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Multilevel Codes:
Theoretical Concepts and Practical Design Rules
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Abstract—This paper deals with 2°-ary transmission using the code in Euclidean space rather than dealing with Hamming
multilevel coding (MLC) and multistage decoding (MSD). T_he distance as in classical coding schemes.
known result that MLC and MSD suffice to approach capacity Ungerboeck’s approach to coded modulation is based on

if the rates at each level are appropriately chosen is reviewed. . e .
Using multiuser information theory, it is shown that there is mapping by set partitioning. Thereby, the signal set (constel-

a large space of rate combinations such that MLC and full lation)A = {ao,a;,---,an 1} 0ofanM = 2‘-ary modulation
maximum-likelihood decoding (MLD) can approach capacity. It scheme is successively binary partitioned isteps defining a
is noted that multilevel codes designed according to the traditional mapping of binary addresses= (°, z!,- -, 2‘~1) to signal

balanced distance rule tend to fall in the latter category and, : : : :
therefore, require the huge complexity of MLD. The capacity pointsa,,. In almost all work dealing with coded modulation

rule, the balanced distances rules, and two other rules based the set partitioning strategy introduced by Ungerboeck is cho-
on the random coding exponent and cutoff rate are compared S€n: maximize the minimum intra-subset Euclidean distance.
and contrasted for practical design. Simulation results using In the encoder, the binary addresses are usually divided into
B“U"iI'evel' binary “ﬁbg ﬁoﬁei Eho‘é" Fgf‘ht cf?_pacity_ car':/lin fact two parts: the least significant binary symbols are convolu-
e Closely approached at ni andwi erciencies. mMoreover, .. : o . :
topics relgva%’iin practical apgplications such as signal set labeling, tionally encodgd and the most significant binary symbols (if
dimensionality of the constituent constellation, and hard-decision present) remain uncoded. The code parameters are chosen by
decoding are emphasized. Bit interleaved coded modulation, re- means of an exhaustive computer search in order to maximize
cently proposed by Caireet al. is reviewed in the context of MLC.  the minimum distance of the coded sequences in Euclidean
Finally, the combination of signal shaping and coding is discussed. gnace. Because of the trellis constraints on sequences of
Significant shaping gains are achievable in practice only if these _. . , .
design rules are taken into account. §|gnal pomtsz Ungerboeck’s _approach to g:qded modulation
o ) is namedtrellis-coded nodulation (TCM). Originally, TCM
Index Terms—3Bit-interleaved coded modulation, channel ca- a5 proposed for one- and two-dimensional signal sets using
pacity, dimensionality, hard decision, multilevel coding, mul- . . . o
tistage decoding, set partitioning, signal shaping, trellis-coded one bit re(?lundancy per §|gnal point. .Slgnlflcant'W(.)rk was
modulation. performed in order to provide more flexible transmission rates
with TCM, using signal constellations in higher dimensions
[6], [7] or signal constellations derived from lattice theory, e.g.,
[8]-[13]. Alternatively, a pragmatic approach of punctured
HE idea ofcoded modulatiofs to jointly optimize coding TCM was proposed in [14]-[16]. Further work was done
and modulation in order to improve the performance @b achieve desired properties such as rotational invariance
digital transmission schemes, see, e.g., [2]. Independently[©7]-[21] or spectral zeros [22], [23].
each other, the most powerful applicable coded modulationimai’s idea of multilevel oding (MLC) is to protect each
schemes were presented in 1976/1977 by Ungerboeck [3], dldress bitz? of the signal point by an individual binary
and Imai and Hirakawa [5]. The common core is to optimizeodeC’ at leveli. (In retrospect, the constructions B through
E for dense lattices reviewed in [24] can be regarded as
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Although MLC offers excellent asymptotic coding gains, The organization of this paper is as follows. In Section Il the
it achieved only theoretical interest in the past. In practiceystem model is given and the concept of equivalent channels
system performance was severely degraded due to high eisointroduced. It is shown in Section Il that coded modu-
rates at low levels. A lot of effort was devoted to overcomition via the multilevel coding approach is optimum in the
this effect, see, e.g., [25]. sense of capacity. Additionally, the capacity region for coded

A straightforward generalization of Imai's approach is tonodulation schemes when using overall maximum-likelihood
use g-ary, ¢ > 2, component codes based on a nonbinagecoding is derived, leading to conditions on optimality. In
partitioning of the signal set. In this context, TCM is &ection IV, random coding exponents as well as cutoff rates
special case of MLC using a single convolutional code with@f the equivalent channels are investigated. Several rules
nonbinary output alphabet while higher levels remain uncod€@, assign rates to the individual codes are discussed and
see, e.g., [26], [27]. In this paper we restrict ourselves to bingggmpared. In particular, the optimality conditions of the rate
codes, because a) the large class of binary codes has b@ighibution according to the traditional balanced distances
well established in coding theory for a long time, b) mainiyule are given and compared to the design according to the
binary codes are of practical interest, and c) binary codesGaPacities of the equivalent channels. Simulation results show
conjunction with multilevel codes turn out to be asymptoticall{hat the application of information-theoretical design rules
optimum, see Section IIl. to multilevel codes leads to power- and bandwidth-efficient

In 1988, Forney presented the concept of coset codes [28Rnsmission systems close to the Shannon limit.

[29], a class of codes originally considered in [30]. By dealing /" the remaining sections we deal with further aspects
only with infinite constellations (neglecting boundary effects)f coded modulation schemes which are essential in prac-
and using the mathematics of lattice theory, a general cld§$- In Section V, the optimal dimensionality of the signal

of codes was established. Similar to TCM, cosets inste§fl: ©n which MLC should be based, is derived. Although

of signal points are selected in the encoding process. CoY&gerboeck’s strategy is often used as “natural” method of
codes divide into two classesellis codes(a generalization Partitioning a signal set, the proof of optimality of MLC does

of TCM) which employ a convolutional encoder atuttice not depend on the actual set partitioning strategy. In Section
codes(based on block codes) where the signal pointsVin VI we investigate set partitioning strategies for finite codeword

dimensions exhibit group structure. Lattice codes can al§'9th- Caireet al [42] recently presented the derivation of

be generated by the MLC approach, if the individual COd&gpamty for a pragma_tlc .a.pproaclh to coded modulatlon. In
are subcodes of each other. Already de Buda [31] statel _schemel, on!y one individual binary code W.'th subsgquent
that lattice codes can approach the channel capacity of mglnterleavmg is necessary to address the signal points. In

additive white Gaussian noise (AWGN) channel. The pro&arms of capacity the loss with regard to Imai's MLC scheme

was recently refined by Urbanke and Rimoldi [32] as well g surprisingly small if and only if Gray labeling of signal
by Forney [33] points is employed. A derivation of this scheme starting from

. . the standard approach of MLC and its multistage decoding
For practical coded modulation schemes where bound%y ether with a discussion for finite block length is also
effects have to be taken into account, Hukeial [34]-[37] g 9

and Kofmanet al. [38], [39] independently proved that theaddressed in Section VI. In Section VII the use of hard-

capacity of the modulation scheme can be achieved by mﬁn%(z;?gnatlggtead of soft-decision decoding at the receiver is

tilevel codes together with multistage decoding if and only . ) I : .
if (iff) the individual rates of the component codes are prop: Since signal shaping is well known to provide an additional

erly chosen. In these papers, equiprobable signal points lﬁg{ﬂ by replacing a uniformly distributed signal by a Gaussian

| ttioni 4. In thi th ributed one in order to reduce average transmit power,
regular partitioning were assumea. in this paper, the res address the optimum combination of shaping and channel

are generalized for arbitrary signaling and labeling Of, Sign%ding using MLC in Section VIIl. The optimum assignment
points. Wwe present theoretical concepts for the design atS'Pcode rates to the individual levels and optimum sharing of
analysis of practical coded-modulation schemes. The key pol'@Hundancy between coding and shaping is given.

is the well-known chain rule for mutual information [40], gaction IX summarizes the main results. The Appendix

[41]. As shown in Section I, the chain rule provides &yeiches the derivation of the distance profile of multilevel
model with virtually independent parallel channels for eact,qes and an efficient technique to bound the error rate.
address bit at the different partitioning levels, called equivalent

channels. Considering the information-theoretic parameters of

these channels leads to Il. SYSTEM MODEL
a) theoretical statemen@bout coded modulation and Consider a modulation scheme witf = 2¢, 7 > 1, signal
b) practical rules for designing and constructing codedhoints in a D-dimensional signal space. The signal points
modulation schemes. are taken from the signal set = {ao, a1, -,ap—1} with

The main intention of this paper is to show that power- and ¢ IR”. Since we mainly focus on the AWGN channel,
bandwidth-efficient digital communication close to theoreticahe channel output signal poings come from the alphabet
limits is possible with properly designed MLC schemes ndf = IR" of real numbers inD dimensions. In order to
only in theory but also in practice. For that purpose a varietyeate powerful Euclidean-space codes for suchMarary

of aspects of coded modulation are discussed. signal alphabet, labels have to be assigned to each signal point,
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A
seeclsses
x0=0/ \x0=1
A(0) A(1)
x1:0/ \x1=1 x1=0/ \x1 1
A(00) A(01) A(10) A(11)
x2_o/ o=t =0/ \@=1 x=0/ N2=1 =0/ \xe=t
AQ00) A©OT)  A(O10) AQ11)  A(100) A(101)  A(110)  A(111)
Fig. 1. Binary partitioning of the 8-ASK signal set.
see, e.g., [26]. Therefore, a (bijective) mapping: M(z) of
binary address vectoms= (z°,z*,---,2‘71), 2* € {0,1}, to 8-ASK mapper
signal pointsz € A is defined. Usually, the mapping is derived Lﬂoissll Oy
by successively partitioning the signal sttinto subsets. A Ao B A cehanne
As an example, binary partitioning of the 8-ASK (8-ary
amplitude #ift keying) signal(D = 1) set is illustrated in Actual channel
Fig. 1. In contrast to most of the literature, most examples in @
this paper are based on one-dimensional constellations. This
is not only for simplicity of presentation, but also due to
the results given in Section V. Of cours&f-ary ASK will  , Equiv. mapper 2 for x1x0 = 00 - y
represent one quadrature component in a QAM scheme H— ] d’:‘:r';il Lo
practice. 2o JToToTeoo°
In the first step, at partitioning level, the signal set
A is divided into two parts, namely, the subsetér” =0) Equivalent channel 2
and A(z° =1). Then, all subsetgl(x°---z~!) at partition-
ing level ¢ are |terat|vely divided into tvvo further subsets Equiv. mapper 1 for x0 = 0
A(zY - 2~10) and A(z° - - - 71 1) at partitioning levek+1. Xc 20 0 1 1 Noisy g
Each subset at part|t|on|ng levelis uniquely labeled by the X1T°_1’-°+:_°‘7_°_ channel
path (z°---z'~1) in the partitioning tree from the root to the
subset Equivalent channel 1
A(xo e -x7_1) ={a= M('-'E)kt = (xo SRELN S b[_l)’ 0 Equivalent mapper 0
v efo,1}, j=4,---, -1} (1) P x2x100 00 01 01 10 10 11 11 Noisy /

channel

The iteration stops when each subset at lévehly contains 20

one signal point. Then, the subset lalje? - - - z~1) equals
the address vector of the signal point. As we will see in Section )
VI, the particular strategy for this mapping by set partitioning_ _ ,
influences the properties of the coded modulation scheme."'9: 2+ Equivalent channels for coded 8-ASK modulation.
Since the mappingM is bijective independently of the
actual partitioning strategy, the mutual informafioi(Y’; A)  The equation may be interpreted in the following way. Trans-
between the transmitted signal point € A and the re- mission of vectors with binary digits’,i = 0,---,¢ — 1,
ceived signal pointy € Y equals the mutual information over the physical channel can be separated into the parallel
I(Y; X% X' ... X“1) between the address vectar € transmission of individual digits’ over/ equivalent channels
{0,1}* and the recelved signal poigtc Y. The discrete-time provided thatz?,---,z*! are known (cf. [5]). This funda-
physical channel is characterized by the §gt(y|a)|a € A} mental pr|nC|pIe is |IIustrated in Fig. 2 for 8-ASK modulation
of conditional pobability density functions (pdf's) of the and the natural labeling of the signal points. Fig. 2(a) shows
received pointy given the signal point. the usual transmission scheme with the binary address vector
Applying the chain rule of mutual information [40, p. 22]entering the 8-ASK modulator. The addressed signal point is
we get transmitted over the noisy channel. According to the chain rule
of mutual information, the scenario illustrated in Fig. 2 (b)
provides the same mutual information as Fig. 2 (a). Fig. 2 (b)
shows parallel transmission schemes for the individual binary
digits z*. Binary digits z* of “low” levels 4, ¢ < ¢ — 1,

2
are multiply represented in the modulator signal sets. The
IWe denote the random variables corresponding to the transmitted and

received signal points, the binary address vector, and its components by ca;'ﬂﬁgerlymg signal set of the equivalent modulatdor digit at
letters. is time-variant depending on the digits of lower leveéls: i.

Equivalent channel 0

I(Y7A) = I(Y;Xonlv' o 7Xé_1)
=I(Y; X4+ I(Y; X' X% +
+I(Y; XX X X)),
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For example, in Fig. 2 the equivalent modulators are shown i1 xf-1

q
for one time instant wheréz®z*) = (00) holds. The actual Parti- —'M—’

signal point to be transmitted for digit is selected by digits qo—»| "°2}“9 : : i |Mappingl—oa
«J of higher !evelsj; 1< j<l—1. This_ e>_<amp|e iIIustrates data |q° [_—IEncoder £, |2°

that the equivalent channelfor transmission of the binary

digit ' comprises the time-variant equivalent modulatand Fig. 3. Multilevel encoder.
the actual noisy (physical) channel.

From the chain rule the mutual information N
Decoder Dy 4 |-X!

I(V; X9 X°... X1 L

of the equivalent channel can be easily calculated by (cf.

