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Breadth-First Trellis Decoding with
Adaptive Effort

STANLEY J.

Abstract— A new breadth-first trellis decoding algorithm is introduced
for application to sequence estimation in digital data transmission. The
high degree of inherent paralielism makes a parallel-processing (possibly
VLSI) implementation attractive. The proposed algorithm is shown to
exhibit an error-rate versus average-computational-complexity behavior
that is much superior to the well-known Viterbi algorithm, and which
also improves on the popular M-algorithm. The decoding algorithm
maintains a variable number of paths as its computation adapts to the
channel noise actually encountered. Buffering of received samples is
required to support this.

Bounds which are evaluated by trellis search are produced for the error
event rate and average number of survivors. Performance is evaluated
with conventional binary convolutional codes over both BSC and AWGN
channels. Performance is also found for muitilevel AM and PSK codes
and simple intersymbol interference responses over an AWGN channel.
At lower SNR, Monte-Carlo simulations are employed to improve on
the bounds and to investigate decoder dynamics.

I. INTRODUCTION

LIS structure pervades digital communication signalling.
Two of the most common sources of this structure [1] are the
application of trellis codes for forward error correction, and the
presence of intersymbol interference (ISI) due to nonideal channel
responses. So called “coded modulations” {15] also impress a trellis
structure on the transmitted signal. The Viterbi algorithm (V-alg)
[2] is well-known as the optimal (sequence) estimator for trellis-
structured signals. Its computational complexity, however, is pro-
portional to the width of the trellis, which is in turn exponential in
the memory length of the coder, modulator, or channel response.
Viterbi decoding can therefore become impractical with more pow-
erful codes and modulations, or more dispersive channels.

Because of this computational problem with the Viterbi algorithm,
alternative reduced-computation algorithms (that are necessarily sub-
optimal) have been proposed in the literature. These algorithms fall
generally into three classes as defined in [3]: depth-first, metric-first,
and breadth-first trellis search. Depth-first algorithms search along
a single promising sequence, backtracking to explore alternate paths
when it seems likely that a wrong turn has been made at some earlier
point. Metric-first algorithms rank sequences in contention according
to the goodness of fit to the observed (received) signal, and extend
and explore the sequence that has the current best metric. Breadth-
first algorithms, however, extend many possible sequences during a
processing interval and prune contenders according to a discard cri-
terion based on metrics. All contending sequences are of the same
length and there is never any backtracking. The Viterbi algorithm
belongs to this class.
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The motivation for this work is ultimately to allow high data rates
over existing noisy and/or dispersive channels. Since higher data
rates imply the necessity for complex codes and/or the presence of
increased dispersion, computationally fast decoders are required. To
this end, desirable attributes for a decoding algorithm are both re-
duced computation, and the ability of an implementation to exploit
parallelism with suitable (possibly VLSI) structures. Decoding al-
gorithms which are purely breadth-first are inherently parallel, and
are therefore of greatest interest here. Examples of VLSI structures
that exploit the parallelism of breadth-first decoding are given in
[16]-[18].

The well-known M-algorithm [3] belongs to the breadth-first de-
coding class. Like the Viterbi algorithm, however, it performs a
fixed number of computations per decoded symbol. This fixed com-
putational load must be tailored for worst case channel conditions;
the algorithm cannot capitalize on periods where decoding decisions
may be much easier and require less computation. The algorithm pro-
posed in this paper exhibits an inherent adaptation of decoding effort
which lowers the average computational complexity at the expense
of requiring a buffer and introducing modest decoding delays.

Other proposals for suboptimal breadth-first decoding are evident
in the literature, but they tend to be restricted in application to the
specific trellises for which they were designed; see, for example,
references [4]-[7]. The new algorithm described in this paper is
applicable to any trellis-structured signal.

II. Discrete-TIME MODEL

The very general discrete-time communications model of Fig. 1 is
assumed. This model may be derived from the standard continuous-
time communications model after appropriate matched-filtering and
symbol-rate sampling of the received signal. Information digits u,,
chosen from an alphabet of size b, are produced every T seconds
(for a symbol rate of 1/Y) and are assumed independent and equi-
probable. Subscript k denotes the time index or symbol interval. The
channel symbols x; are a function of the current input #; and » past
inputs, X, = f(ux, S—1) where s is a state uniquely determined by
the » inputs immediately prior to time kY. The one-to-one mapping
between input sequences u and channel symbol sequences x is de-
scribed by a trellis of width S = b” states. Fig. 2 is an example of
a simple eight-state trellis. There are b branches out of each state,
one per possible input symbol, and each branch has a corresponding
channel symbol x,. Trellis paths are a concatenation of branches.
The observation y; is the sum of the transmitted x, and noise term
n; where the n, are assumed to be independent random variables
(and independent of the x;).

Associated with each possible sequence x is a metric; here a max-
imum likelihood metric is assumed,

T(x, ) = ~log, p(yhr) = ~log, [ [P0 bxe)
k
==Y log POk =Y v ) (D)
k k

where the probability distribution p(y|x) breaks into a product of
terms due to the assumed independence of the additive n,. The path
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Fig. 2. Simple eight-state trellis.

corresponding to sequence x then has a cumulative metric I' that is
the sum of the metrics of its branches.

