achieved with an
MLSE-like structure. We have used Ungerboeck set partition-
ing principles to construct trellises with a reduced number of
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signaling.
states. Some simple examples are given to demonstrate the REFERENCES
performance of our RSSE structure. [11 G. D. Forney, Ir., <“Maximum-likelihood sequence estimation of

In this paper, no attempt has been made to extensively
compare RSSE to various previously proposed detection
techniques, e.g., those described in [6], [9], and [10].
However, the results presented here (as well as further results
to be reported in the future) look very encouraging.

If the channel response is unknown, the RSSE can be made
adaptive by use of a channel estimation algorithm. Although
the development assumes a whitened matched filter as the
received front-end filter, for null-free channels, an appropri-
ately modified version of the RSSE can also operate at the
output of a zero-forcing linear equalizer. It should also be
noted that Duel and Heegard [11] recognized the application of
the DFSE to recursive channels with infinite impulse response.

In Section III, we constrained the set partitioning in order to
obtain a well-defined subset trellis. However, at least in
principle, this is not necessary. For any partitioning of the set
of all possible values of the 2K-dimensional ML state vector
D, the state transitions can be defined in real time based on
symbols stored in the path histories. Of course, this may
increase implementation complexity and, in general, will not
be preferred.

Finally, the RSSE structure can also be used for near-MLSE
decoding of trellis-coded modulation systems [12], [13] with
large signal sets operating in the presence of ISI. This
important extension will be described in the future.
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