[37], [33]) o[ Docoder oy | o

IYV; XX0 X =1(y; X0 XOHX0. L X

_ D G ' 1 ¢ U ' A
Iy, X XX X ()) —-‘ Decoder Dy X0 o
3

. L Fig. 4. Multistage decoding.
Since the subsets at one partitioning level may not be congru-

ent, the mutual information/ (Y; X*... X* 1| X0... Xi-1)
is calculated by averaging over all possible combinations

?ncerning coded modulation deals with minimum distance as

20 .. it the essential design parameter which is relevant for at most
the Gaussian channel. Indeed, we will see later that even for
IYy; X0 XU x0... xoh the Gaussian channel optimizing minimum distance does not

_ mO...wifle{()’l}i{I(Y;Xi"'Xé_l|$0"'$i_l)}- (4) necessarily Ie,ad to asymptotically .optimum schemes. With
the set of pdf'sf, (y|z*) the theoretical treatment of coded
This concept of equivalent channels of a coded modulatiomodulation schemes is possible for arbitrary probabilities of
scheme is the basic tool for the analysis and design sifjnal points as well as for arbitrary labeling of signal points.
such schemes. For the moment, let the digits---,2~! This is the basis for analyzing schemes employing signal
of the lower levelsj,j < ¢, be fixed. Then, the pdf shaping (approximately Gaussian-distributed signal points are
fy(y|zt, 2% ---2i~1) characterizes the equivalent chanrel generated, see Section VIII), as well as for the assessment of
The underlying signal subset for the equivalent modulatechemes with different labelings (Section VI).
i is given by A(z"---2'~1). For all but the highest level Having the above derivation of the equivalent channels
i, i < £— 1, the binary symbol’ is multiply represented in mind, the multilevel coding approach together with its
in the subsetA(z”---x'~!). Therefore, the signal point multistage decoding (MSD) procedure, originally presented by
a is taken from the subsed(z°---x%). Thus the pdf Imai and Hirakawa [5], is a straightforward consequence of
fy (y|zt, 20 - - -2'~1) is given by the expected value of the pdthe chain rule (2). The digits?,i = 0,---, £ — 1, result from
fv (y|a) over all signal points: out of the subsefA(z° - - - z*)  independent encoding of the data symbols. The encoder is
0 i1 sketched in Fig. 3. A block of binary source data symbols
fy(yle', 2™ a'7)

g="{(q, - ,q9x),q € 10,1}, is partitioned into¢ blocks
:EaEA(azonmf){fY(ma)} qi=(q§ q?) =0 f—1
? VIR ’ )

1
T Pr{AGO - 21y} aeAg;__mi)Pr{“} Frilal ) ot ength &, with -l K, = K. Each data blockg’ is
fed into an individual binary encodeF; generating words
In general, the equivalent chanriés completely characterizedz* = (1, -- .J?\,),w; € {0,1}, of the component codé’.
by a set of probability density functiongy (y|z*) of the For simplicity, we here assume equal code lengthst all
received signal poiny € Y if the binary symbolz® is levels, but in principle the choice of the component codes is
transmitted. Due to the time-variant equivalent modulator arbitrary. For example, binary block and convolutional codes
i.e., the underlying subset for transmission of symhbél or concatenated codes like turbo codes [43], [44] can be
depends on the symbols at lower levglsO < j < 4, this  employed. The codeword symbcﬂé/, v =1,---,N, of the
set of pdf's comprises the pdf'§y (y|«’, z°---2'~"!) for all codewordsz’, i = 0,---,¢ — 1, at one time instant;, form
combinations of(z---z’~!) the binary labelr, = (29, -- -, 257"), which is mapped to the
i i 0 i—1v/ 0 i1 i signal pointa.,. The code raté? of the scheme is equal to the
Fy(yle®) = {v(ylas 2% 272 € {01 of the individual code rateB’ — K;/N, namely,

(6) £—1 1 £—1 K
Note that the characterization of the equivalent charinel R= ZRi =N ZKf, =N
by its set of pdfsfy (y|z*) given in (5) and (6) is valid i= i=

for every memoryless channel that can be characterized byThe right-hand side of the chain rule (2) suggests a rule
pdf's fy-(y|a). This fact is quite notable since almost all workor a low-complexity staged decoding procedure that is well
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known asmultistage decodingMSD), see Fig. 4. The compo- Theorem 1 has the following consequences for digital
nent code<’’ are successively decoded by the correspondiiginsmission schemes:

decodersD®. At stage:, decoderD’ processes not only the
blocky = (1, --,un), ¥, € Y, of received signal points,
but also decisionéj, 7=20,..-,¢—1, of previous decoding
stagesi. (Notice that decoding delays are not shown in Fig. 4.)
Actually, the staged decoding according to the chain rule in
(2) would require the transmitted symbaf instead of the
estimatez’. But as long as error-free decisio@$ = =/ are
generated by the decod&l, MSD can be interpreted as an
implementation of the chain rule.

1) Out of the huge set of all possible codes with lenith
where N R = K binary symbols are mapped 16 signal
points, the (comparatively very small) subset of codes
generated by the MLC approach—wheieR! = K’
binary symbols are mapped 16 signal point label ele-
mentsz? independently for each levél—is a selection
with asymptotically optimum performance. As already
mentioned by Forney [33] and Urbanke and Rimoldi
[32] for the case of lattice codes, here Shannon’s coding
theorem is proved with well-structured in contrast to

Ill. CAPACITY OF MULTILEVEL CODING random codes.

2) Although in multistage decoding (MSD) the code con-
A. Capacity straints at higher levels are not taken into account while

In order to approach channel capacity, a maximization of ~ decoding lower levels, suboptimum MSD suffices to
the mutual information over all selectable parameters has to ~ achieve capacity. Optimum overatflaximum-ikelihood

be performed. Usually, these are thgoriori probabilities of decoding (MLD) of the Euclidean-space code cannot
the signal points. Thus a specific probability distributi{a} improve the asymptotic performance of the scheme as
over the channel inputs is required to achieve the capagity long as the ratedi® are chosen equal to the capacities

These probabilities cannot be optimized independently for ~ C'. Even in practice with finite code lengths, the gain
each individual level, but only for the entire signal set. Thus ~ ©f MLD over MSD is expected to be relatively small as

the capacityC? of the equivalent channel is given by the long as the rate design is appropriate.
respective mutual informatio(Y; X*|X?- .- X*~!) forthese ~ 3) The theorem states that for any digital transmission
specific channel input probabilities. In view of (3) and (@Y, scheme (provided that the number of points is a power
is given by of two), the problem of channel coding can be solved
‘ ‘ ‘ in principle in an optimum way via MLC and MSD
C'=I(Y; X'[X°- - X' by employing binary codes That means there is no
= Emo___mi,l{c(A(xO . .x"f—l))} need to search for good nonbinary codes to be used in
CEpo i {C(A° - ) @) bandwidth-efficient transmission systems. Starting from

the huge field of good binary codes, their properties can
where C(A(z°---z%)) denotes the capacity when using be directly translated to any bandwidth efficiency via the

(only) the (sub)setA(z®---z¢) with a priori probabilities MLC__approach.Therefore, similar to_the theoretical sep-
Pr{a}/Pr{A(z°---z%)}. Hence, in order to avoid confusion, arability of source and channel codlng., ghannel coding
we use the term “capacity” throughout this paper for given ~ and modulation can be treated and optimized separately.
and fixeda priori probabilities of signal points. (In practice, i.e., for finite data delay, nonbinary codes

Because the MLC approach directly results from the chain ~ may, of course, have some advantages in performance
rule for mutual information (Section I1), the derivation of the ~ Or complexity, cf. TCM.)
capacity of multilevel coded schemes is obvious. We review4) The theorem implies no restriction on the particular
the theorem given in [34]-[37], cf. also [38] and [39]. labeling of signal points. Thus mapping by set parti-
tioning according to Ungerboeck’s criterion [4] is not
essential to approach capacity. Nevertheless, for finite
code length, Ungerboeck’s partitioning strategy turns out
to lead to the highest performance among MLC schemes
with different partitioning strategies, see Section VI.
However, alternative partitioning strategies may be fa-
-1 vorable for some other practical purposes as discussed
C = Z c. (8) also in Section VI.
=0

Theorem 1: The capacityC' = C(A) of a 2‘-ary digital
modulation scheme under the constraint of giweerpriori
probabilitiesPr{a} of the signal pointsa € A is equal to
the sum of the capacitie§® of the equivalent channelsof
a multilevel coding scheme

B. Capacity Region
The capacityC' can be approached via multilevel encoding In this section we regard MLC as a multiuser commu-
and multistage decoding, if and only if the individual rates;

R are chosen to be equal to the capacities of the equivale gation scheme as in [39], and show that a much larger
channels R - o q P q v%?iety of rate combinations can approach capacity, provided

that overall MLD is used rather than MSD. Therefore, this
The proof is obvious from the chain rule and given in ththeoretical result may not be of much practical importance,
papers cited above. although it does help to elucidate the strengths and weaknesses
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R! For example, if poin corresponds to the labeling of a 4-

TErxext) ASK constellation according to Ungerboeck, then paint
represents the situation for the labeling defined bplack
partitioning, see Section VI. Notice that the individual rates
depend strongly on the particular labeling; i.&(Y; X°) is
not equal toI(Y; X!) in the general case (also illustrated in
Fig. 5).
. RO Following Gallager [40], total randomness is not indispens-
1(Y;x°) lo Lo able to prove the channel coding theorem. A careful analysis
LORCXT) shows that pairwise independence of codewords is sufficient. It
Fig. 5. Bounding region for the individual rates of a two-level code. is easy to see that the pairwise independence of codewords in
the ensemble of multilevel codes is valid. Hence, the channel
of a broader class of MLC designs than those suggested d&3ing theorem applies to this ensemble if overall maximum-

1(Y;X'|x°)

|
|
|
1(Y:x') - ﬁ}
|
|

Theorem 1 (cf. also [45]). likelihood decoding is used. This is still valid even if the rates
Applying known results from multiuser information theoryr: are not chosen to be equal to the capacitisof the
we can state the following theorem. equivalent channelsbut the total rate is less than the capacity

Theorem 2: The capacityC = C(A) of a 2¢-ary digital ©f the %hannel. Thus capacity in the ranf@’; X°) < Rz <
modulation scheme with givem priori probabilitiesPr{a} of {(¥;X"°|X") can still be achieved with MLC iffR = R” +

signal pointsa € A can be achieved by multilevel encodingft = (Y3 X' X°). However, in this case it isnavoidablé
and overall maximum-likelinood decodiri§ and only if the (© replace the low-complexity MSD by an extremely complex
ratesR’ satisfy the following conditions: overall maximume-likelihood decoding in order to come close

to capacity. For rate?® exceeding/(Y; X°|X1) or for rate

1) éf R = [(Y;X°... X)) = ¢; R! exceedingl(Y; X1|X"), respectively, the pair of rates
i=0 (R°, RY) is outside the capacity region.
2) SR < I(Y;{XYi € SY{X’|; € 8}), for all In summary, if(R°, R) lies on the straight line connecting

Zneosssible setsS ¢ {0,---,¢ — 1} of indices, where points and in Fig. 5, the capacity of the modulation
S is the complement:';lry set & such thatS U § — Scheme can be achieved by MLC and MLD. In the special

{0,--,£—1}andSNn 8 = {}. case wheréR", R!) lies on one of the vertices of the capacity

region (poin or, MSD is sufficient to achieve capacity.
. . i . Using the same arguments, the results for the two-level code
i.e., 4-ary signaling. The symbols® and z* of two single 9 g

. . . . can be extended to the case offalevel code. Here, multiuser
independent users are combined via the mapping of symb[,ﬂJl

2ory gives not only upper bounds for the individual raés

to signal points and transmitted over the channel. Therefore Y9 yupp =1 1
. ) ard the sum of all ratey",_, R*, but also for the sums of
we actually have to deal with a multiple-access channel wheire L=

Proof: For simplicity, let us start with a two-level code,

the maximum feasible sum of raté®’ is bounded by the Wo or more rates [41]. This proves the theorem. H
mutual information of the total scheme, see, e.g., [46] The consequences of Theorem 2 are discussed in the next
section.

R+ R' <I(Y; X'XY). (9)

Since overall MLD takes into account the constraints of V. COMPARISON OF RATE DESIGN RULES

code C! at level 1 for decoding of symbol® at level 0, The essential point for the design of a coded modulation
the maximum rateR° at level 0 is given by the mutual Scheme is the assignment of code rates to the individual coding

information I(Y; X°/X1) [46], [39]. This argument is also levels. In this section, five rules for rate design are reviewed,
valid for decoding symbok! at level1, thus and their similarities and differences are discussed.

R <I(Y;X%X') and R' <I(Y;X'|X°). (10) A. Capacity Design Rule

The bounding regions fak® and R! according to (10) and Following Theorem 1, the first design rule is quite obvious:

(9) are shown in Fig. 5. Regarding polE,R0 = I(Y; X% Rate Design Rule 1 (Capacity Rule) ‘

and R' = I(Y;X!|X°) hold, which corresponds to the For a 2‘-ary digital modulation scheme the raf#’ at the
chain rule:1(Y; X°X1) = I(Y; X°) + I(Y; X}|X°). Hence, individual coding leve of a multilevel coding scheme should
symbolz° can be decoded as in the single-user case withdi chosen equal to the capacity of the equivalent channel
any knowledge of the actually transmitted symbgl, and 4, ¢ = 0,---,£ — 1

point marks the special result described above that MSD R = O
suffices to achieve capacity. The analogous situation is given

for point by interchangingz® and z!. Here, MSD starts It is true that in the entire region MSD in combination with time sharing

. . 1 = ) is still sufficient to achieve capacity. Since this implies switching periodically
with the decoding of symbat*. To be more specific, points _ , _ _ _
between code rates given andl |, this strategy is not of interest in

and differ only in the labeling of the signal points. practice for MLC.
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3 . . . , be chosen such that the following conditions are satisfied:

T S I R N _ __________________________ d?8; = const., 1=0,---,£—1. (12)

; i
= E : The intra-subset distancels are given by the signal constel-
E 2p e e 1 lation and the particular labeling strategy. Because the choice
§ c i of the minimum Hamming distanc® of the component codes
=ost “+ C’ balances the levels, we refer to Rate Design Rule 2 as the
2 | balanced dstances ule (BDR).
g 11 : ——== The balanced distances rule has been used by most previous
S S 4 - o0 MLC work §tart|ng with the lattice constructions B through E

0.5k L C@?f«;sgg : . presented in [24].
-~ ; Consider again the 8-ASK constellation sketched in Fig. 1.
t

H The intra-subset minimum Euclidean distancgésfor this
2 example aredy/d;/d> = 2/4/8. According to the balanced
distances rule, the normalized minimum Hamming distances

Fig. 6. CapacityC(A) and capacitie<’®, C', and C? of the equivalent i i
channels for 8-ASK with natural labeling. AWGN channel. Dashed verticacf]c the component codes with Iengﬂﬁ must SatISfy

line: C(A) = 2.5 bits/symbol. Dashed curve: CapadityBPSK) for a BPSK 2 a2 Y

scheme (same spacing of signal points relative to noise variance). 2 60/N =4 61/N =8 62/N' (13)

As component codes, we use linear binary block codes with
This capacity rule was proposed in [34], [35], [33] andninimum Hamming distances which meet the well-known
independently in [38], and [39]. Gilbert-Varshamov bound with equality, see, e.g., [49]. Then,
For example, we assume an 8-ASK constellatidn= for long component codeg’, the rate R and minimum
{%1,+3,£5,£7} with natural labeling, cf. Fig. 1. In Fig. 6, Hamming distance; are related by
the capacityC(A) of the scheme as well as the capacitigs 4
i=0,---,¢—1, of the equivalent channélfor transmission R' =1— Hy(6;/N) (14)
over the AWGN channel are shown. In order to get a unifievghere
representation, the abscissa is labeledByN,, where E;
denotes the average symbol energy. For the design of a scheme Hy(z) = —zlogyx — (1 — 2) logy(1 — )
with rate 2.5, see dashed line in Fig. 6, the capaciti@s
coinciding with the optimum individual rates, are given bylenotes the binary entropy function. Using again the example
CY/C'/C?* = 0.52/0.98/1. Additionally, for comparison, the of a design for total rateR = 2.5 bits/symbol, the rate
capacity C(BPSK) for binary signaling corresponding to thedistribution according to the balanced distances rule yields
situation at leveD without multiple representation of symbol
z¥ is sketched in Fig. 6. Here the same spacing of signlgll

points relative to noise variance as in 8-ASK is assumecg (i'e"Since the multiple representation of symbols by signal
Es prsk = ES:S'ASK/21),' The gap betweeC_V(BPSK) andc™ points is ignored, the rat&® = 0.66 according to the BDR
(e.g:, 3 dB atC = 0.5) is due to the multiple representationjg substantially higher than the capacifi = 0.52 of the
of binary symbols by signal points at level(cf. also [35]).  gqyivalent channel at level. According to the converse of
) Shannon’s channel coding theorem, transmission over this
B. Balanced Distances Rule channel is not possible with arbitrarily high reliability. Nev-
The second design rule, which was used traditionally, &theless, assuming MSD and comparing the required SNR
solely based on the minimum Euclidean distance in sigrfar C° = 0.52 and 0.66, respectively, we can observe a
space. Let us denote the minimum Hamming distance of codss of about 1.2 dB for an MLC scheme designed by the
C’ at coding level by §; and the minimum Euclidean distanceBDR compared to an MLC scheme designed according to
of signal points in subsetd(z" - - - x'~1) at partitioning level the capacity rule. This degradation due to the increased rate
i by d;. Then, the squared minimum Euclidean distatdt®f R° results mainly from a tremendous increase in the number
multilevel codewords is lower-bounded by of nearest neighbor error events because of the multiple
. representation of symbols by signal points, cf. [35] and the
& 2 izofl.l.fk_l{d?éi} (11)  examples in the Appendix. To illustrate this crucial effect, let
see, e.g. [47], [26], and [48]. In order to maximize thys consider the following example assuming one-dimensional