III. ProrPosep DECODING ALGORITHM

An optimal ML decoder chooses the path through the trellis from
initial state so having the best (minimum) metric as defined above.
The Viterbi algorithm recursively implements this exhaustive search
by maintaining one survivor path to each state in the trellis at each
time kY. That survivor is the path with minimum metric over all
paths that can reach the state. We can avoid this exhaustive approach
by discarding paths at any depth k in the trellis that have a “high”
metric and are therefore unlikely to be the.transmitted path. Since
path metrics will accumulate with time, we cannot simply compare
path metrics to a fixed threshold. Introducing a threshold with a bias
that increases with depth in the trellis is one possibility. Such a bias
is incorporated into path metrics [8] for depth-first and metric-first
decoding [3] to allow comparisons between paths at different depths.
Such an approach does, however, require knowledge or estimates
of the channel signal-to-noise ratio. Also, the bias is selected for
average channel noise; when noise is high, all paths will tend to
increase their metrics and look poor. A better approach may be to
sample the prevailing noise conditions by using the metric of the best
path in contention. The resulting simple discard rule is

e discard path i at time kY if [; — Ty >T

where I'p is the metric of the best path at depth &, and T is a fixed
threshold. Note that the choice of the lowest metric for subtraction
maximizes the metric differences and will therefore minimize the
number of paths which survive the rejection tests.

To complete the decoding algorithm, it is necessary to specify
how a decoded output is obtained from the list of survivor paths.
Where the paths all merge to a common history (see Fig. 3) the
decoder output path is simply the common section. More precisely,
the common branch symbol for time (k — L)Y is released where L is
the decoding depth. It is possible that the paths will not have merged
by this depth, and this may be quite common when higher rejection
thresholds are used. Clearly, the best strategy in this situation is (as
in a Viterbi algorithm implementation) to take the decoder decision
path branch to be that belonging to the path in storage having the
lowest metric, that is, the path of highest likelihood. All unmerged
paths are then rejected.
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Fig. 3. Typical contender paths.

A formal statement of the recursive algorithm for time k7T is the
following.

1) Extend each survivor from (k — 1)T into b contenders, con-
catenating the new symbol to the path history and updating the
accumulated path metric of each contender.

2) Find and mark the contender having best metric I'p.

3) Subtract I'y from the metric of each contender and compare to
threshold 7, marking those that fail the test for rejection.

4) Mark for rejection all contenders whose path history symbols
at (k — L)Y do not agree with that of the best path.

5) Purge all contenders marked for rejection to form the new sur-
vivor list at time kT

Note that the subtraction of I'p normalizes all path metrics so that
metric overflow is really not a problem. Note also that since path
states do not enter into the path-rejection processing, it is possible
that distinct survivors may share a common state at time kY. In this
mode of operation, the decoder views the trellis as a tree, and is
unaware of the concept of path states. This mode of operation has
been deliberately chosen. It would have been possible to implement
an additional rejection step to purge all but the path of lowest met-
ric in any group of paths that share a common state, as does the
Viterbi algorithm. For example, to discover which contender paths
have common states, an efficient approach would be to sort all the
paths by state. Such sorting, however, represents extra work, and
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requires extra hardware in order to be accomplished with any sort of
parallelism. In addition, simulations have shown that only marginal
reductions in the average number of survivors can be gained by per-
forming the extra state-duplication purging.

Note that step 4) above is eliminated from some reduced-
computation algorithms, the justification being that its inclusion gives
only negligible performance improvement. Step 4) cannot be elim-
inated here however, as it compensates for not checking for state
duplications in the survivor list. If such paths are not eventually
eliminated, they can cause the size of the survivor list to grow con-
tinually, with no corresponding increases in algorithm error-rate per-
formance. Since any paths that rejoin to a common state must have
diverged at some earlier time, step 4) will discover this divergence
and discard the poorer of such paths. State duplicating paths are
therefore still eliminated, but only after some delay needed for their
initial divergence to appear in the path histories at depth L. It should
be emphasized that all bounding and simulation results shown later
include this effect, as it is an inherent part of the algorithm defined
above.

There is another important consideration. Because the survivor
mumber Sy is variable, it may at times tend to grow quite large. There
must be some limit enforced on Sy in a practical implementation. A
“soft” limit is proposed where iterative reprocessing with tightened
thresholds is performed until the tentative number of survivors is
equal to the limit S; . The most efficient exact implementation of this
soft-limiting is a binary search for the threshold that gives exactly S,
survivors. An inexact but simpler implementation, and the method
adopted for the results shown later, is to reduce the threshold by 10
percent at each reprocessing step until S; or fewer paths remain.
No matter what method is used, soft-limit reprocessing will increase
the average computational load. As long as S is sufficiently high,
however, this limiting operation will occur only infrequently, and
can contribute negligibly to the average computation. This is evident
in the later discussion of the results.

IV. PERFORMANCE ANALYSIS

The error-rate measure of interest is defined to be the time-average
per-symbol probability of an error event starting. The average num-
ber of survivors is taken as a measure of computational complexity.
Upper bounds on these quantities are produced. The maximum num-
ber of survivors is not a relevant criterion where survivor number
limiting will ultimately be applied. In addition, for some signal struc-
tures the upper bound on this maximum is 5%, which will almost
always be too large to be useful.

An error event will be defined by the divergence of the decoder
decision path from the transmitted path m (m stands for message).
The probability of this occurring is of interest here; the number of
symbol errors and the length of the error event are not of concern.
It is assumed that the decoder knows the initial state of the coder or
channel.

Rejection of the transmitted path is a necessary and sufficient con-
dition for an error event to begin. Rejection of the transmitted path
can occur only due to a failed threshold test or a forced decision
at decoding depth L. Typical paths in contention are shown in Fig.
3. An invocation of stationarity and ergodicity coupled with a stan-
dard union bound argument (see Appendix A) allows the following
ensemble-average upper bound on rejection probability Pg:

Yo Pmimy+ > Prm'im) | (2

Pr <Y P(m)
m {m/.1=1,L} my
where all transmitted paths m, and alternate (contending) paths m’,
are confined to the interval [0, LY]; / represents divergence depth;
P(m) is the probability of message m; and P, and P, are used to
denote threshold-test and forced-decision probabilities for a single
alternate m’. This is simply a summation over all possible alternate
paths that could become the best path and lead to rejection of the
transmitted path. The probability of error in a block of N symbols

5

would then be given by NPy. The defining probabilities for P, and
P 7 are

Py(m'|m) = P[Ly — Tpy >T) and Py(m'|m) = P[Tpy —~ Ty > O1.
3)

Explicit expressions for P; and P for the BSC and AWGN channels
can be found in Appendix B. A very similar form can be constructed
to bound the Viterbi algorithm error-rate. For the Viterbi algorithm
bound, only those paths 7’ that rejoin the state of the transmitted
path at time LT are counted, and these paths are considered to be
involved in a metric-difference test with the transmitted path with an
effective threshold T of zero. )

The above bound result is based on a long-time average. For the
proposed algorithm, there will be a transient startup period for k < L
in any real transmissions where the probability of an event starting
is somewhat lower than the long-time average. This is because of the
information provided by the known start state; fewer alternate paths
are initially in contention. Similarly, if known information symbols
uy, are inserted into the data stream (a useful strategy described later),
the decoder using this information lowers Pg for some intervals.
Ignoring these two effects clearly produces an overbound on the
average error event rate Pg.

The following bound on average number of survivors, conditioned
on the transmitted path m being on the contender list, can also
be produced (see Appendix A):

Sr < ZP(m)ZP,(m’lm) +1 @

where P;(m’|m) denotes the conditional survival probability for m'
and is given by
Py(m'jm)=P[Cps —~Tp <T1. &)}

The bound’s first term is simply a summation over all alternate paths
with weighting by the probability that the path would survive a thresh-
old test in which T, replaces I'p. Explicit expressions for P; for the
BSC and the AWGN channel can be found in Appendix B.

Conditioning the bound on the transmitted path being on the con-
tender list is not a drawback if the primary concern is the probability
of an error event starting, as is assumed. Naturally, the speed of
the decoder implementation will be tailored for the average survivor
number occurring in the absence of errors, that is, with the transmit-
ted path present. If the transmitted path has already been rejected, the
bound may then not hold, but the behavior of the survivor number in
this case is unimportant. Even if Sy should grow uncontroilably and
quickly reach an enforced limit S, , the decoder action can only result
in a longer event, not a new event. It should also be mentioned here
that the above bound has been developed assuming the decoder does
not enforce a limit on the number of survivors. In the presence of
limiting, the average number is actually found to decrease, as might
be expected, at the expense of incurring extra computations needed
to perform the limiting.

V. BounDp EVALUATIONS AND SIMULATIONS

The bound expressions above require for a given transmitted path
m that all alternate paths m’ of length L symbols be explored. Since
the constituent probabilities depend only on distance d(m, m’) [Eu-
clidian or Hamming] for the AWGN or BSC channels, this evalua-
tion may be done by counting paths at each discrete value of distance
d(m, m'), and summing the contributions over all these distances.
This path distance enumeration can be done without redundant path
tracing by combining path counts where paths enter a common trel-
lis state, and share a common distance d(m, m’). A form of trellis
“search” to depth L accomplishes this.

One immediate problem is that the number of discrete values of
d(m, m') may be very large. To deal with this problem, a distance
boundary d was defined that separated paths into “low” and *‘high”
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distance categories. Once paths accumulate distance in excess of dg,
they are graduated into the high distance group. For each of the low
distances, values for P,, P, and P, are calculated and applied to the
path counts, but the high-distance path contributions are combined
into a single Chernoff bound with bound parameter A = 1/2. The
Chernoff bounds for these probabilities are given in Appendix B.
If the A = 1/2 bounds had been applied uniformly to all paths m’
regardless of distance d(m, m’), the trellis search procedure would
have been greatly simplified. In fact, it would have effectively be-
come an efficient method for evaluating a transfer function bound
[1] of the same form as those regularly employed in the literature for
the Viterbi algorithm. The reason that this was not done is that the
A =1/2 bound is too weak for the lower distance paths that take part
in the proposed algorithm. For the higher path distances however,
the N = 1/2 bound is tight, and may be employed. In practice, the
boundary distance dp was chosen sufficiently high that the contri-
bution of the high-distance paths was much smaller than that of the
lower distance paths, yielding as tight a bound as possible.

For trellises whose distance profile is independent of the trans-
mitted path, a single search with the all-zeros as transmitted path
m produces the final bound. For trellises where the result depends
on the particular transmitted path, an average over all such paths is
needed. An exact computation can be performed based on a super-
state (or *‘pair-state’’) [9] description of the trellis involved. The
number of super-states is the square of the number of normal states,
and computational and storage requirements grow rapidly with chan-
nel or code memory. An alternative approach, and the one used here,
is to simply form a probabilistic estimate of the bound based on com-
bined time and ensemble averaging. To accomplish this, a random
path m is traced through the trellis to depth L + N symbols, and
the per-symbol average bounds evaluated over these N symbols. Ad-
ditional random paths are then traced and evaluated, redoubling the
total observed paths at each iteration to 2,4, 8,16 - - - until there is
less than a 5 percent change in a cumulative bound average. This
approach, although not exact, produces bounds in which one can be
quite confident while avoiding the exhaustive super-trellis computa-
tion. This approach was verified against the exact super-state method
for codes whose constraint length was low enough to permit this.!