. . 0
minimum Euclidean distance at lowest cost in total rate, (I:tgnstellatmns. Regard two codewords at lebgbaya; and

. ) ) e
is reasonable to choose the proddgs; equal for all levels, &y, with Hamming distance,. If each symbol ofz; is only

i.e., the product of distances should be balanced. This leadsrt;gresented by *inner” signal points, then two nearest neighbor
points represent the complementary binary symbol. Hence,

Rate Design Rule 2 (Balanced Distances Rule) there are2® words in the Euclidean space representifigvith
For a 2‘-ary digital modulation scheme, the raf¢’ at the minimum squared Euclidean distandgs, to codewordz.
individual coding levet of a multilevel coding scheme should=or Ungerboeck’s labeling, the minimum Hamming distance

JRY/R? = 0.66/0.88/0.96,  with d?6;/N = 0.26. (15)
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significantly exceeds the capacity of the equivalent chaénel

T
O R'+R? b and, therefore, many errors occur at decab¥®r These errors
—0— 1(Y:XOX2|X") & RO+R? 1 1Y X2 . .
T 25 e 1vOX1 ) v RO4R! B s (\Caitn 0 propagate through higher levels in the MSD procedure, so the
— T Hxpex)=Ct & R? | performance of the scheme is quite poor.
5] 107X X0x2) A R I g )
£ al|mexxy v R L In order to overcome this effect, several strategies have
& — v $ been proposed [53], [54]. First, reliability information about
5, T R . A decoding decisions may be passed to higher decoding stages in
8 —r- & ; f order to mitigate the effect of error propagation, cf. also [26]
& oL : | and [25]. But this method requires the use of sophisticated
== X decoders generating reliability information for each output
: A 7 symbol. Moreover, especially for concatenated codes which
o5 : g - are iteratively decoded such as turbo codes [43], [44], it is
________,—/_’_'___ i i ' not yet possible to generate reliability information of good
03 0 5 10 15 20 quality 2

10log1o(Es/No) [dB] — Second, interleaving between binary codewords at the in-

Fig. 7. Mutual informations according to (16) and capacit@8, C?, dividual (_:Oding levels has been proposed. Thelj, error bursts
and C? of the equivalent channels for a multilevel coded 8-ASK schem@t decoding stagécan be broken up into almost independent
Ungerboeck’s set partitioning. AWGN channel. Rafé$, R', and R* are  single errors, facilitating the task for the decodés, j >
chosen by the balanced distances rule for total fate 2.5 bits/symbol. i, at higher levels. But in fact, interleaving increases the
effective code length. Hence, using codes whose performance

at level0 is the greatest one and hence, the greatest degradatiieases with the block length, e.g., turbo codes, it seems
due to multiple symbol representation occurs at leyel more efficient to increase the code length in a direct way
Let us check whether the rate distribution (11) is optimurfistead of introducing interleaving. Nevertheless, interleaving
in sense of capacity. As in Theorem 2, the individual cod&ithin one codeword can still improve performance without
rates R* must satisfy the following conditions: introducing additional delay when employing codes which are
sensitive to the structure of the error event. For example, this
holds for turbo codes or terminated convolutional codes.
Third, instead of performing multistage decoding once per
multilevel codeword, it has been proposed to iterate the

R < I(Y; X% X1 X?)
)
; decoding procedure, now using decoding results of higher
)
)

R' < I(Y; X' x°Xx*
R* < I(Y; X?|X°X!
RO+ R' < I(Y; X°X1! X2

(

(

( levels at lower levels [25]. Consider, e.g., a second decoding
RO+ R <I(Y; X°X?|X!

(

(

of symbol z° by the decodeD®, where estimates’ of all
symbolsz?, i # 0, are already known. Now, symbal® is
no longer multiply represented in the signal gkt-only the
signal points
In Fig. 7 the curves of the mutual informations appearing
in (16) are plotted together with the capaciti€¥ of the
equivalent channels. The dashed vertical line marks the $fid
uation for C(A) = 2.5 bits/symbol. We observe that the rate
distribution according to the balanced distances rule, see (15),
satisfies Theorem 2, because all marked points on the vertigginain and thus the effective error coefficient is decreased. If
dashed line lie below the corresponding curves, marked B¢ decisions at other levels are error-free, then simple binary
the same symbol. But error-free multistage decoding of tisgnaling remains. (Fortunately, this is true for a practical
MLC scheme designed by the BDR is impossible in principlglecoder, since the number of errors usually decreases during
since the rate&k” exceeds the capacity®. Only by employing the iteration proceeds [37].) In this way, the enormous increase
overall MLD can the capacity of the 8-ASK constellation bé& the number of error events by multiple representation
approached. of binary symbols is avoided and performance is greatly
These differences between MLC schemes designed by tfgwroved. Obviously, such an iterative decoding strategy over
capacity rule (Cap-MLC) and MLC schemes designed by tiseveral levels only works if there is sufficient interleaving
balanced distances rule (BDR-MLC) can be similarly observdgtween levels. Thus this method not only causes a multiple
for other schemes [50]. decoding effort, but also an increased data delay, which is not
Nonetheless, in the majority of the work concerning codedsefully exploited in the sense of information theory.
modulation, see (e.g., [48], [26], [27], [51], and [52]), the These methods proposed to improve the suboptimum MSD
balanced distances rule was used for rate design although npipcedure are indeed more or less good attempts to approxi-
tistage decoding was applied. These papers gave schemes Wigte an overall maximum-likelihood decoder. The complexity
excellent asymptotic coding gains, becad$evas maximized. 3 - - o
Due to the remaining statistical dependencies in the feedback loop, the

In pract|c.e, ho_Wever’ the real COd'ng gains are far below ttr‘@ﬁability information of iteratively decoded symbols tends to a hard-decision
asymptotic gains. At least at the lowest level, the r& value with an increasing number of iterations.

R'4+ R? < I(Y; X' X?1X°
R=R+R' +R*<I(Y;X°X1X?). (16)
o = M(z® =0zt 2t

P = M(z% =183
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and the decoding delay due to this approximate MLD afkhe channel input symbol and input alphabet are denoted by
substantially larger than for usual MSD. If the rates at thend X, respectively. Using the random coding exponent, the
individual coding levels of an MLC scheme are designedord error rate is bounded by, < 2-NE-(B),
according to the BDR, the use of MLD is indispensable to Now, let us consider théth level of an MLC scheme. As
avoid a significant performance loss. However, as shown shown in Section Il, the underlying subsétz? - - - i) for
Section Ill, there is no need to use an extremely complésansmission over this equivalent channefaries. Hence, the
overall MLD if the individual code rates are chosen accordingarametetz(p) of the equivalent channélis given by aver-
to the capacity rule. Therefore, we conclude that the reason &ming the parameteE;(p,z° - -- x'~1) over all combinations
performance deficiencies of BDR-MLC schemes is actualtf z°---zi~1, cf. [40]
not the suboptimality of MSD, but the rate design itself. ; ; o i1

Strictly speaking, the optimality of MSD holds only in the Eo(p) = Ego.arr {Eg(p,2” - 2" )} (18)
asymptotic case of capacity-approaching component COd\%’ere
But in practice the gain of approximate MLD over MSD is
expected to be very small if the rate design is appropriate. ‘ ‘ ! 4 ‘

/ [Z Pr{e}(fy (ol

2zt =0

Let us now consider the special case of trellis-coded modEo(p, a° - -2 7t) = —log,
ulation (TCM) in this context. TCM is actually a two-level
MLC scheme in which the second level is “uncoded’—or, Hp
more precisely, coded only per symbol. TCM schemes are 20 pTINT p] dy
always designed for maximum minimum Euclidean distance
in signal space. Hence, TCM schemes are actually a special (19)
case of BDR-MLC schemes. The traditional decoding method
for TCM involves first doing ML decoding at tHegher levels Usually (19) has to be evaluated numerically. Clearly, the
for all possible lower level symbol values (finding the closesandom coding exponet, (R') of the equivalent channelis
point in each subset), and then using these decisions to do ML P i i
decoding at the lower levels. The combination is an overall EL(R') = Oglggl{Eo(p) — pR'}. (20)
ML decoder. In contrast, to apply MSD principles, one should. . )
first decode thdower levels, e.g., using lattice decoding for XiNg the random coding exponent and hence the error rate
coset codes, and then, given the lower level decoder outpt'i?s,a constant value, a tradeoff between rate and SNR is

decode once per symbol at the higher level. The results in tﬁ@SSible' We obtain the so-called isoquants of the random

paper and in [33] show that the latter approach will also woffoding exponent
provided that the lower level rate is below capacity, although (R — 1 log. B ; 21
it will clearly not be as good as full MLD. »(f') = — 57 logy puy = const. (21)

For high SNR’s the bound can be improved employing the
expurgated coding exponedf’ (R'), see [40]. The coding

Now, we sketch a rate design rule suited for practicalkponent£?(R*) for the subsequent analysis is simply the
applications in which the data delay and the codeword leng#iaximum of the random and the expurgated coding exponent.
N are restricted, see also [37]. Additionally, a certain error For illustration, the isoquantg(E,/Ny) of the coding
rate can often be tolerated depending on the particular &xponent £i(R?) for all levels i of 8-ASK with natural
plication. Therefore, we subsequently employ the well-knowabeling (cf. Fig. 1) and the AWGN channel are plotted versus
random coding bound [40], which provides a relation betweer, /N, in Fig. 8. Additionally, the sum of individual rates
codeword lengthV and word error ratep,,,, for design and R — Ef;é R' is shown. The presented isoquants are used
discussion of MLC schemes. to compare the power efficiency of different MLC schemes

Although some of the results are illustrated only for thgs well as to assign rates to the individual codes for a given
particular example of 8-ASK, they are in principle valid folength V. Similar to Design Rule 1 (capacity rule), we propose
all pulse anplitude nodulation (PAM) transmission schemeshe following design rule for MLC schemes with given block
based on sets of real or complex signal points, i.e., ASK, PSigngth V:
QAM.

From [40], the random coding exponeht (R) is*

C. Coding Exponent Rule

Rate Design Rule 3 (Coding Exponent Rule)
Consider a2¢-ary digital modulation scheme combined with
E.(R):= Olgagl{Eo(p) — pR} (17)  a multilevel coding scheme applying binary component codes
== of lengthN. For a maximum tolerable word error raie,,, the
where rates R, i = 0,---,¢ — 1, at the individual coding levels
14+p should be chosen according to the corresponding isoquants of

Eo(p) := —log, / [Z Pr{z}(fy (y|z)) T dy ».  the coding exponent&” (R').
eeX Continuing the example of 8-ASK with a total rafe= 2.5

“Note that the symbol E followed by curly brackets denotes the expecté®€€ the dashed line), we obtain from Fig. 8 the rate design
value operation, whereas the symhil followed by parentheses denotes a

coding exponent. R°/R'/R?* = 0.531/0.97/0.999 (22)
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not very small. In particular, the rates at lower levels are
substantially decreased due to the multiple representation of
binary symbols by signal points.

For moderate to high block Iengtr@\félooo) and word
error ratep,, = 1073, the individual rates according to the
coding exponent rule differ only slightly from the asymptotic
values forN — oo given by the capacity rule. Therefore, the
capacity rule is a good choice for practical codes. However, for
short codes, the rates derived from the coding exponent rule
tend to those derived by the balanced distances rule, because
in this region error probabilities are mainly determined by the
minimum Euclidean distance rather than by the effective error
coefficient. Thus rate design according to the coding exponent

6 2z 4 6 8 10 12 14 16 18 20 rule connects the capacity rule and the balanced distances rule
10l0g1g(Es/No) [dB] —» . .
in a certain way.

N
3

[N
T

-
w
T

Rates [bit/symbol] —»

T

0.5

Fig. 8. 8-ASK, Ungerboeck’s set partitioning. Rat&$, i = 0,1,2, and

total rateR = y°7_ > R' from isoquants of£"(R') for N = 500 and D Cutoff Rate Rule

pw = 1073 versusFs/Ny. Dashed line:R = 2.5 bits/symbol. AWGN '

channel. In order to complete the discussion of design rules based on

information theoretical parameters, a rate design rule employ-
1 , . ing cutoff rates of the equivalent channels is stated here, cf.
CERINRZ ] [55]. The cutoff rate is an appropriate parameter for convolu-
L B tional codes using sequential decoding [2]. More generally, the
cutoff rate criterion may be useful for those classes of codes
that are not capacity approaching but ratl&grapproaching.
The cutoff rateR}, for equivalent channel is simply [40]

Ry = Ej(p=1). (23)

Thus we arrive at the following design rule for MLC schemes
when Ry is the significant parameter.

Rate Design Rule 4 (Cutoff Rate Rule)

Lo - I : For a 2‘-ary digital modulation scheme, the raté¥, : =

%107 10° 107 ‘ 10° 0,---,4 — 1, at the individual coding levels of a multilevel
Block length N —» coding scheme usind?,-approaching codes and decoding

Fig. 9. 8-ASK with natural labeling. AWGN channel. Distribution of ratesschemes should be chosen equal to the cutoff rAfesf the

R, i=0,1,2, derived from isoquants oE*(R") versus block lengthV. equivalent channels:

Rates [bit/symbot] —»

T T
for codeword lengthV = 500 and word error rate,, = 1072, =Ry,
(The particular values forV and p,, are chosen because
experience shows that witth = 500 and p,, = 1072 a
bit-error rate<10~° is achievable.)

The rates derived from the cutoff rate rule are very similar
to those derived from the capacity rule. Therefore, we do not

For a given total ratek and desired reliability,,, the iso- Present an example for this rate design rule.

quant curves serve to determine the distribution of individugl It is notefw?qrthy :jha_tdthelre IS fr;o SII‘T;%pJe re(;atlr?n betm;;een
ratesR’ dependent on the block lengf¥. It is worth noting the sum of the Individual cutoff ratest; and the cuto

that if the error probability of the equivalent channels is ndfte of the underlying modulation scheme as there is for the

low enough to neglect error propagation, then one may cho gépective capacities (Theorem 1'). Interestingly, the re;ults of
different error rates for different levels to compensate for th o] show that the sum of th&;, in an MLC scheme using

effect; i.e., lower levels should operate at lower (designe gerboeck’s partitioning can exceed the cutoff rate of the

error rates then higher levels. odulation scheme.
For the particular case @f, = 10~2 and total rateR = 2.5, -
the rate distribution is plotted versus the block lengthfor E- Equal Error Probability Rule
the 8-ASK example in Fig. 9. This representation gives a niceThe design rules given so far are mainly based on random
illustration of the variation of the rate distribution versus theoding principles rather than on specific component codes.
codeword lengthV. The ratesR’ of the component codesAn alternative way is to choose codes with known proper-
of an MLC scheme derived from the capacity or the codines in such a way that the word or bit-error probabilities
exponent rule are quite different from those derived from thef the equivalent channels or their bounds are equal. This
balanced distances rule, as long as the block lengths leads to anequal error probability rule For this purpose,
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TABLE | 6 , T T
RATE DISTRIBUTION FOR DIFFERENT RATE DESIGNS 8-ASK ™ Shannon  limit
CONSTELLATION, UNGERBOECK LABELING, R = 2.5 BITs/SymeoL o ml[gﬂg' :f%gggo 64-QAM 32-QAM
[ Rate design according to R T R ] R | T 51 o MLC/TC: with shaping|: AT ' ©
Capacity rule 052]0.98 | 1.0 oy o gnooded o | _ : .
Balanced distances rule 0.66 | 0.38 ] 0.96 S S R R a1
Coding exponent rule (N = 500) || 0.53 | 0.97 | 1.0 g : : : :
Cut—off rate rule 0.51 099 1.0 ey ‘
Equal error probability rule 0.51 1099 1.0 — 5l - E}‘If;QAM L ia‘fgs‘Kv ]
g : : : : :
2 :
£ QPSK
D 2fe B A Qi 4
an analytic expression for the error probability is required,g f
In the Appendix, calculations of the distance enumerators @& BPSK
. .. R B . 1k @ B
the individual levels are presented which allow estimating thg ; ;
error probability using an union bound approach. : A
To summarize, Table | displays the different rate designs o3 5 5 . 6 : TR T e

proposed in this section. Again the 8-ASK constellation with
Ungerboeck labeling and a total ratle= 2.5 bits/symbol are

assumed. We see that all rules give similar results except ffie 10. Power-bandwidth plane for the band-limited AWGN channel.
balanced distances rule (MLC/TC: Multilevel coded PAM scheme employing turbo codes with block

length N as components, MSD.)