Finally, some of the redundancy in the union bound on Pz could
be easily removed during the evaluations. This type of redundancy
occurs where paths m’ define error regions in the signal space that are
completely covered by error regions already counted at a different
time kY. This includes paths whose last symbol x} is the same
as symbol x; of the transmitted path, as well as paths that have
rejoined the state sequence of the transmitted path for any duration.
The redundancy elimination is accomplished by not adding in P,
contributions from these paths.

Monte-Carlo simulations of the Viterbi, M-algorithm and the pro-
posed T-algorithm were carried out. These simulations provided
tighter results at the lower SNR’s where the bounds are weaker, and
allowed investigation of decoding dynamics. For the M-algorithm
simulation, no purging of state-duplicating paths was implemented.
This creates more of a common ground for comparison, and only
marginally increases the error rate compared to an algorithm in which
purging is used.

The simulations were carried out using vector space representa-
tions. For example, with 4-level amplitude modulated codes, the
sequence of transmitted levels can be simply interpreted as a vec-
tor with one dimension per baud interval (for PSK modulation there
are two dimensions per baud). Any other contender sequence can be
similarly represented. To simulate white Gaussian channel noise, an
independent noise sample is added to each coordinate of the trans-
mitted vector, where the variance of this zero-mean noise sample is
equal to N, /2, the height of the two-sided noise power spectral den-
sity. The noise samples are generated using a proven random-number
generator. This simulation method implies that we are assuming an
ideal receiver that uses matched filtering. Squared Euclidian distance

! It appears that the new results of [10] could have been useful here with
the code trellises (but not the ISI trellises).
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is calculated as the sum of the squares of the differences between the
coordinates of the received vector and the signal vector of interest.
For the BSC simulations with rate 1/2 codes, there are two new
dimensions per baud, with each coordinate of the received vector
constrained to the set (+1, —1). Hamming distances are used in this
case.

The signal-to-noise ratio for the AWGN channel codes is defined
by SNR = 10log,,(d%;,/2N,) where dp;, is the minimum distance
between symbols in an uncoded system having equal average re-
ceived power. This also means that the coded and uncoded systems
transmit the same average energy per source bit, since their bit rates
are the same; the coded system bandwidth is only greater than the
uncoded system in the case of the binary convolutional codes. Note
that the above expression for SNR also applies to the intersymbol
interference cases, except that dp,;, in these cases is the minimum
distance between distinct paths in the ISI trellis. This definition of
SNR allows the error-rate for different codes/ISI to be shown on the
same scale for a given SNR; conversion to an Eg /N, SNR measure
is trivial.

It should be mentioned that for all results, decoding depth L was
selected large enough that there was a negligible contribution from
forced decisions involving paths m’ that are completely unmerged
with transmitted path m for the full L symbols. That is, virtually no
improvement in performance can be found by increasing L further
(the required value of L was found by repeated trials). This applies
both to the bound results and the simulation results.

For the purposes of simulation, the transmitted symbols were
grouped into blocks of 200 symbols, with the last few symbols in
each block chosen to drive the state of the transmitted path back to
the “all-zeros” state. This periodic state-forcing is exploited by the
decoder to limit the length of error events, as is discussed later. Fi-
nally, for all simulation results shown in the next section, the soft
limit §; was set high enough that limiting did not occur in any block
that was free of errors. The effect of a lower soft limit is discussed
at the end of the next section.

VI. ErrROR-RATE VERsus CoMPLEXITY: RESULTS AND DiscussioN

To begin, we will consider a well-known trellis structure, that is,
the one formed by standard rate-1/2 binary convolutional codes. For
this purpose, the ODP codes of [11, Table 12.1] were used. Our
definition of constraint length » is consistent with the definition in
[11], namely, that the number of states is given by 2”. Algorithm
performance has been evaluated with these codes assuming two dif-
ferent channels: a binary symmetric channel (BSC), and an additive
white Gaussian noise channel.

It may help to restate the threshold rule in the context of the BSC.
The algorithm actually uses Hamming distances for working metrics
and thresholds in this case. Proceeding breadth-first, we evaluate the
Hamming distances of the contender paths, and find the path with
the lowest Hamming distance I'y. Now any paths whose Hamming
distances exceed I's by more than T, are rejected, where Hamming-
distance threshold T'; takes on integer values.

The top curve of Fig. 4(a) shows the behavior of the proposed
threshold algorithm with a constraint length » = 7 code assuming a
binary symmetric channel having channel crossover probability p =
0.01. The results on this figure are all from upper bound calculations.
Note that as the threshold is increased, the error event rate decreases
due to a lower probability of rejecting the transmitted path, but this
error-rate improvement comes at the expense of a higher average
number of survivors. At high thresholds, however, the error-event
rate saturates (as it must) at the error rate that would be realized with
optimal Viterbi decoding. The Viterbi-algorithm occupies a single
point on this figure where its average number of survivors is simply
the number of states, here given by 27 = 128.