Power efficiency 10logsq(Ey/Ng) [¢B] {for BER = 1075) —»

F. Examples 100 ¢ : : : I ' :

In order to confirm the relevance of the presented de- w_,r”_g ,,,,,,,,, S R L ER
sign rules in practice, simulations for several digital PAM T 3 ; ¢ | —=— Llevel 0
transmission schemes with MLC and MSD over the AWGN g w0 | =2 el
channel were performed. In particular, 8-PSK with = 2 T o — Level 3
bits/symbol, 16-QAM withR = 3 bits/symbol, 32-QAM with 2 N ; : : :

R = 4 bits/symbol, and 64-QAM withR = 5 bits/symbol A 2 NG A . e o
(all with equiprobable signal points) were investigated. Turbo T AU SR |y SN S SR SRR S
codes (TC) using 16-state convolutional codes [44], [56] with 108 4 ;
rates derived from the coding exponent rule are used as 45 5 55 6 65 7 715 8
component codes. Flexible rates of turbo codes are achieved 10l0g10(Ep/No) [dB] —>

via puncturing as in [57]’ [37]' BIO(_:k I_engthsf = 2000 Fig. 11. Bit-error rate for the individual levels of a multilevel code for
and N = 20000 of turbo codes with interleaver lengthsis-Qam using turbo codes as component codes, block ledgth: 2000,

K; = R - N (number of information symbols fed to levdl total rateR = 3, individual rates:R°/R' /R*/R* = 0.29/0.75/0.96/1.0,
are used. Ungerboeck’s set partitioning, no error propagation in multistage decoding.
The results are presented in the power—bandwidth plane for
the band-limited AWGN channel, see Fig. 10. The bandwidth For brevity, we have included an additional simulation result
efficiency of the digital communication schemes, measuredwhich relates to Section VIII. The diamond in Fig. 10 shows
bits/s/Hz, is plotted versus the requirdd /N, to achieve a a result for a multilevel coded 64-QAM constellation using
desired reliability. As usualF), denotes the energy per bit atsignal shaping.
the receiver input anav, the one-sided spectral noise power Finally, in order to check the proposed design of the MLC
density. The solid line marks the Shannon limit for reliablecheme, measurements of the BER for the individual levels
digital transmission. The squares mark the capacity limits for: = 0,---,¢ — 1, without any error propagation in MSD
these PAM schemes with equiprobable signal points. Note tietre performed. Instead of using the symbgfs of lower
in order to overcome the gap to the Shannon limit, shapitgvels j, 7 = 0,---,4 — 1, that were estimated by previous
methods as described in Section VIII are indispensable. decoding stages, the correct transmitted symbélsvere fed
Each sketched triangle marks the requifggN, to achieve to higher stages so that the correct subset is always addressed.
a bit-error rate (BER) 010~ by the corresponding transmis-The results in Fig. 11 show the desired error behavior of
sion scheme. Of course, the results for these QAM schentke component codes with a “crossover area” of the different
can be extended td/ > 64-QAM schemes by imposing curves in the interesting rand8ER = 10~°). Note that the
further uncoded levels. Additionally, results for the “original’abscissa parametdt, /N, refers to the entire scheme. The
turbo codes with the above given block lengths transmittetbpes of the curves stem from the very different code rates and
with QPSK andR = 1 as well as results for several uncodeihcrease as the code rate decreases. Additionally, as one can
schemes are plotted for reference. The results show that ee from Fig. 11 the SNR required to achieve a bit-error rate
gap between the Shannon limit and the power efficiency of 10~ increases from the lowest to the highest level. Hence,
the investigated transmission schemes remains quite constanthe case of this particular example, error propagation would
nearly independent of the bandwidth efficiency of the schenmnly marginally degrade the total performance of the scheme.
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The reason is that the code rate increases significantly from the
lowest to the highest coded levels, as is always the case when
using a labeling according to Ungerboeck’s set partitioning.
Thus Ungerboeck’s set patrtitioning is essential to reduce the
effect of error propagation in practical schemes.

Our main result is that by using binary codes with the
capacity design rule for the rates at each level, the unshaped
Shannon limit can be approached within tenths of a decibel
independently of spectral efficiency in the bandwidth-limited
regime, with no more decoding complexity than is needed
for comparable capacity-approaching codes on ordinary binary
channels. Moreover, the complexity per information bit is
decreased because of fu.rther uncoded !ev.els.'. ... Fig. 12. SumR/D of individual ratesR*/D for multilevel coded 4-ASK

In order to conclude this section the similarities and diffegmicaask) with code lengthVy = 4000 and for multilevel coded 16-QAM

ences between MLC and TCM are briefly discussed: (MLC16QAM) with Ny = 2000 derived via isoquants of corresponding
coding exponents. AWGN channel.

e Turbo TCM schemes perform similarly over the AWGN
channel as the presented MLC schemes with turbo coRetween MLC employing block codes and convolutional codes
ponent codes at comparable complexity and coding delay component codes.

[58], [59]. The main difference is that in MLC binary

turbo codes are the building blocks of the entire schem®, Block Component Codes

whereas in turbo TCM the component TCM schemes areconsider an MLC scheme based omadimensional signal
building blocks of the turbo scheme. ~ set Ap, which is the D-fold Cartesian product of a one-

* The usual TCM schemes and MLC with convolutiongjimensional constellatiod; . The set partitioning is performed
component codes perform similarly, but with a cleaf, 4, steps in theD-dimensional signal space. To minimize
advantage to MLC at the same entire number of trelligymplexity, it is preferable to base the MLC scheme on a
branches per information bit, especially for high numbegshe-dimensional signal set, because the least nuiiflpgrof

of states_. . ) individual encoders and decoders are necessary compared to
* The main difference between MLC and TCM is noY p_gimensional approach witd, = D - #,. For a fair

performance, but, first, how to design the coding schemg, harison of MLC schemes using block codes as component
and second, the achievable code rates. While for TCMyjes we fix the dimensionality of the entire multilevel
the best codes for a particular modulation scheme adeword to, sayNpD, where Np denotes the length of
found by an exhaustive computer search, the best binggy, pinary component codes of an MLC scheme based on a
codes may be applied as component codes in an ML yimensional signal constellation. Thus all schemes can be
scheme in conjunction with the proposed rate desig ompared based on the same delay per codeword.

Becagse fqr TC.M the COd? rate is strong'ly related 10 aq an example, we look at the power efficiency of MLC
the dlm_ensmnallty of the 3'9”‘?" set, o_nly Integer codp, 16-QAM, first based on the one-dimensional 4-ASK signal
rates with respect to the considered dimensionality €48t per dimension, and second based on the two-dimensional

be achieved. In contrast, the choice of the total rate i%-ary signal set. Because capacities are equal for both ap-
an MLC scheme is arbitrary; however, component cod@

1.8 T

.| —5— MLC4ASK, Ny=4000 |-
‘ : —e— MLC160AM, N,=2000

i 1 L L
2 3 4 5 6 7 8

10logyg(Ey/Ng) [dB] —

Rate R/D [bit/symbol/dimension] —»

ith “st " rat v h o be imol ted ?oaches, the coding exponents of the equivalent channels are
\lI)w S r?nge rla es usualy tr?ve o be pr eme?l © b?t ipplied (cf. Section 1V-C) to assess the power efficiency of
Y puncturing. in summary, there 1S much more Hexibility, , mLc scheme with block codes of fixed lengt¥y,. The

in MLC design. sum of ratesy);_, R* = R for MLC with 4-ASK derived
via the isoquants of the coding exponéitt( k') is compared
V. DIMENSIONALITY OF THE to the sum of rate$">_ R’ = R for MLC with 16-QAM.
CONSTITUENT SIGNAL CONSTELLATION We fix the code length to 2000 QAM symbols, resulting in

A TCM scheme usually generates one bit of redundanéyr = 4000 and Ny = 2000. Fig. 12 shows the code rate
per D-dimensional constituent signal set. Thus the redundan&y/D per dimension versus SNR for both approaches. An
per dimension isl/D bits/dimension. In contrast, for MLC MLC scheme based on the one-dimensional ASK constellation
schemes, the dimensionalit® and the rate per dimensionwith component codes of lengtN; = 4000 promises better
R/ D can be chosen independently. Thus an important questiegrformance than MLC based on the two-dimensional QAM
when employing MLC schemes is the optimum dimensiomonstellation with codes of lengtly, = 2000.
ality of the constituent signal constellation, cf. also [60]. In In order to verify this result, simulations were performed
this section, we discuss the differences between multilevfer 4-ASK and 16-QAM schemes with MLC of code lengths
codes based on one- or two-dimensional constellations. A = 4000 and V. = 2000, respectively, and transmission
we aim at approaching capacity, we neglect the necessity tmer the AWGN channel. Again, turbo codes using 16-state
higher dimensional constellations which may be present égonvolutional codes are employed as component codes. The
some practical applications. Moreover, we have to distinguisiormalized total code rate per dimension is fixedRpD =
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E 5 o [—e— 4-ASK, MLC/TC, N,=4000 |3 DA I o ejo e
1077 B —’_15;(53;2“"&':-;({5(: N2=2000 4 e o o|o o o 0-0 e 0 e|0 e o
: D —y— 4 , E x0=
102N sl te-oaw mc/ecc | b e o ofe o o e o eflo e o
5 : : : : 5 E —
T : ' : : : 3 e o oo o o e O e(0 e O
x [ - . .......... ......... , .‘ ---------- ------------------- -:
&5’ . : ; 3 [ L ® [ ] [ [ ] L J o] [ ] o L o
: : ; ' : 3 e oo o o ejo e
N ROy 2
5 : : ; 5 : x1=0 x1=0
55 6 65 7 75 8 B5 x0=0

10logso(Es/No) [dB] —»
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Fig. 13. Simulation results for 4-ASK and 16-QAM schemes with MLC of
total rateR/D = 1.5 bits/dimension, transmission over the AWGN channel °© 0 ©ope o 0 ° ¢ oo o ©
and MSD. Individual rates for 4-ASKR®/R' = 0.52/0.98. Individual o o e|lo o o e o oo o o
rates for 16-QAM:RY /R /R? | R? = 0.29/0.75/0.96/1. MLC/TC denotes
o © O0]J]O0O O O 0 0 o|o ©0o o

an MLC scheme usingutbo mdes (using 16-state convolutional codes) as
components, MLC/CC denotes an MLC scheme using (64-statejotutional e 0 o|lo e o e o o|le o o
codes as components.

o oo o o oto O

1.5 bits/dimension. The individual code rates are assigned ag 14. Selection of subsets of a set partitioning for a QAM
cording to the Coding exponent rule. The two leftmost curvegoss-constellation with 32 points implementing a particular labeling.
depicted in Fig. 13, represent the results for both schemes.

Indeed, it can be observed that multilevel coded transmission a4 x4
based on the one-dimensional constellation exhibits a power o 00—
efficiency which is about 0.25 dB higher than that based 9 x3
on the two-dimensional constellation. This result is quite o o—

close to the predictions derived from the coding exponent
calculations.
Concluding, we state that, for a fixed data delay, it is more
power and complexity efficiend apply block codes as long
as possible to MLC schemes based on a one-dimensional
constellation instead of increasing the dimensionality of the
signal constellation. For MLC schemes based on a one-
dimensional signal set, the signal points M dimensions,
i.e., the multilevel codeword, are exclusively given by thgig. 15._‘ML_JItiIeveI engoding s_cheme for a 32-QAM cross-constellation with
. Set partitioning according to Fig. 14.
code constraints of the component codes, whereas for a
D-d_imensional signa! set we have conc_atenated _coding QN Nonsquare QAM Constellations
sisting of two constituent parts. The first part is covered _ )
by the component codes applying only %6, = N;/D In QAM schemes based on nonsquare constellations, like
dimensions. The second part is given by the constrairtfe popular cross constellations with 32 or 128 points [61], di-
between the components,, k = 1,---, D, of a signal point mensions are not completely separable. But interdependencies
a=(ay,---,ap), which are introduced by the set partitioningPetween the dimensions are only relevant at the perimeter of
strategy. Our previous result indicates that the direct approdfg constellation. Hence, if we neglect these interdependencies,
is more efficient than the concatenated one, as long as this possible to encode the lowest partitioning levels of cross
overall dimensionality of the multilevel codeword is fixed. constellations exactly as is done for ASK signal sets. Because
This result is quite obvious since the set of codes that c@hthe high intra-subset Euclidean distance, the highest levels
be realized by MLC of two binary codes of lengiy = N, /2 (where the interdependency of dimensions has to be taken into
on a four-way two-dimensional partition is a subset of the sagcount) remain uncoded. For example, Fig. 14 shows some
of codes that can be realized by a single binary code of lengtbsets of a set partitioning for tli2-ary cross-constellation
N on a two-way one-dimensional partition. Moreover, eveimplementing a specific labeling. Obviously, since the subsets
if the codes were the same, one-dimensional MLD will be’ = 0 andz! = 0, respectively, differ only by a rotation they
superior to two-dimensional two-level multistage decoding. provide equal capacities. Additionally, if we again neglect the
This disadvantage of two-dimensional constituent constellaoundary effects, only the in-phase (quadrature) component of
tions could be overcome if quaternary component codes wéhe noise is effective at level(1). Thus the transmission af’
admitted. Then the same set of codes could be generated agt) is essentially based on a 6-ASK constellation, multiplexed
the one-dimensional case. Therefore, in the case of nonbinaryn-phase and quadrature components, and the coding of the
component codes the question of the optimal dimensionalgymbolsz® and z* can be done by a single encod&p;.
of the constituent signal set translates to the question of thikee block diagram of the resulting MLC scheme of rate=
optimal partitioning depth of the lowest level, cf. [33]. 4 bits/symbol= 2 bits/dimension is given in Fig. 15.