Once we get close to saturation, there are rapidly diminishing re-
turns in increasing the threshold further. At these high thresholds,
the probability of discarding the transmitted path due to its failing a
threshold test is comparatively negligible. Virtually all of the errors
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Fig. 4. Error-rate versus complexity bounds with R = 1/2 binary convolu-
tional codes: » = 7 code on BSC and AWGN channel (a), and code family
with AWGN at 8.0 dB (b).

are instead being caused by the forced decisions that must be taken
when paths are not merged at depth L. In fact, as T — oo, the de-
coder decision paths will become identical for the Viterbi algorithm
and the T-algorithm. In that limiting situation, all paths would sur-
vive the threshold tests, and the released decoder symbol would be
determined solely by the criterion of using the depth-L symbol of the
overall best path. Since, by definition, the Viterbi algorithm always
releases the depth-L symbol of the overall best path, the decision
paths for the two algorithms would necessarily become identical.

The lower curve of Fig. 4(a) is for the same code but now for
the AWGN channel, and at an SNR that is about 2.5 dB lower,
illustrating the gain realized by the use of soft decoding metrics.
In this case, Euclidian squared-distance metrics and thresholds T¢
are employed. Fig. 4(b) now shows the algorithm’s behavior for the
same five threshold values applied niow to a set of codes of increasing
constraint length that includes the » = 7 code of Fig. 4(a). The lower
curve of Fig. 4(a) can be identified as the middle curve of Fig. 4(b).
The threshold values have been left off the figure for clarity, but are
readily identified by comparison to this » = 7 curve. The plotted
ticks that are virtually in vertical line with the » = 7 ticks occur at
the same threshold value. This shows the first interesting result: for
a given threshold value, the average number of survivors is virtually
independent of code constraint length.

The second important point is that as long as the curves are not flat-
tening out approaching saturation at the VA limit, the error-rate per-
formance is also virtually independent of the code constraint length.
It depends only on the threshold value employed. This can be seen
most clearly in the almost perfect overlap of the initial portions of the
curves for the different codes. We can therefore identify the curve
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Fig. 5. Error-rate versus complexity for T-alg, M-alg, and V-alg with 4-
AM and 8-PSK codes: simulation at 8.0 dB (a), and bounds at 10.0 dB (b).

that follows the lower boundary of this set of curves (suggested by
the dotted extension in the figure) as the error-rate versus complex-
ity characteristic for the threshold algorithm applied to this family
of codes. Also shown is a dashed curve connecting the performance
points for Viterbi algorithm decoding over the set of codes. Some
liberty has been taken in doing this, since it is not possible to be
operating between the discrete Vitetbi algorithm points. The dashed
curve is simply to show the trend of Viterbi algorithm cormplexity
versus error-rate. It is now evident that the error-rate versus com-
plexity characteristic of the T-algorithm is far superior to that of the
Viterbi algorithm. For any target error rate, we can find a threshold
for the T-algorithm that will achieve that target error rate but with an
average number of survivor paths that is much less than that required
by the Viterbi algorithm to achieve the same rate. In Fig. 4, this
reduction is in excess of one order of magnitude at an error rate of
around 10—2. It should also be stated here that the average number
of survivors is a perfectly accurate measure for comparing the com-
putational requirements of the two algorithms. Since both perform
identical survivor-path extension processing, and the number of met-
ric comparisons per contender path is the same, the average mmber
of survivor paths is a correct proportional measure.

In Fig. 5, we stick with the concept of an algorithm’s error-
rate versus complexity characteristic to compare the T-algorithm,
the M-algorithm, and the Viterbi algorithm applied with different
codes. For this purpose, Ungerboeck 4-AM codes [12, Table IJ,
and Ungerboeck-like 8-PSK codes [13, Table V.3)? were chosen to
demonstrate the algorithm’s general applicability. Again, the number
of states in the code is given by 2.

Fig. 5(a) shows the performance curves at & low SNR, Fig. 5(b)
shows them at a higher SNR. Here again, the values of the thresholds
used at the plotted points have been left off the figure both for clarity
and to make the point that what is important here is an error-rate
versus complexity curve that is characteristic of the algorithm and
the particular family of codes (i.c., 4-AM or 8-PSK) to which it is
applied. If a different set of threshold values had been chosen for

2 These codes were used as they improve on the original Ungerboeck codes
at the higher constraint lengths.
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(Tg = 16.0) and 8-PSK (T'z = 1.6) codes: error event rate (a), and average
number of survivors (b).

the evaluations, the same curve would result the ticks would just
be in different positions on that curve. For information only then,
the 4-AM- T-alg curve at both SNR’s was produced by using the set
ofthresholds T = 40, 8.0, 12.0, 16.0, 20.0) with the » = 10
4-AM code whose symbols come from the set (+3, +1). The 8-PSK
T-alg curves were produced using the set of thresholds (Tz = 04,
0.8, 1.2, 1.6, 2.0) with the » —108PSKcodewhosesymbolsare
unit-energy phasors spaced in phase by 2x/8.

At the lower SNR, the results are all from Monte-Carlo simula-
tion. Note that the simulations were performed for blocks of data of
length 200 symbols (the reason for this is discussed later), and the
average number of survivors shown does not include blocks which
contain decoding errors. At the hlgher SNR where simulation is not
practical, .the upper bound results are used throughout. Note -that
the M-algorithm could not be included at the higher SNR as there
are no upper bounds known for its error-rate performance That the
T-algorithm achieves s1gmficam complexity reduction gains over the
Viterbi-algorithm is again apparent from Fig. 5. The gains are even
more pronounced at the higher SNR (where path discard decisions are
easy for a greater portion of the time). Note that the T-algorithm also
improves on the M-algorithm. In this case, exact quantitative compu-
tational comparisons cannot be made directly since the M-algorithm
actually involves extra sorting computations which increase its de-
coding effort per survivor path. The relative merit of the proposed
algorithm is, however, clear. .