Map-
ping | “_
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Fig. 16. Partitioning tree for the 8-ASK signal set when block partitioning is used.

is applied, a square QAM constellation can always be used,
because a proper constellation boundary is determined in .
high-dimensional space by the shaping procedure. Thereforen -6 c2 Y= r 1.5bit
| .
|
1

When signal shaping for minimum average signal powerJ 2 | i
Good

_ 0
—— C channel

. . . . . O
simple MLC based on a one-dimensional constellation iso y channel
always possible.

m

s Bad | jmm et S
1 channel =

ty [bit/sy

C. Convolutional Component Codes

Using convolutional codes as component codes, a comparg
ison is much more difficult, because in this case no clear§
concept of dimensionality exists. Simulation results using 64-
state convolutional codes (CC) as component codes promise
better performance for two-dimensional signaling, see Fig. 13. 10l0g10(Es/No) [dB] —>
Aga"?’ the tOtal_ code rat_e per dimension is f|xedE¢D - Fig. 17. CapacitiesC* of the equivalent channels versiig /Ny for the
1.5 bits/dimension. (The individual code rates, which are ing-ask signal set when block partitioning is used. AWGN channel. Dashed
plemented by nonoptimized, regular puncturing, are assigned: aggregate transmittable rate f&' = 0.5, : = 0,1,2. Bad channel
by the cutoff rate rule, cf. Section IV.) 16-QAM with MLC g“oar'fc;girzzlngﬁﬂ‘]”ﬁ? FI,OV;NSRNR' medium channel with medium SNR, and
using convolutional codes outperforms the MLC scheme baseg 9 '
on 4-ASK. The reason is that increasing the dimensionality of
the constituent signal constellation and applying MLC with. Labeling Strategies for MLC/MSD
Ungerboeck’s set partitioning leads to an increased effective1) Block Partitioning: Usually, the strategy for partitioning
constraint length, as we have chosen equal constraint lengihsignal set is to maximize the minimum intra-subset Euclidean
for each code. distance, as introduced by Ungerboeck [4] and Imai [5]. Here,

But this improvement has to be paid for twice: the rean alternative labeling with the opposite strategy, called block
ceiver complexity is increased, because the two-dimensiopairtitioning (BP), is investigated. The minimum intra-subset
approach needs three individual decoders instead of two for thgclidean distance remains constant for all partitioning levels
one-dimensional case, and the signal delay is doubled whgit the partitioned subsets form dense clusters of signal points.
the lengths of the survivor memories are fixed. However, wheme strategy for block partitioning is to minimize the intra-
employing convolutional codes, data delay generally is notsabset variance. As an example, the block partitioning tree for
problem, and only half the processing speed for each individyak 8-ASK signal set is depicted in Fig. 16.
decoder is necessary under a two-dimensional approach.  Fig. 17 sketches the corresponding capacity curves for

Strictly speaking, the result of Section V-A applies onl\8-ASK. Since the minimum intra-subset Euclidean distance
if the block length of the component code is a relevamg equal for all partitioning levels, the capaciti€s’ of
parameter, i.e., for codes where performance is relatedtée equivalent channels of an MLC scheme with block
the code length. In the case of convolutional codes, thrtitioning decrease from the lowest level to the highest level
higher dimensional constituent constellation leads to a more ; i1 )
power-efficient concatenated coding scheme since the effective ¢tz 0=0,0, 0= 2. (24)
constraint length is enlarged. This property is well suited for softly degrading schemes for

transmission over channels with time-varying SNR. Consider
the following example: The individual code ratd®, i =
VI. LABELING STRATEGIES 0,1,2, of an MLC scheme with BP and 8-ASK signal set can

In this section labeling strategies that offer some practicaé chosen to be equal for all levels, sy = 0.5. According
advantages, are presented. MLC/MSD with finite code lengttn Fig. 17, three states of the channel—"good,” “medium,”
is considered, cf. also [35], [37], [62], and [63]. Moreover,bad’—are defined, depending on the currdit/N, at the
an analysis of bit-interleaved coded modulation, cf. [42], faeceiver side. First, for transmission over the “good” channel,
finite code length is presented. the capacitie€’ exceed the code raté®’ at each levet and,

-4 0 4 8 12
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hence, in principle, error-free transmission/®f+ R + R* = 2 22
1.5 bits/symbol is possible. Second, for transmission over ’. ~ m °
o ] %!

the “medium” channel, the code rafé’ at the highest level , 1
exceeds the capacit¢? while R® and R! are still smaller 3;;,5;,},(9 _—|° Channel }y Oo1 [— °
than the corresponding capaciti€8 andC*. Hence, starting o 0
at level0, error-free multistage decoding at levélsand 1 is o u
still possible resulting in a total transmission rateff+ R =
1.0 bit/symbol. Third, for transmission over the “bad” channe'f,ig- 18. MLC/MSD transmission system for mixed partitioning of 8-PSK
only code rateR? is smaller than capacitg®, while code rates

R! and R? exceed the corresponding capacit&s and C2.

Hence, over the “bad” channel error-free transmission of 0.5

bit/symbol is possible. To summarize, using this construction

a soft degradation of the scheme over a wide range of SNR is =0, ~ .
enabled. It adapts automatically to the channel state without - \\ // :

the need of a feedback channel, simply by estimation of the < A(Q) \X A(T)
SNR at the receiver side or a cyclic redundancy check (CRC), i //‘ K\ o

and by delivering only the reliable part of the information ,_ 1_ 1_ 1
to the sink. In the above example, the information increases o T e T
in steps of 0.5 bit/symbol with increasing SNR. Such softly #~ | & ™ 4 \X ~
degrading schemes may be employed in “scalable” sourc /jA(OO) jA(m) 6\,\ //A(m) ‘ﬂk >A(11)
coding schemes (video, audio), cf. [64]-[66], in broadcasting *--- - - -
systems, cf. [67], or in mobile communications. Fig. 19. Tree for mixed partitioning of 8-PSK set.

Of course, this way of constructing softly degrading

schemes by designing rates for upper levels according to . . ) L L
transmission at high SNR can be based on any Iab(_}"Rartmonmg, called mixed partitioning (MP). At partitioning

0,1 imi ini i
strategy. But with natural mapping, the rate steps are quify®! 2 the subsetsi(z"x") should maximize minimum intra-
different and very little rate remains at low SNR. Blocksubset Euclidean distance as in Ungerboeck’s approach. The

partitioning is a simple way to achieve equal rate Stepgpal of the first partitioning step is to minimize the intra-subset

. ) PR
Moreover, it is interesting to note that, in the case of equg?rlancgz ugder t.Ee dcogstramt that."SUbSA.g z*) with the
code ratesk’ at the individual levels, MLC schemes with propertles escribed above are sti jpossible.
BP do not suffer from error propagation in MSD. Fig. 19_ shows an example of mlxeql partitioning fqr the
The concept of capacities of the equivalent channels pl%-_PSK.sgnal fset. L‘)E;OL:)S chompe:;le d:jstancE Erlogert;]es for
vides the framework for optimization of constellations fOFran‘:mlssmn oAsym );]t €setdan fsym O” yt' € h
softly degrading schemes, sometimes cahmdtiresolutional setA(0) or set (1)..In ach case, even for sma SNR S, the
constellations[68]. Results presented in [69] show that arperformance is dominated by the respective minimum distance

optimization via information-theoretic parameters leads gy © =0, 1. From Fig. 19 it is obvious that

constellations completely different from those constructed do =dy =2\/F, gin .

from Euclidean distance arguments, like those used in digital 8

video broadcasting in Europe [70]. If powerful coding isAdditionally, the number of nearest neighbors representing the

applied, the Euclidean distance becomes a less importapmplementary binary symbol coincides in both cases. Hence,

parameter and the latter approach becomes very inefficietded transmission using the (sub)getand A(z°) exhibits

The differences are comparable to those observed in aimilar distance properties.

comparison of the capacity rule and the balanced distancedhe capacities”", ¢ = 0,1,2, of the 8-PSK scheme with

rule. MP operating on the AWGN channel are plotted in Fig. 20
2) Mixed Partitioning: Now, we will focus on a labeling versus10 - log;(E,/No). Indeed, one can see tha and

strategy for 8-PSK such that for MLC/MSD the capaciti@s C* are hardly distinguishable. If we design the corresponding

and C! of the equivalent channesand1 are approximately MLC scheme for total ratd? = 2 bits/symbol according to

equal. The important feature of such a scheme is that if tHee capacity rule, the rates are

code rfatesRi at the individual Ieyglsi are chosen to_be R°/R'/R? = C°/C'JC? = 0.51/0.51/0.98. (25)

approximately equal to the capaciti€g, then R° = R! is

possible. Hence, it is sufficient to implement one encoder ahd comparison, the corresponding rates for an MLC scheme

one decoder for both levels. The proposed scheme is depicéad 8-PSK signal set based on Ungerboeck’s partitioning are

in Fig. 18. Encoder#, and F; are both implemented by the 01 112 0 sl g2

encoderFy;, and decoder®, and D; are both implemented /R RS = C7/C7/C7 = 0.2/0.81/0.99. (26)

by the decoderDy;. In this case, three different encoders and decoders are required.
In order to provide similar capacitie€® and C!, the For the MLC scheme based on mixed partitioniiy, = R*

(sub)setsA and A(z°) must exhibit similar distance prop-holds, and hence two different encode#s,{ and E») and

erties. This can be achieved by mixing Ungerboeck and blodkcoders Do, and Ds) are sufficient, cf. Fig. 18.
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05 8 5 ,io 15 Fig. 22. Set partitioning tree of a 8-PSK constellation with Gray labeling
10l0g19(Es/Ng) [dB] —> of the signal points.
Fig. 20. CapacitieX* of the 8-PSK scheme with MP versus, /Ny for . . o
the AWGN channel. strategies merges into the capacity limitl6flog, o (F1, /No) =
2.7 dB for C = 2 bits/symbol and 8-PSK. For finit&/, the
7 ~ . labeling strategy introduced by Ungerboeck and Imai in an

intuitive manner shows the best performance, but the gain
compared to the other labelings is relatively small. Simulation
results confirm this statement, cf. [60] and [63]. Thus the
alternative labeling strategies, which offer some interesting
practical advantages, do not suffer a significant degradation
in power efficiency.

B. Gray Labeling

Beside the set partitioning strategies discussed up to now,
Gray labelingof the signal points is an interesting alternative.
In [71], a pragmatic approach to coded 8-PSK modulation is
presented using a single r&i¢3 convolutional encoder. In

. : S— . 's this approach, the three encoded bits are (randomly) ir_lter-
10 " slock length N — ! leaved independent of each other and mapped to the signal
points using Gray labeling. It was shown for the Rayleigh
Fig. 21. Requirech/Ng versus codeword lengtl for transmission over fading channel that because of increased diversity due to bit
wgrdéggyraﬁgszni ssing MLC zagﬂs/'\s"fn?bc‘,’lv_'tﬂéf;fe“g by tﬁféiﬁ'emterleavirjg, this scheme outperforms the best known trellis
boeck’s partitioning. MP: Mixed partitioning. BP: Block partitioning. codes. Stimulated by this work, Caiet al. [42], [1] recently
investigated the capacity dfit-interleaved oded nodulation
It is worth mentioning that with this mixed partitioning(Bch) schemes over_the AWGI\.I channel. In BICM schemes.
LT one binary encoder is used with subsequent (random) bit
approach, codln.g IS ‘?’t'" basgd on MLC/MS,D' ITe_VGISind interleaving, followed by demultiplexing the bits to select the
1 are not combined into a single level as in blt—lnterleaveg nal point. The results show that for 8-PSK and 16-QAM
coded modulation, cf. Section VI-B. Instead, with the proposef,ames in the range of practical interest, the capacity loss of
scheme, the hard_ware of one encpdgr_and one decoder cagRe\ versus the optimum approach is negligible if (and only
saved. Clearly, since usually the individual encodEgsand if) Gray labeling is used.
E, of an MLC scheme work in parallel, encod&b, has 0 ", what follows, we present a strict derivation of BICM
work at double speed. starting from MLC and MSD using Gray labeling. For this

3) Coding Exponent Analysisdsing block codes of length giscussion 8-PSK is assumed as an example.

N at all levels, the power efficiency of these labeling strategiesl) MLC and MSD Using Gray LabelingFirst, we study

may be evaluated by the coding exponents of the equitfe properties of an 8-PSK MLC scheme with MSD and
lent channels, cf. Section IV. As an example, we consid€ray labeling. The corresponding set partitioning tree is
transmission ofR = 2 bits/symbol over the AWGN channelsketched in Fig. 22. Notice that, in contrast to Ungerboeck’s
using an 8-PSK constellation. The tolerable word-error ratedst partitioning, the minimum intra-subset Euclidean distance
assumed to bp,, = 10~3. In each case, the requirdtl /N, remains constant for all partitioning levels. Moreover, in
for an MLC scheme with block lengtlV is calculated via contrast to the other labeling strategies discussed here, the set
isoquants of coding exponents, see Fig. 21. As expected,pastitioning for Gray labeling is irregular, e.g., subsk01)

block length tends to infinity, the required SNR for all labelings not a rotated version of(10). Hence, according to (7) the

Required 10l0gyo(E,/Ng) [dB] —
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; , 2) MLC and Parallel Independent Decoding of the Indi-
S R R i 5 1 vidual Levels Using Gray Labelingin MLC with parallel,
. S ; independent ecoding of the individual dvels (PDL), the
T e e sl e o e decoderD! makes no use of decisions of other levels ;. In
= : : = C7\Choy ; i ; it i
3 D order to investigate this scheme, the definition of the equivalent
% s ] channel and its characterizing pdf has to be adapted appropri-
> O : ately. In the case of MLC/MSD, the equivalent chanhébr
B 05 fo P o . transmission of digit:* comprises the time-varying equivalent
2 : ' / modulatori, depending on the binary digits' of lower levels
§ i | 4,7 =20,---,i—1, and the actual physical channel. Here, in
3 o _ the case of MLC/PDL, the equivalent modulatas no longer
AR time-varying. Since decoding at levels done independently
b S ] of other levels, the equivalent modulatérfor MLC/PDL
o : : i is based on the entire signal set, whereby all signal points

-5 0 5 10 15 with address digite’ = b, b € {0,1}, represent the binary
10log10(Es/No) [dB] — symbol b. Therefore, the equivalent chanriefor MLC/PDL
Fig. 23. Capacitie€" of the equivalent channels of an MLC scheme baset? characterized by the pdf's

on 8-PSK constellation with Gray labeling for transmission over the AWGNf i
channel. Solid lines: MSD, dashed line: PDL. Vertical line: total Ate= 2 Y,PDL(Z/|3'j a'L) = EaeAi (aﬂ'){fY (y|a)}7

bit/symbol. ' €{0,1}, i=0,---,4—1. (28)

capacitiesC* and C? of the equivalent channels have to pd Nereby, subsed;(z*) is defined by
averaged over the different subsets. Using the fact that somg; (%) .= {4 = M(z°- - 2' "tz .. 1)
subsets have equal capacities, the individual capacities (xo il it ~a:é_1) e {0, 1}5_1}' 29)

C° = C(A) — C(A(0 ‘
(4) ( 1( ) Since decodeP* makes no use of decisions of other levels
Ct = C(A(0)) — 5[0(.4(01)) + C(A(10))] 4, J # 4, in MLC/PDL the maximum individual rate at levél

and to be transmitted at arbitrary low error rate is bounded by

C? = S[C(A(0L) + C(A(10))] RISI(Y:X),  i=0,.0-1 (30)
for transmission over the AWGN channel have been plotted §rPnsequently, the total rate is restricted to
Fig. 23 (solid lines). The equivalent channels at leva@ind 2 -1 -1
provide nearly the same capacity; the difference is not visible R= ZRi < ZI(Y;Xi), (31)
in Fig. 23. The reason is that the transmission of symabdby i=0 i=0
A(0) and A(1) exhibits very similar distance properties to thel_he bound
transmission of symbat? by A(01) and A(10), respectively.

The rate distribution according to the capacity rule for MLC IY; X)) <I(Y; X4x°... Xt (32)
and MSD based on 8-PSK with Gray labeling and rate- 2 o _ o _
bit/symbol yields (see solid vertical line in Fig. 23) is valid in general, with equality iff for a given channel output

0l o 0ol variable y the input symbolsz’ and z/, 0 < j < i, are
R°/R° /R =C"/C"/C" =0.51/0.745/0.745.  (27) independent. This is true as the signal-to-noise ratio goes to
A’afinity. Therefore, combining (6), (31), and (32) yields that
the sum of maximum rateB” in an MLC/PDL scheme must
be less than or equal to the mutual information for the total

heme

Note that, compared to Ungerboeck labeling with individu

capacitiesC?/C* /C? = 0.2/0.81/0.99, the range of individ-

ual code rates for Gray labeling is substantially smaller.
Regarding the subsets of the set partitioning tree in Fig. ZEC

a careful analysis shows that in each case the number of nearest =% = &=L 4

neighbor signal points representing the complementary binadj = &' < > I1(Y;X")

symbol (error coefficient) is equal th In particular, neither =0 =0

the error coefficient nor the minimum intra-subset distance <3 i w0 i1 0 -1
changes when decisions of lower levels are not taken into < z;I(Y?X [T X = 15 AT X0, (33)

account for decoding at higher levels. Hence, we conjecture
that without significant loss, the transmission of the addre$tus asymptotically, the mutual information of the modulation
symbol z*, i = 0,1,2, can be based on thentire signal scheme can be approached with MLC/PDLAff = I(Y; X¢).
constellation, i.e., the individual levels may be decodied Equation (33) shows that the MLC/PDL approach is simply
parallel without any preselection of signal points at highea suboptimum approximation of an optimum coded modulation
levels. Subsequently, independgatrallel decodingof levels scheme. In contrast to the optimum scheme, the capacity of the
is investigated in detail. MLC/PDL scheme strongly depends on the particular labeling
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binary code and to grouppencoded bits to address the current
x2x1x0 symbol. Assuming ideal bit interleavirfighe address symbols
110 are independent of each other and, hence, this scheme can

be interpreted—at least for infinite code length—as multilevel
encoding together with parallel, independent decoding of the
individual levels.

BICM transmission of binary symbok® can again be
x0=0 / ¢x1=0 \ x2=0 viewed as transmission over the equivalent channdbr

MLC/PDL. But here, the equivalent channéls =0, ---,¢/—

1, for MLC/PDL are not used in parallel; rather, they are time-
multiplexed. Hence, the equivalent channel using BICM is
characterized by a sefy grey(v|z) of pdf's for the binary

encoder output symbat
Ag(x0=0) 1(x1=0)

A x2=0) Jyprom(lz) = {fY,PDL(y|$i =z,4)}i =0,---,£—1}.
(36)

Ax(

Fig. 24. Subsetsd;(z’ = 0) according to (29) with 8-PSK with Gray
labeling. Since the equivalent channel using BICM is time-variant
with ideal channel state information at the receiver (side in-

of signal points. Caireet al. showed in [42] and [1] that the formation= actual level), the corresponding coding parameter

gap to an optimum scheme is surprisingly small with Gra$o sicm(p) is the average of py (p) for i =0, -, £ — 1.
labeling of the signal points. However, we will show now thafAssuming equal probability for all channelswe have
the gap increases significantly if the finite length of the code =
is taken into account. E _ 4 E
. ,BICM\P) = p)- (37)
For example, the 8-PSK subsets, i = 0,1, 2, for z* =0 0 (v) 14 ; o.roL(P)

and Gray labeling are sketched in Fig. 24. Since the subsets i _ )
Ai(«* = 0) and A;(«* = 1), ¢ = 0,1,2, differ only by The random coding exponent for the equivalent channel using

rotation, they provide equal capacities. Moreover, the subs&&M is then

Ai(z! = 0) and Ay(z*> = 0) differ only by rotation, too. E.vreni(Ri) = max {E, (p) — pRrY. 38
Hence, according to (7), the individual capacities for the pien () Oéﬂél{ opicm(p) =~ pRp} (38)
equivalent channels using PDL are given by Here, R denotes the rate of the binary code used in BICM.
O, = C(A) — C(Ao(0)) | For simplicity, MLC/PDL and BICM are assume_zd here at all
L N evels. For the AWGN channel and very large signal constel-
Cppr = Cppr = C(A4) — C(A441(0)). (34)

lations, it is more efficient to apply a mixed labeling strategy,

(See dashed line in Fig. 23.) Since at ledethe equivalent i.e., to use Ungerboeck labeling in order to separate coded
channels for MLC using MSD and PDL are eq#l,, = C° from uncoded levels and thus to save complexity. A relabeling

holds. Clearly, the capacitiei,, andC2y,; using PDL are within the coded levels according to the Gray criterion allows
lower than those using MSD. But from Fig. 23 it is appareﬁ’tse of MLC/PDL or BICM for subset coding/decoding. For

that in the range of interest the loss of parallel comparéﬂdmg channels, Gray labeling and PDL or BICM over all

to multistage decoding is very small. Additionally, the rat#VelS is recommended. o ,
distribution for MLC using PDL according to the capacity . | Ne Same principle applies when hard-decision decoding at

design rule for a total rat& = 2 bits/symbol is nearly the higher levels is possible without significant loss, see Section

same as for MSD (cf. dashed vertical line in Fig. 23). VII. In_ this case also, 0r_1|y the levels with soft-decision
decoding should be combined.

Finally, following Section IV and considering (28), the . X
coding exponent&) ;. (p) of the equivalent channel for 4) Coding Exponent AnalysisTo compare the power ef-
an MLC scheme ujsing PDL is ficiency of t.he previously presented schemes, the codmg
exponents given above are evaluated. Coded 8-PSK transmis-
Eéypm‘(p) sion atR = 2 hits/symbol over the AWGN channel is chosen
1 1+p with a tolerable word-error ratg,, = 10~2. Additionally, the
— oo i i result of the previous section for the usual MLC scheme with
= los / [Z Prie’}(fyroc(yle’, )™ (- Ungerboeck partitioning and MSD is included for reference. In
(35) all cases, the required SNR for the different schemes and fixed
total rate R was calculated via isoquants of coding exponents.
3) Bit Interleaved Coded ModulationAs described above, For MLC/MSD and MLC/PDL the code lengtlY is used for
in MLC schemes using PDL the output symhdlof encoder all component codes, whereas for BICM only a single code
i is transmitted over the time-invariant equivalent chaninel Of this length is used. In the case of BICM, the calculation
Thus £ independent binary coding and decoding levels aresgea interleaving increases data delay to infinity, whereas code length is
present in parallel. An obvious approach is to apply only omet affected.

z*=0
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Fig. 26. Equivalent binary channel 1 for the transmission of symbalor
an 8-ASK scheme when hard-decision decoding is used.

~

o
o

code the channel output. In this section, we investigate coded
modulation schemes in which error-correcting binary codes are
employed at selected coding levels; i.e., the corresponding de-

Required 10logyq(Ey/Ng) [dB] —»
[#]

N A Lo P coders use only binary decisions without additional reliability
g 10° 10* 10°  information.
Code word length N — In the previous MLC literature, usually all component codes

. . i . are either exclusively error-correcting algebraic block codes,
Fig. 25. RequiredZ, /Ny versus code length for coded transmission over .
the AWGN channel with 8-PSK for a tolerable word-error rate = 10-%,  €.9., [26], [72] or all codes are soft-decodable codes like
Coding schemes: 1. UP: MLC and MSD with Ungerboeck labeling. Zonvolutional or turbo codes [39], [25], [37]. With error-
MLC -+ PDL: MLC and PDL with Gray labeling (solid line). 3. BICM with oo racting codes, decoding complexity is usually much lower
Gray labeling (dashed line). . .

than with soft-decodable codes. It is well known, however,

of the single code, which that hard decisions incur a performance loss compared to soft

has to be multiplied by to obtain the total rat&® = ¢R for decisions; for binary antipodal signaling the loss is about 2 dB.

BICM. The results for the competing schemes are shown inResgIts concerning the performance loss due .to error-
Fig. 25 as a function of the code leng. correcting codes in MLC schemes are thus desirable. In

From Fig. 25 it is evident that the performance of BICMhiS section, we compare hard- and soft-decision decoding

schemes and that of MLC schemes using PDL is almdhg't'\gl‘c sghemﬂez. We. sho(;/v thzt. thedperformance_t%ap betwe_en
identical and inferior to that of MLC/MSD. For decreas: &'0- and sol-decision decoding decreases with increasing

ing NV, the loss of BICM and MLC/PDL compared to thebandW|dth efficiency. It turns out that soft-decision decoding

optimum MLC/MSD approach using Ungerboeck Iabelinjt only the lowest level is sufficient to achieve near-optimum

(UP) increases. The reason for this is as follows: Assu grformance.

that the signal pointAM(000) in the subsetd,(z! = 0)

is chosen for transmission of binary symbet = 0, cf.

Fig. 24. Then, both nearest neighbor signal points represenfor hard decisions, the concept of equivalent channels

the same binary symbat* = 0. Hence, the minimum distanceintroduced in Section Il has to be modified appropriately.

of A(000) to signal points representing the complementaf@nly binary variables should be fed to the decoder at

binary symbol is relatively large, and the transmission ¢fecoding stage; i.e., the channel outpu is quantized to

' = 0 by M(000) is relatively robust against the channebinary symbolsz. To distinguish between equivalent channel

noise. The situation changes if, e.g., the signal pdint001) ¢ with hard and soft decisions, we refer to the former one as

in the subsetd;(z! = 0) is chosen for transmission ofequivalentbinary channels.

binary symbolz! = 0. Then, one nearest neighbor point For example, let us consider the equivalent binary channel

represents the complementary binary symok= 1 resulting for transmission of symbat* for an 8-ASK scheme (level 1),

in a substantially lower minimum distance than in the form&ee Fig. 26. Assuming equiprobable signal points, the detec-

case. Hence, the transmission of = 0 by M(001) is tion thresholds are half-way between two adjacent points. In

relatively sensitive to the channel noise. The same is true @gneral, for a nonuniform distribution of signal points, the

the transmission of the binary symbet. decision regiorR 4 (a) of signal pointa out of the setd has to
This example shows that the distance properties of a BICR optimized according to the maximuanposteriori (MAP)

scheme with Gray labeling are extremely time-varying. Ther€titerion

fore, in order to compensate for these varying distances a large Rala) ={y|Pr{a} - fy(yla) > Pr{d'} - fy (y]d'),

block code is required. In particular, since convolutional codes fe A , A 39

can be viewed as short block codes with a sliding encoding @ €Aatal, @€ A (39)

window, they are not well suited to BICM schemes over thBue to the multiple representation of binary symbols by signal

AWGN channel. points, the decision region of binary symbgl is the union

of the corresponding regior® 4(,0...i-1)(a) (see Fig. 26)

of isoquants provides the ratég

A. Capacity

VIl. HARD-DECISION DECODING AT INDIVIDUAL LEVELS

Up to now, we have considered only coded modulation R(Z'[z°---a'"") = U Ra@o..wi-1)(a).  (40)
schemes in which the individual decoding stages optimally de- acA(z?-a?1E7)
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For the calculation of the capacity of the equivalent binary 3 . .

channel; the transition probabilitieBr{z*|z*,z° - - - z*~!} are , : g
needed. Let us first assume that= 0 is transmitted using the : ’ : 7 |
fixed signal pointa € A(z°---z*~10). Then, the probability T : 5‘ : X
of detection error 3 ) - Css N oue
- - E e e . .. // ...... . .|
Pr{z’ = 1|a, 2% -- 2"} » Cshm E
~ :
~ -~ : i
= Z Pr{y S R,A(xo,,,xifl)(aﬂa}. (41) D 15t Chr A S CFEC} B
a€A(x0---xt—11) o /- :
= Ay i
The desired detection error probability is given by expec‘g’_ 1 b ---;/--/ -------- '
tation over all possible signal points representing symbol 8 /,/’ c2 o i 0
.’L’i -0 //' : : :
0'5 bl 2P N P e 1 ........... A N 0 e
=i i 0 i—1 “ " C2 v ¢l rooc]
Pr{#' =12 =0,2"---2* "} : . 3 |
, , . : .

= Eqea(arai-10{Pr{Z" = 1]a, 2% 2"'}}. (42) 05 5 3 1o s 20

. I . . . 0l e
If the a priori probabilities of the signal points are fixed, the 10l09;0(Es/No) [dB)
capacityC}; of the equivalent binary channg(hard decision) Fig. 27. 8-ASK with natural labeling. AVGN channel. Capacities for the
equa|s the Corresponding mutual information: cgj'rves SSS, SI-_|H, and HHH_(see text) and correqundlng capacitiesd
C1; for the equivalent and binary equivalent chanhel = 0,1, 2. Dashed
line: Capacity for the equivalent DMC. Solid vertical lin€isss = 2.5
bits/symbol. Dashed vertical lin&'syy = 2.5 bits/symbol.C¢:: binary

- E(mO...mi—l){I(Xi;Xi|$0 .. .xi—l)} FEC, Gray mapping and interleaving.
Pr{#’|z*,2%---2" 1} . . . . .
= E@o.pi-1 50 21 logy Pr{# |20 o1} . Using the chain rule of mutual information (2), it was

shown in Section Il that with soft-decision decoding at all
levels, MLC together with MSD is an asymptotically optimum

The results derived above are valid for an arbitrary distribgoding approach. However, when hard-decision decoding is
tion of signal points and for arbitrary labeling. When equiprob!sed at several levels, the chain rule no longer holds, and

able signal points and regular partitioning (subsets at one paffie MLC approach is not necessarily optimum. Thus the
tioning level differ only by translation and/or rotation) are conMLC/MSD transmission scheme with hard-decision decoding

sidered, the transition probabilitid& {i’|z?,2°--- "1} are at all levels operating on the AWGN channel is compared to
independent from the particular valuesifz’, 2% ---z*~!.In @ coded modulation scheme operating onidrary dscrete
this particular case, the resulting equivalent binary chanizel memoryless bannel (DMC). For example, we look at 8-ASK.
symmetric; i.e., it is abinary symmetric diannel(BSC). The The channel input and output alphabet is equal to the 8-ASK
transition probabilityPr{i’ # |z¢ 2°.--2*=1} is simply signal setd = {£1,43,£5,£7}. The transition probability
the bit-error probabilitys; of the equivalent BSG. Thus its Pr{ax|a;} for receiving symbok;, is given by the probability

(43)

capacity C'%; is given by that the outputy of the underlying AWGN channel falls into
) the decision regioR 4 (ax.) if symbol a; is transmitted. The
i =1—Ha(e) (44)  capacity of this scheme is given by
where H(-) again glenotes the binary entrppy function. _ Crnic = E(akcAa-CA){logQ Pr{ak|a;} } (46)
Now, the capacity of a coded modulation scheme with a I Pr{ax}

mix of hard- and soft-decision decoding at the individual ) )

levels is simply the sum of the capacities of the correspondifiy EX@mples and Discussion

equivalent channels < = 0, - --,£ — 1. For example, consider  Again the coded modulation scheme with 8-ASK and nat-
a three-level scheme with soft-decision decoding at I6weid ural labeling operating on the AWGN channel will be inves-

hard-decision decoding at levelsand 2 tigated. Fig. 27 depicts:
_ 0 L 2 » capacityC, soft-decision decoding at all levels (case SSS,
Csu = O+ Oy + Clp- (45) reference);

Here, the index of the capacitysyn denotes the decoding * capacity Csup, soft-decision decoding at level and
manner (soft or hard) at the individual levels. If the index is hard-decision decoding at levelsand2 (case SHH);
omitted, soft-decision decoding is assumed at all levels. * capacityCunn, hard-decision decoding at all levels (case
HHH);

6The probability of detection error may be upper-bounded by the respective . . . .
symbol error probability for transmitting € A(z9 - - - &'~ 10). Thereby, the together W'th the cor_respondmg capacities of the equivalent
detection of signal pointg € A(2°---2*~'0), @ # a, are counted as errors and the equivalent binary channels.
althou_gh they represent the tra_nsmitted symitfol: 0. Especially vyhen the_ First, we compare the capaciti@"' and C}I,i =0,1,2.
detection error probability is mainly determined by the nearest neighbor sig . . D

level 2, the underlying signal set for the transmission of

points as it is the case with Ungerboeck set partitioning, this approximati . . - :
becomes quite tight. symbol z? is the ordinary BPSK signal set, i.e., symbhdi
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is not multiply represented. In this case, the well-known gdepvel 0 and, hence, the capacity loss at this level dominates.
of about 1.7 dB between the capaciti€¥ = C% = 0.5 But, as shown above, at levelthe loss due to hard-decision

is observed. At levell, symbol z! is represented twice in decoding is moderate because of the multiple representation
the underlying 4-ASK signal set. Here, the gap between tbéthe symbolz® in the underlying signal set.

capacitiesC! = C% = 0.5 is only 1.1 dB. This gap is In conclusion, we see that for 8-ASK an&t = 2.5
further reduced to 0.9 dB at levél Thus when symbols are bits/symbol, it is sufficient to employ soft-decision decoding
multiply represented by signal points, the gap between sodit level 0. Hard-decision decoding at higher levels can be
and hard-decision channels becomes smaller. done without any significant performance loss while offering