To this point, the performance of the T-algorithm has not been
shown on a familiar error-rate versus SNR plot. This has been done
deliberately, as the representatlon of Figs. 4 and 5 (once accepted)
makes the comparisons among the algorithms absolutely clear, and
avoids havmg to compare among multiple figures. In fact, one can
find a performance versus SNR curve by interpolating between plots
like Fig. 5(a) and (b). However, as the author feels obliged to show at
least one such curve, Fig. 6(a) is offered. For this figure, » = 10 4-
AM and 8-PSK codes have been used, with the threshold 7’5 selected
just below the point at which the error rate would begin to saturate
at the V-alg performance limit.. This demonstrates that at a fixed
threshold choice, the performance degradatlon with decreasing SNR
is graceful, producing a curve whose form is similar to the well-
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Fig. 7. Error-rate versus complexity for two simple ISI responses at 12.0
dB (a) and 15.0 dB (b).

'known curve for the Viterbi algorithm.? Also shown in Fig. 6(b)
is the behavior of the number of survivors as a function of SNR.
Quite naturally, the average number of survivors decreases as SNR
increases, which is consistent with the algorithm’s ability to readily
identify and discard incorrect paths when noise is small.

Finally, Fig. 7 is presented to demonstrate application in the case
of a fixed trellis (as opposed to the earlier coded cases where we were
free to choose the code constraint length). Results are shown for two
representative ISI responses at two SNR’s. Here, all results are from
upper bound calculations which are very tight. Note that for a given
ISI response and SNR, the performance of the Viterbi algorithm is
depicted by a single point on the figure, where the average number
of survivors is just the number of states. For the T-algorithm, as
before, we have a performance curve. This time the curves have
been created using the set of thresholds (Tx = 1.0, 2.0, 3.0, 4.0)

" for the [1 + D + D', M = 2] case, and (T; = 4.0, 8.0, 12.0,
16.0) for the [1 +2D +4D? +2D? + D*,M = 4] case. Note that
for the former ISI case, the T-algorithm can achieve an error-rate
performance virtually identical to that of the Viterbi algorithm with
only 1 or 2 survivor paths on average, instead of the 1024 survivors
needed by the Viterbi algorithm.* The savings for the other ISI case is
still almost two orders of magnitude. This shows that it is possible to
come very close to optimal (¥-alg) performance at a greatly reduced
complexity when the signal space is inefficiently packed, as occurs
with the two simple intersymbol interference channels tested.

VII. Decoping DyNaMics

A variable computational load arises from the variation in the num-
ber of survivors kept at each symbol interval; a buffer for the received
channel samples is needed to exploit the low average load. An analy-
sis of the survivor-number and buffer-backlog processes seemed very
difficult, so simulations were performed at the lower SNR’s where
the survivor numbers are highest. Computational requirements for
each interval are taken to be directly proportional to the actual num-
ber of survivors.

Fig. 8(a) illustrates typical behavior for a representative code trel-
lis when decoder capability is set at twice the average computational
requirement. This behavior is typical over a wide range of codes
and illustrates that the low average decoding load can in fact be ex-
ploited without excessive buffer backlogs and decoding delays. The
relationship between buffer backlogs and survivor dynamics can be
seen more clearly in the time scale expansion of Fig. 8(b). When
noise is not large, the survivor number hovers close to the average
value, and the decoder uses its excess capability to keep the received

3 Note that algorithm comparisons based on such a representation would
be difficult at best. If we are to add a V-alg curve, what constraint length
should we use? If we w1sh to add an M-alg curve, what value of M should
be used?

4 Note that 1024 states applies to a single Viterbi decoder; a reviewer has
pointed out that this particular response can be decomposed into 5 interleaved
channels with a separate 4-state Viterbi decoder for each. This (unfortunately
somewhat degenerate) response was selected simply to show that long mem-
ory length are easily handled by the T-algorithm.

P
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Fig. 8. Typical decoder dynamics (a) and time-scale expansion (b) [actual
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SNR =175

sample buffer cleared. When one or several larger noise samples
occur, all path metrics tend to climb and the decoding algorithm
responds with an increase in the number of survivor paths, which
tends to be sustained over several symbol intervals. The decoding
algorithm, in effect, uses this extra observation time to establish
which paths may then be safely discarded. Computational demands
now outpace decoder capability, and received samples accumulate in
the buffer. Once the noise event has passed, it takes some time to
clear the computational backiog. Also note that the periodic state-
forcing employed in the simulations drives the number of survivors
back to just one at the end of every 200-symbol block.

What is being shown here on the horizontal axis of Fig. 8 is
the symbol interval that the decoder is processing. These decoding
intervals take varying amounts of time to complete, and ther duration

dB, S, = 64).

only corresponds on average to the fixed duration of a transmission
baud. The backlog simply shows how many symbols the decoder is
behind the transmitter. This explains why the figures do not show
the buffer backlogs immediately dropping to zero when state-forcing
occurs at the end of each block. The backlog represents unprocessed
symbols that we simply cannot discard.

Fig. 9 shows the behavior when the transmitted path is lost and an
error event begins. Note that the number of survivors gets very large,
and the buffer backlog grows steadily. Soft-limiting to 64 survivors
is used to show behaviour under realistic conditions. A practical
implementation may require aborting the decoding of such a block
and flushing the corresponding portion of the received-sample buffer
(the whole block is discarded but it contains errors anyway).