We interpret this different behavior by the following obsera reasonable reduction in complexity, cf. also [33]. Even if
vation: For binary antipodal signaling, the gain of soft-decisionard-decision decoding is used at all levels, the loss compared
decoding mainly results from those highly reliable symbol® soft-decision decoding is less than 1 dB.
that are received far away from the decision boundary. ButFinally, the capacitie’pyc of the equivalent DMC and
for multiamplitude/multiphase modulation, the existence @y for the MLC/MSD scheme with hard-decision decoding
boundaries of the decision regions on all sides of inner poirds each level are compared. It can be observed from Fig. 27
reduces the soft-decision advantage. Also, as usual, the ¢gagn, in the region of interest (rates above 2.0 bits/symbol),
between the capacitieS’,: = 0,1,2, and C%;, respectively, the MLC approach with hard-decision decoding at each level
decreases for increasing SNR. outperforms the scheme operating on the equivalent DMC. The

Second, we compare the cases SSS and SHH. It is appatffitrence between the schemes lies in the way the soft output
from Fig. 27 that the gap betweern and Csiyr is negligible of the underlying AWGN channel is exploited. For tReary
for rates above 2.5 bits/symbol. In particular, fBr = 2.5 DMC, the soft channel output is quantized once. In multistage
bits/symbol, the loss for the case SHH versus the optimutecoding, the soft value is used at each level for binary
case SSS is 0.15 dB. Even for rates down to 2.0 bits/symlfgltection. This leads to the important observation that, in the
a loss of only 0.6 dB is visible. Hence, the performance logaise of hard-decision decoding, an efficient way to exploit the
due to hard-decision decoding at higher levels is dramaticaiitannel information is to split up the coding and decoding
reduced compared to BPSK. The explanation is as followsrocedure in multiple, ideally binary, levels so as to use the
For set partitioning according to Ungerboeck’s criterion, thsoft channel output multiply. Therefore, when designing coded
individual rates increase from lowest level to highest levamhodulation schemes, the two cases of soft- and hard-decision
Thus the performance loss due to hard-decision decodidgcoding have to be carefully distinguished. As shown in the
decreases. Hence, if hard-decision decoding is used at higbesvious section, in the case of soft-decision decoding and
levels, where high-rate codes are employed, the loss remajasy large block length it is possible to link several coding
small. levels into a single one without significant performance loss

An additional loss occurs if hard-decision maximumwhen Gray mapping is used. In the case of hard-decision
likelihood decoding is replaced by bounded-distance decodingcoding, this is not true since combining multiple levels into
This loss cannot be assessed exactly, but for high-rai&ingle one results in an unavoidable performance loss due to
codes bounded-distance decoding is close to hard-decisipBuboptimum exploitation of the soft information. It is well
maximum-likelihood decoding. In the case SHH, where onlnown that adapting binary error-correcting codesryfard
high-rate codes are used for hard-decision decoding, there igar correction (FEC)) to an\/-ary transmission scheme by
little additional loss for practical bounded-distance decodingray mapping does not lead to satisfactory results. This effect
algorithms. is confirmed by the curv&rgc in Fig. 27, where forC' =

If we design the 8-ASK system for a total raté = 2.5 2.5 hits/symbol a loss of approximately 2 dB compared to
bits/symbol, the rate distribution according to capacities in thessg results, which is in accordance to binary transmission.
case SSS (solid vertical line) is In contrast, the MLC approach with individual error-correcting
codes at each level promises much better performance.

The question of the optimum dimensionality of the con-
stituent signal set (cf. Section V) has to be discussed again
for hard-decision decoding. Especially, hard-decision decod-

R°/R'/R? = 0.532/0.968/1. (48) ing at all but the lowest level is addressed, because of its

interesting tradeoff between performance and complexity. As

For SHH, the rate at leved with soft-decision decoding is in Section V, an MLC scheme based on a 4-ASK signal set
slightly increased while the rate at levelwith hard-decision is compared to an MLC scheme based on a 16-QAM signal
decoding is decreased by the same amount when compasetl Again, the overall block length is assumed to be equal.
to SSS. In Fig. 28 the corresponding isoquants for a block length of

Next, we assess hard-decision decoding at all levels (HHFE2000 QAM symbols are shown. A total rate éf = 1.5
For a total rateR = 2.5 bits/symbol, the gap betwee®i bits/dimension is chosen. Here, the loss of the two-dimensional
and Cygy is about 0.9 dB (see Fig. 27). The loss due tQAM scheme when compared to the one-dimensional ASK
full hard-decision decoding in a coded modulation schemesgsheme is higher than with soft-decision decoding at all
thus substantially less than with BPSK. The reason is that wiévels, cf. Fig. 16. The reason is that for the 16-QAM scheme
Ungerboeck’s set partitioning, the lowest rate is transmitted thiere are three levels with hard-decision decoding with a rate

R°/R'/R* = 0.516/0.984/1 (47)

whereas in the case SHH (dashed vertical line) it is
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Coding exponent rule
—3— MLC4ASK, SH, N,;=4000 :
1.6 { —¢— MLC16QAM, SHHH, N;=2000}/".

: : 8.5 10 10.5
2 3 " 5 5 = 8 10l0g1o(Es/Ng) [dB] —

10logso(Es/No) [dB] —» Fig. 29. BER of 8-ASK transmission with MLC/MSD over the AWGN
) ) ) ) ) channel. Codeword lengtN' = 4095. Solid line (case SSS): Rate distribution
Fig. 28. Total ratesk/D = 3, R'/D per dimension from isoquants RO/R'/R? = 0.52/0.98/1.0, total rateR = 2.5 bits/symbol. Turbo codes
E*(R") of 4-ASK in the case SH (soft-decision decoding at legel are employed as component codes. Dashed line (case SHH): Rate distribution
hard-decision decoding at levé) and of 16-QAM in the case SHHH. For RY/R'/R? = 0.52/0.96/1.0, total rateR = 2.48 bits/symbol. Component
4-ASK block lengthN = 4000 and for 16-QAM N = 2000 is assumed. codes: Turbo code at level, 14-error-correcting BCH code at levél.
pw = 1073, Ungerboeck set partitioning. AWGN channel. Simulation results.

Rate R/D [bit/symbol/dimension] —

R! = 0.7 at level 1 rather far away froml. Contrary, there 10log;,(E;/No) = 9.1 dB, this scheme works about 1.0
is only one level with hard-decision decoding in the onedB above capacity. From Fig. 29, it can be seen that the
dimensional approach with a rat8' = 0.96 quite close competing scheme with the BCH code at levelchieves
to 1. This result further supports the statements concerniBER = 10> at 10log;o(E/No) = 10.15 dB with a total
dimensionality in Section V. If hard-decision decoding at atlate R = 2.48 bits/symbol. Here, the capacity = 2.48
but the lowest level is used, the less complex MLC scherbits/symbol is reached far0 log; ( F, /Ny) = 8.9 dB. Hence,
based on a one-dimensional signal set is more power-efficiehé MLC scheme using a BCH code at levelvorks about
than an MLC scheme based on a two-dimensional set.  1.25 dB above capacity, resulting in a loss of about 0.25 dB
As stated in Section V, if nonbinary codes are considere@rsus the MLC scheme using turbo codes at the coded levels.
these differences are conjectured to vanish. Moreover, Whis loss of 0.25 dB observed in simulations corresponds well
assume that a two-dimensional SSHH approach will perfonm the loss of 0.15 dB predicted from capacity arguments.
close to the one-dimensional SH scheme. But since two softdn conclusion, in practice we recommend multilevel
decision decoders are required, complexity is almost doublegding schemes based on Ungerboeck set partitioning, where
soft-decision decoding is employed only at leGehnd hard-
decision decoding is applied at higher levels. With this
approach, MLC transmission based on a one-dimensional
In order to verify these capacity results, simulations fox/-ary signal set requires only modest additional complexity
8-ASK transmission with an MLC/MSD scheme over thgsince low-complexity hard-decision decoding is used at higher
AWGN channel have been performed. In particular, we arévels) compared to binary transmission. Thus to approach
interested in the loss of an MLC scheme using hard-decisigaipacity with bandwidth-efficient digital transmission requires
decoding at the two highest levels when compared to a schemgch less decoding complexity per bit than to approach
using entirely soft-decision decoding. For reference, the ML§apacity with binary antipodal signaling.
scheme with the individual rates’ /R /R? = 0.52/0.98/1.0
derived from the coding exponent rule is used, where turbo
codes of 16-state convolutional codes [44], [56] and code
length N = 4095 are employed as component codes. Again, It is well known that signal shaping provides further gain
flexible rates of turbo codes are achieved via puncturingy replacing a uniform signal distribution by a Gaussian-like
see [57] and [37]. For the competing scheme, a turbo codistribution in order to reduce average transmit power. In many
with R® = 0.52 at level 0 and a primitive Bose-Chaudhuri- situations, it is easier to obtain shaping gain than to obtain a
Hocquenghem (BCH) code of lengthN = 4095 at level1 similar gain by more powerful coding. In order to approach
are employed. Levet remains uncoded. The error-correctinghe Shannon limit, shaping is indispensable.
capability of the BCH code is adjusted such that the individual In this section, the combination of MLC and signal shaping
performance at level and level1 is similar (equal error is discussed. We find that the achievable shaping gain does
probability rule). As a result, the required error-correctingot correspond directly to a gain in capacity. The optimum
capability of the BCH code ig = 14 errors and, hence, assignment of code rates to the individual levels and optimum
R' = 0.96. sharing of redundancy between coding and shaping is given.
The simulation results are depicted in Fig. 29. For thEhe section closes with implementation issues and simulation
reference schemé&0log,o(E,/No) = 10.1 dB is required to results.
achieve BER= 10> with a total rateR = 2.5 bits/symbol. In view of the results of Sections V and VII, we restrict
Since the capacityC = 2.5 bits/symbol is reached forourselves to one-dimensional constellations throughout this

C. Simulation Results

VIII. A PPLICATION OF SIGNAL SHAPING
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section. As mentioned earlier, because shaping algorithms 1
automatically impose proper spherical boundaries in many
dimensions on a given signal set, it is sufficient to restrict

-

410 |_°9_1q(_1{1e—__); et

the discussion to uniformly spaceW-ary one-dimensional T 20 ',‘,’.9.19(.6.'?/.7?/..,. e
constituent constellations. T .
— .’./ .
A. Aspects from Theory 92 S I A S S e ]
As is well known, optimization of tha priori probabilities g o
gl 1) SRS SO S SO N N — —

of signal points is necessary in order to approach channel

capacity. In the literature, the gain due gbapingis mostly 041 -

derived only for very large constellations using the continuous

approximation. This leads to the following two statements

[10] T T B S e
I: The maximum shaping gain, i.e., the maximum reduction C [bit/channel use] —»

in average transmit power, is given by

Fig. 30. Capacity gairG. according to (53) (solid line) and shaping gain
e . G5 for discrete constellation according to (49) (dashed line), respectively,
Gs,max = F =1.53dB versus capacity.

But for situations most relevant in practice, using “small”
signal sets, the limit of 1.53 dB can never be achieved. fince heres? = 1/12, the noise variance is related to the
[73] the shaping gain of finite constellations is calculated @ignal-to-noise ratio by?: = (24E;/No)~*. Thus the capacity
be approximately reads

e Es

~ (1 _ 9 2R — - 1 5 E E,
Gom (1= 27 (49) C_CU<NO)_h(Y)+2 loga 257 (51)

where}i,g is the transmission rate per dimension. The trfjnqre ,(y) again denotes the differential entropy of the
(1 —27%%") can be regarded as a quantization loss due {§,nel output with density

approximating a continuous distribution by a discrete distri-

bution with entropyR,, bits/dimension. In terms of ASK 24E, /Ny [Y? (y — x)?

signaling, it s the ratio of the power of2f--ary equiprobable /v (¥) =/ —5 — - /1/2 eXP{—TMEs/NO} dr.

constellation to that of a continuous, uniform distribution. B (52)
[I: Coding gain and shaping gain are separable. ) i _ )

Hence, assuming? — C and replacing a uniformly dis-

This statement is true only asymptotically for very larg&ibuted channel input signal by a continuous Gaussian dis-

constellations. In contrast to other authors (e.g., [10], [33fibuted one, the maximum capacity gain is given by

we are interested in the analysis of finite constellations. Here, .

coding and shaping gains interact and cannot simply be added G.(C) == . (0)

(in decibels). The reason is that, on the one hand, signal power (22¢ —1)/2

is decreased, leading to a gain. But, on the other hand, a lgss 1 . .

in channel output differential entrop(Y) and, hence, in whereC;”(C) denotes the inverse function 6k, (£ /No).

. . . In Fig. 30, G, is plotted versus the desired capacity
mutual informationI(4;Y) = h(Y) — h(N) is observable, i : . . . i
where h(IV) denotes the differential entropy of the additi Additionally, the maximum shaping gain of discrete constel

V&aii : . .
. . = L ations (49) is showri.As one can see, in a wide range the
Gaussian n0|s_eN =Y - A Shaping fixes fche ent_ropH(A) shaping gain is much greater than the gain in capacity. Strictly
of the transmit symbolsi instead of the differential entropy

of the channel output symbols. Thus we have to distinguish speaking, the true shaping gain is even greater, because some

. P constellation expansion is necessary to realize coding gain.
between the purshaping(power)gain (fixing H(A4)) and the . : : . .
gain for fixedpmutua? in%g;maticzg(A-(Y) vg\]/hic(h \Ee denote Hence, the shaping gain of a constellation supporting a certain

by capacity aain rate R plus the coding redundancy can be exhausted. Thus the
yS bp y gtl ' h . i L : shaping gain curve has to be moved left by the redundancy.
ubsequently, e maximum capacily gain in using a(gnly for asymptotically high rates does the whole shaping

optim_ized channel _inputldistribution Fijs de_riveq (cf. .[74])'gain translate directly to a gain in capacity, approaching the
Consider the capacity’ = 3 -log,(1+2*) (bits/dimension) ultimate shaping gairof Z¢. This is because
of the AWGN channel with a continuous Gaussian distributec! 6"

(53)

input. To transmit a certain rat8 = C, the minimum signal- 1 (6
to-noise ratio is thus Cum 5 -logy | —(1+2E,/No)
E,/No = (22 —1)/2. (50)  for high signal-to-noise ratios (cf. [74], [75]). In contrast, for

Without loss of generality, we force a uniformly distributeac — 0 the capacity gain completely vanishes.

signal to befs(a) = 1for |a| < 1/2andf4(a) = 0 otherwise.  7The approximation is tight only fo€' > 1.5 bits/dimension.
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Fig. 31. SNR gap (capacity limit to Shannon limit, see (55)) for fate 2.0
bits/dimension and 8-ASK constellation as a function of the entrBy)
of the constellation.