Finally, simulations with the S, soft limit on the number of sur-
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vivors lowered to four times the average survivor number showed
that practical S, -limiting neither significantly degraded error-rate
performance nor significantly added to computational requirements
or buffer backlogs. As long as limit S; is not too low, the extra
computations needed for limiting occur too infrequently to have a
significant impact. Along these lines, it is informative to compare
soft-limiting to the operation of the M-algorithm. Note that ideal S,
limiting, when invoked, effectively discards all but the best S; of the
paths in contention. Simulations have verified that if this causes the
transmitted path to be discarded, the same almost always happens
with the M-algorithm using M = S, . Indeed, it is hard to imagine
how the M-algorithm, which always keeps a full complement of M
lowest metric paths, could avoid finding a set of M paths with metrics
lower than the transmitted path when such a set of low-metric paths
was found by the T-algorithm causing the loss of the transmitted
path after soft-limiting. Soft-limiting therefore is no more harmful
than the M-algorithm. The advantage of the proposed T-algorithm
over the M-algorithm is the lower average number of paths, and the
correspondingly lower average computational load.

VIH. ArpLICATION

Simulations show that, once lost, the algorithm can have a difficult
time recovering the transmitted path, and very long error events are
common. This behavior is typical .of all reduced-computation (or
“reduced-state™) algorithms. The frequency and severity of these
long events does, however, depend on the threshold and type of trellis
structure; long events were not a problem with the ISI responses
tested. The simple solution is to periodically force the transmitted
path to a known state using »’ known data symbols. This breaks
the data into blocks with known start states and provides automatic
resynchronization after error. The insertion of these »’ symbols need
only cause a very small reduction in effective data rate if they define
blocks of length at least, say, 20»’ symbols. With blocks of data,
automatic repeat request (ARQ) techniques are possible. Application
is envisaged with long (e.g., 1000 symbol) blocks of data containing
error-detection check symbols (30 bits of checking will guarantee an
undetectable-error rate around 10~°). Note that with data in units of
blocks, the lengths of error events inside a block (and the number of
symbol errors in the events) are irrelevant.

The choice of the algorithm threshold depends on target block
or symbol error rate. If coding is employed, once the threshold is
set it seems best to use the longest constraint-length code available.
Simulations have verified that this both minimizes state duplications
in the survivor list (resulting in a small reduction in the number of
survivors) and minimize errors due to Viterbi-like forced decisions
at depth L (because of the larger code minimum distance). With such
a code selection, there is no basis for contemplating extra algorithm
steps for avoiding state duplications.

IX. ConcLusioN

A reduced-computation breadth-first trellis decoding algorithm has
been proposed and analyzed. The decoding effort adapts to the pre-
vailing noise conditions to yield low average effort. This low average
computation can be exploited without excessive buffer backlogs and
associated decoding delays. Error-rate versus computational com-
plexity behaviour is superior to that of the Viterbi algorithm, and
also improves on the M-algorithm. It should be emphasized that the
proposed trellis search -algorithm is as general as the M-algorithm,
and therefore is also a candidate for source coding applications. In
addition, the inherent parallelism of the algorithm can be exploited
for increased decoding speed in a hardware (possibly VLSI) imple-
mentation.

APPENDIX A
This appendix provides detail on the development of bounds for
the error event rate and average number of survivors.
Error Rate Bound ‘

Since the decoding rule will always retain the path of best metric,
the transmitted path 7 can only be rejected if some alternate path,
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denoted by m’, has lower metric. Alternate paths must diverge from
the transmitted path m at some point. If this divergence occurs at
time (k — /)Y, the path is said to have divergence depth /.

Any alternate path m’ that diverges from the transmitted path m
with a divergence depth / less than or equal to L is a candidate for
best path and therefore a candidate for causing a threshold rejection
of path m. Any path m’ that has a divergence depth equal to L
is a candidate for causing a forced decision rejection of path m at
decoding depth L.

An error event is defined by a divergence of the decoder decision
path from the transmitted path. Clearly, rejection of the transmitted
path is a necessary and sufficient condition for the occurrence of
an error event. Assuming that the transmitted path is on the list
of contenders, and that it is rejected due to operations at kY, the
resulting error event must begin somewhere in the interval [(k —
L)Y, kY] regardless of subsequent decoding operations and resultant
changes in the history of the best path.

The total probability of rejecting m at kY will be denoted by
Pg(k), and the probability of an error event starting at nYT will be
denoted by Pg(n). Now as time moves forward, the L-window inside
which an error event may start slides along. If Pg (k) is averaged over
an infinite length path, it is then clear that this will yield the same
result as averaging Pz(n) over all time; a rigorous argument is given
in [14]. It therefore suffices to calculate time-average Pp to find the
per-symbol time-average Pr.

By assumption, the processes that produce the channel noise and
information symbols are stationary and ergodic. Also, the decoding
rule is fixed and has a Pg(k) that depends only on the transmitted
path over the last L symbols, and there are always b* — 1 possible
alternate paths for k£ > L. It follows then that time average rejection
probability equals ensemble average rejection probability for k > L,
and that this ensemble average may be evaluated as the average of
Pg(LY) over all transmit paths m of length L originating in all §
possible start states so at kK = 0. L

An upper bound on the probability of an error event starting will be
produced first for general time kK Y'; stationarity will then be invoked
to permit attention to be restricted to specific time LY. The proba-
bility of rejecting specific message m at time kY will be denoted by
Pr(m, k). Rejection of the transmitted path under the proposed de-
coding algorithm at kT can be caused by a minimum metric alternate
path m’ only if all of the following conditions are met.

1) The transmitted path has not been rejected earlier, that s, it is
on the list of contenders at kY.

2) Alternate path m’ has not been rejected earlier, that is, it also
is on the list of contenders. -

3) Path m’ has metric T,;; which is better than the metrics of all
other paths in contention at kY, that is, Iy =TI,,.

4) For threshold rejection a), OR forced decision rejection b):
a) I, — T, exceeds threshold T.
b) m’ has divergence depth L-and I',, exceeds T',,.

Define the signal space regions where received signal vector y
may fall such that conditions 1 through 3 above are satisfied for a
specific alternate m’, and which cause threshold rejection and depth-
L forced decison rejection of m, respectively, by 0(m, mi _;) and
@(m, my _, ). The subscripts on the m' refer to the time at which m’
diverges from transmitted path m, that is, / is the divergence depth.

The regions 8 and ¢ as defined above for each /m’ are all nonover-
lapping regions in the signal space. To ease the evaluation, restric-
tions 1 through 3 above may be removed to create larger overlapping
regions defined solely by the conditions of 4) above, and a union
bound applied. With this redefinition of regions # and ¢, a union
bound gives

L
Pr(m, k)<Y > "Ply €0(m, m;_)1+ Y _Ply € d(m, m},_,)].

= ’ ’
=Vm_, My

(A.l)




SIMMONS: BREADTH-FIRST TRELLIS DECODING

Averaging over all possible messages m gives

L
S SR imy + 3P imy | (A2)

I=1m,_,

Py(k) <Y _P(m)

M1

where P(m) is the probability of message m, and P, and P are
used to denote threshold-test and forced-decision probabilities, re-
spectively.

Since stationarity ensures that the results are independent of time
kT for k > L, it is sufficient to consider the ensemble average result
at time LY alone. The form for the bound then becomes

S Pmmy+ Y _Prim'im)| (A3
{m],1=1,L} m)

Pr <y P(m)

where all paths m and m’ are confined to the interval [0, LT).

Average Number of Survivors

As with rejection probability Py, the expected number of survivors
will, due to stationarity, be independent of time for k > L, and may
be found by ensemble averaging at fixed time LY over all paths of
length L and over all S possible start states at k = 0. The expected

P,(m'\m) =PIy —Tp > +T]1=Q (’L"Ui/l)
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metric-difference test, are very complicated. It is possible, however,
to get a useful bound conditioned on transmitted path m being on the
contender list. Since, by definition, I'), > I's as long as transmitted
path m is in contention, substitution of I'y, for I's in the metric-
difference condition can be used to create the upper bound

Sr < ZP(m)ZP(rm, —Tw <T) +1. (A.5)

A rigorous derivation of this bound can be found in [14].

ArPENDIX B

This appendix contains explicit expressions for the constituent
probabilities of the upper bounds of (2) and (4) when applied 1o the
BSC and the AWGN channel. The X\ = 1/2 Chernoff bounds appear
on the far right-hand side of the expressions. Note in the following
that x and x’ are the channel symbol sequences corresponding to
transmitted message m and alternate message m’.

AWGN (Additive White Gaussian Noise) Channel

Double-sided noise spectral density is N, /2. Working metrics are
squared Euclidian distances with a squared Euclidian distance thresh-
old Tz. The Chernoff bound differs from a standard exponential
bound on the Q-function by only a constant factor (both are expo-
nentially tight).

Te d*(x,x")
<exp\ "N, ) P\ AN,
o o

4N,

' ! 2 !
Pym'imy=P[T,, —Tp > +01=Q (d—(x,: )/2> < exp (—d *,x ))

P,(m'|m)y=P[Tp =T,y > —T1=Q (

number is expressed simply as

Sr = ZnP(ST =n)

. n=1
where Sy is the number of survivors of the rejection rule.
Define ®; as the region in the signal space where y may fall such

dy
P,(m'\m) =P[Ty —Tp > +T] =
[(du+Tg)/2]1+1
du
Py(m'\m) = PITp —Tpr > +01 = Y
[(du+1)/2)
dy
Py(m'|m) =P[T,y =T,y > =T] = Z

that signal i will survive. Intersections of these @; define regions of
multiple survivors. It is straightforward to show that for any number
of signal points, including alternates m’ and transmitted point m,

S; = ZP(y c®) = ZP(m)ZP(y ed;im) (A4

where the inherent dependence of y on transmitted path m through
x has been recognized.

The survival condition for path i, which is the complement of the
rejection condition, is given by I; — I'z <T where T'p is the lowest
of the metrics in the particular set of paths that happen to be in
contention at time kY. The regions ®;, which are defined by this

dix,x) —R(x,x")

ceno (+TE exp LX)
e P\ *aN, | P 4N,

where R(x, ) = [Tg +d*(x, x)1/2d(x, x') and o2 =N,/2.

BSC (Binary Symmetric Channel)

Channel crossover probability is p. Working metrics are Hamming
distances used with a Hamming distance threshold 7. Hamming
distance d(x, x’) has been abbreviated to dy .

di\ |
( . )p’(l —py <exp (—"—Tzﬁ) zenP
1

dg\ . .
) p'(l _p)d,.,—l <ZdH/2
i

dy . )
( . )P'(l —-p)y¥" T <exp (+Z—€")Z"”/2
dy~Tr+1)/21 \ °

where Z = 2+/p(1 — p) and z = In{(1 — p)/P].
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