Note that an additional loss appears for discrete constella-
tions compared to the corresponding continuous ones. Hence, .
for discrete constellations (53) is actually a lower bound. 10 15 2 25

In order to come close to the optimum, an optimization over 10 logyg(Es/No) [dB] —
the probabilities of the signal points of finite constellationgy 35 Top: Shannon limit and the capaaityof 8-ASK (AWGN channel,
has to be performed, cf., e.g., [76]. This procedure is quiteagerboeck set partitioning) with uniform signaling (solid) and with an

difficult. Therefore. we force the channel input to be (discretextimized discrete Gaussian constellation (dashed). Middle: Sharing of coding
' ahd shaping redundancy. Bottom: Capaciti¢’s of the equivalent channels

Capacities [bit/symbol] —

Gaussian distributed, i.e., of the corresponding MLC scheme.
Pr{am} = K(\) e Mowl’ x>0 (54)
is plotted over the entropyd (A). There are three important
where points: First, forH(A) = 3 a uniformly distributed 8-ASK
-1 constellation results where only coding is active. Second, as
K(\) = <Z G—Alam|2> H(A) approache2 only signal shaping is used. Because
o for C = H(A) error-free transmission is in principle only

. o o , possible for a noiseless channel, the gap here goes to infinity.
normalizes the distribution. This distribution, which MaXThird. the minimum is obtained foH (A) = 2.63. Thus in

imizes' the entropy under an average power constraint, tliﬁe optimum point redundancy d6g,(M) — C = 1 bit has
sometimes called Maxwell-Boltzmann distributiofv3]. The o Givided into 0.63 bit coding redundancy and 0.37 bit

parameter\ governs the tradeoff between average powr shaping redundancy for this specific example. Additionally,

of signal points and entropyf(A). For A = 0, a uniform 3 <014 e noted that for the entropy (A) in the range

dis.t“tb“tli"” “ﬁ“';ﬁ’ whereas for — oo, °”'g the o Shi.g?la' of 2.5 to 2.8 bits/symboASNR differs only slightly. Thus
points closest to the origin remaif even). From (54), higher the selection of the optimum entropy is not very sensitive.

dimensional constellations may be simply obtained by taki 9 the optimum, an additional capacity gaii, of about

the Cartesian product. As we will see later, by selecting 0.78 dB over channel coding only results. Since shaping is

(and hencetf(A)) properly, the performance of the Opt'mumdodﬁe without extra constellation expansion the shaping gain

\(/r::; nctlagggli/arlly discrete Gaussian) distribution is approacr}g somewhat smaller than would be possible in principle. But

For a givenM -ary constellation and target transmission rattLDIS residual loss in shaping gain is very small; about 0.06 dB

R < log, (M), this variation of entropyd (A) moreover leads at the optimum point, cf. F'g' 31. S e

X . T Since we have now derived the quasi-optimal distribution
directly to the optimum partitioning of redundancy betweeg&the signal points, the individual rates of the MLC scheme
coding and shaping. For example, consider the transmssmncan be calculated and plotted in Fig. 32. Again, an 8-ASK

C = 2.0 bits/dimension using an 8-ASK signal constellation, ) o
In Fig. 31 the SNR gap to the Shannon limit (hormalized SN nstellation and U_nge_rboeck set partitioning IS assume_d. At
the top, the capacity” is plotted versus the signal-to-noise
requiredE, /Ny, discrete Gaussian distribution ratio /Ny in decibels. The solid line is valid for uniform
22C _ 1 signaling, whereas the dashed one assumes an optimized
(55) discrete Gaussian constellation. It is important to notice that

ASNR=
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0.5 froo b approached very closely by applying the usual ASK or QAM

; ' ' constellations. Reducing total redundancy to 0.5 bit/dimension
0

5 10 ;s already causes an inevitable loss of approximately 0.5 dB to
10 logyo(Ey/Ng) [dB] — the Shannon limit curve, although even here, the SNR gain for
shaping and coding is already much greater than for coding
solely. For E, /Ny — oo shaping becomes inactive and the
curves merge.
at each point the optimization is performed individually and, As our aim is to approach capacity, we are not concerned
hence, different distributions result. Additionally, the Shannonith the constellation expansion ratio. In these examples we
limit is shown (dotted line). As one can see, the Shannon linfiave chosen 1 bit total redundancy, i.e., approximaiely
can be approached very closely over a wide range. bits/dimension shaping redundancy. But in contrast to coded
In addition, an optimization for an arbitrary discrete distribudniform constellations, shaping is here done without further
tion was done using a modified version of the Blahut—Arimoteonstellation expansion.
algorithm [77]. The resulting optimum is not exactly Gaussian,
but the difference from the curve shown in Fig. 32 is invisibl8. Implementation and Simulation Results

(below 0.001 dB). We now apply the theoretical considerations of the previous
The plot in the middle displays the optimal sharing of totajection to practical schemes. A shaping algorithm has to
redundancy3 — ¢ between coding and shaping. As a rule Ofenerate a distribution of signal points approximating the
a thumb, we propose that one bit total redundancy should f@oretical Maxwell-Boltzmann distribution while preserving
divided into 2/3 bit coding redundancy anti/3 bit shaping the optimum entropy. In principle all shaping techniques,
redundancy. ‘ e.g., shell mapping[78], [79] or trellis shaping [80] can
On the bottom, the capaciti€s’ of the equivalent channelspe combined with an MLC scheme. Here, we prefer trellis
¢ of the MLC scheme according to (7) are shown. Again, théhaping, because shell mapping is only suited for very large
solid lines correspond to uniform signaling and the dashe@nstellations, partitioned in a large enough number of two-
lines hold for the optimized Gaussian distributions. It igimensional shells. By contrast, since trellis shaping takes
important to observe that rate design completely changes whRa lower levels into account (without modifying them), only
shaping is active. In particular, the rate of the highest levgl small portion of data has to be scrambled with shaping
decreases strongly. The reason is that this level has to ca@yundancy. Here, we will not describe trellis shaping in detail
the entire shaping redundancy. This observation leads direqége [80]), but we give a possible approach to combining
to a simple construction of MLC schemes with signal shapingiLC with shaping. The idea is sketched in Fig. 34. The
see Section VIII-B. lower ¢ — 1 levels are assumed to be coded using block
Finally, in Fig. 33 this optimization is performed fdd = codes of lengthV with appropriate rates. Only the highest
2,4,8,16, and 32-ary ASK constellations. (Obviously nolevel to which no coding is applied is involved in shaping.
shaping gain can be achieved for 2-ASK.) The gain increaseisis approach preserves the MLC philosophy, and coding and
as the size of the constellation increases (cf. Fig. 30). shaping are decoupled. In spite of this separation, in terms of
Ungerboeck stated [4] that by doubling the size of a QAlate design and calculation of gains, coding and shaping still
signal constellation, i.e., by introducing 0.5 bit redundanayteracts.N, consecutive symbols form one shaping stép (
per dimension, almost the entire coding gain can be realizefties not need to be a multiple &f,). Shaping redundancy
going to larger constellations is not rewarding. Less totghn be adjusted properly by combining an appropriate number
redundancy than 0.5 bit/dimension causes an inevitable Ig8s of modulation intervals into a shaping step. Because a
from the maximum coding gain for equiprobable signal pointsated /N, shaping convolutional code is usefy,, — 1 data
This statement has now to be formulated more precisely: liss are scrambled with one shaping bit, resulting in an
long as no signal shaping is applied. For combined coding and-dimensional shaping scheme. This construction can be
shaping no improvement can be gained beyond doubling tilerpreted as shaping based on Ap-dimensional lattice,
number of signal points per dimension, i.e., by introducing Where the dimensionV, is equal to the number of bits
bit redundancy per dimension. Here, the Shannon limit curvesslecting one o2+ regions (cf. [80]). A generalization would

Fig. 33. Capacity of\/-ary ASK schemes with and without shaping.
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be the application of raté#./N,, N,. < N,, shaping codes in designed by these rules exhibit power and bandwidth efficiency
order to get a finer granularity of rate. close to the Shannon limit. In practice these rules do not lead
Simulations for a multilevel coded 64-QAM constellationto very different rate designs.
where MLC is based on a 8-ASK constellation with turbo From the coding exponent and the cutoff rate of the equiva-
codes of large block lengtlv = 40000 and total rateR = lent channel of an MLC scheme, the optimum dimensionality
2.0 bits/dimension were performed. Three-dimensional trellid the constituent signal set operating on the AWGN channel
shaping is applied at the highest level, i3 bit shaping plus was derived, assuming binary codes at each level. For a fixed
2/3 bit coding redundancy per dimension is spent as discussiata delay it is more efficient in power and complexity to base
above. Using this scheme we achieve BER10~®> within MLC schemes on a one-dimensional constellation combined
1 dB of the Shannon limit (see Fig. 10). Notice that, whilevith as long block codes as possible, instead of increasing the
using shaping, the nonuniform distribution of signal pointdimensionality of the constellation. In contrast, using binary
has to be taken into account in the decoding procedure, ignvolutional codes with equal constraint lengths, it is more
maximum-likelihood decoding has to be replaced by maximuefficient to use MLC in combination with a multidimensional
a posterioridecoding. Further simulation results can be founcbnstellation.
in [81]. As shown in Section lll, the capacity of MLC schemes is
In conclusion, these rules lead to very powerful transmissidmdependent of the particular labeling. For finite code length,
systems bridging the gap between signaling with uniformiyre labeling introduced by Ungerboeck and Imai, leads to the
distributed signal points and the Shannon limit. most power-efficient schemes. However, two MLC schemes
Similar results can be derived if hard-decision decoding ksased on block and mixed partitioning were also presented
used at certain levels. Here also an optimal tradeoff betweghich are suited for softly degrading transmission schemes
coding and shaping redundancy can be found. But becauasel for a reduction of hardware complexity, respectively. With
the poorer performance of channel coding, it is advantagedwsrd-decision decoding, low individual code rates lead to a
to spend more redundancy for shaping and achieve a higkgmificant performance loss and thus should be avoided. With
shaping gain. Fom-ary signaling with strategy SHH (seean appropriate labeling strategy, rates can be assigned much
Section VII) and a target rate of 2.0 bits/dimension, a twanore uniformly. Additionally, combining several levels into
dimensional shaping scheme with(A) = 2.5 is close to the a single one and applying a sufficiently large block code
optimum, cf. [82]. with subsequent bit interleaving was discussed. This BICM
approach using Gray labeling of signal points seems to be
a relatively low-complexity attractive alternative approach to
IX.” CONCLUSIONS coded modulation. On the other hand, convolutional coding is
The concept of equivalent channels for the individual codingpt suited to BICM.
levels of an MLC scheme establishes a basis to derive toolsEmployment of hard-decision decoding at several coding
for the analysis and design of coded modulation schemes. T&eels is an efficient method to save complexity in coded mod-
key point for a power-efficient design of MLC schemes is thelation schemes. With Ungerboeck labeling of signal points,
proper assignment of individual rates to the component cod#® performance loss compared to soft-decision decoding (in
Iff the individual rates are chosen to be equal to the capacitiisms of capacity as well as in simulations) is only about 0.2
of the equivalent channels, the capacity of the underlghg dB for 8-ASK transmission over the AWGN channel, when
ary modulation scheme is achieved by/aievel MLC scheme hard-decision decoding is employed at all but the lowest level.
together with the suboptimum MSD for arbitragy priori  Since in general the complexity of hard-decision decoding is
probabilities and for an arbitrary labeling of signal points. Thusubstantially lower than that of soft-decision decoding, we
the problem of channel coding can be solved in principle in abserve that power-efficient codeé-ary, £ > 1, modulation
optimum way by employing binary codes in an MLC approachequires only slightly more complexity than coded binary
There exists a wide region for the individual code ratgsansmission. If hard-decision decoding is employed at all
within which capacity is achievable. But, except for théevels, then an MLC approach withindividual binary error-
vertices of this region, which correspond to the capaciti€orrecting codes is recommended. Since multistage decoding
of the equivalent channels, one must replace relatively lowxploits the soft channel output to some extent, it promises
complexity MSD by extremely complex MLD. In particular,better performance than a single binary code adapted to the
the individual rates of coded modulation schemes which a2é-ary modulation scheme by Gray mapping.
designed by the BDR differ substantially from the capacities In combination with channel coding, signal shaping provides
of the equivalent channels, leading to an unavoidable perféuther gain by reducing average transmit power. Since for
mance loss when using MSD. In this case capacity is orfiyite constellations coding and shaping are not separable,
achievable by overall MLD. their interaction has to be taken into account when designing
Various information-theoretic parameters (capacity, codiram MLC scheme. Assuming discrete Gaussian constellations,
exponent, and cutoff rate) of the equivalent channels of #me key design point is the optimum sharing of redundancy
MLC scheme lead to various design rules for coded modulbetween coding and shaping. It turns out that a redundancy
tion schemes based, e.g., on block codes with given lengthl bit/dimension is sufficient to approach to the Shannon
or Rg-approaching codes as component codes. Simulatiimit very closely. Less redundancy results in an unavoidable
results for the AWGN channel show that transmission schenmgsrformance loss. In order to achieve significant shaping gains
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in practice, one must take into account these rate desigrf the mean Euclidean distance enumerator
principles. Using codingndshaping results in completely dif- i
ferent rate designs than without shaping. Moreover, maximum N,(Z) = Z ni(d) - Z¢

a posteriori decoding should be used instead of maximum- d>dgi

likelihood decoding. ‘

In the Appendix, a tight upper bound on the error prokef component cod&* in Euclidean space is knowrnl::
ability for binary transmission over the equivalent channetsinimum Euclidean distance for coded transmission at Igvel
of an MLC scheme is derived. Here finite constellations and(d): average number of codewords at Euclidean distatice
boundary effects are taken into account leading to results ti#tindeterminate) the usual union bound for the error gate
are more useful in practice. can be applied, cf., e.g., [89]. Notice that the upper bound for

the error probability given by the union bound is rather tight
for pw; < 10—2 only for codes with rates smaller than or

APPENDIX close to the cutoff rate.
REVIEW OF UPPER BOUNDS ON THE ERROR For low-to-moderate SNR, where this bound may not be suf-
PROBABILITY OF MULTILEVEL CODED TRANSMISSION ficiently tight, an improved bounding technique was proposed

Selected previous work on the performance evaluation By Hughes [90] and refined by Herzberg and Poltyrev [91],

coded modulation schemes over the AWGN channel includé?]- As the Hughes—Herzberg—Poltyrev (HHP) bound is also
the derivation of the following. based on the union bound (cf. [83]), the distance enumerator

. Ni(Z) of codewords of the component codé in Euclidean
e Upper bounds on the word-error probability of mOdépace is a key parameter, which we now derive.
ulation schemes based on binary lattices aWdary

PSK constellations, respectively, with MLC where overal . )
P y é‘ Euclidean Distance Enumerator of

maximum-likelihood decoding and MSD are considere .
ultilevel Component Codes

[83] and [52].
« The probability of decoding error when overall maxi- For brevity, we restrict ourselves to equiprobable signal

mum-likelihood decoding is used [51]. points and a regularly partitioned constellation; i.e., all subsets
 The Euclidean distance enumerator of MLC [35]. at one partitioning level are congruent. The Euclidean distance
« The bit-error probability for 8-PSK with MLC and MSD enumeratotV;( %) of the Euclidean space representation of the

when error propagation is taken into account [39]. multilevel component codé’ of length V is given by
« The probability of decoding error at levéls a function (1)( )

of the Chernoff bounding parameter fdi/-ary PSK, 0 N Bz

4-QAM and QAM with an infinite number of signal points Ni(2) = [B7(@)]" W7< - B )> (56)

[84], [85]. !

« A minimum-distance bound on the word error probabilityyhere
for block-coded modulation schemes using MSD when

error propagation is taken into account [86]. Wi(D) = Z w;(6) - D° (57)
« A lower bound on the symbol error probability for lattice 5>6;
codes [87]. _ _ .
« An upper bound on the word error probability for latticedenotes the weight enumerator of the linear binary component
codes [88]. codeC* (minimum Hamming distancé;).
In this appendix, we sketch the derivation of a tight upper
bound on the word error probability fak/ :.2[-ary trans-  pM(z) = EapcAd-x10) Z ACN
mission using an MLC scheme with linear binary component a;CA(@O a7 —11)
codes. In [83] a derivation is given for component codes (58)

based on lattice constellations that neglects boundary effects.

Here, the results are generalized to constellations with a finje he averaged different-subset constellation enumerator at
number of signal points and almost arbitrary labelings. Thys,e| ; and

boundary effects are included. Note that the main results are

in [35].

Let p,, denote the probability that the word of estimated Bi(o)(Z) = Ea,cA(e0.zi10) Z Zlaw=a;l”
source symbolg = [éo,él, e ,éz’l] is in error and letp,, ; a; EA(z0 37 —10)
denote the probability that the estimated component data word (59)

¢’ contains errors, provided the correct subset is known at each

decoding stage, i.e., error-free decisions at lower levels, igthe averaged same-subset constellation enumerator at.level
parallel decoding of the individual levels (PDL) are assumed. The bound on the error probability can be tightened by using
Using the union bound principle, the error probability is a relevantEuclidean distance enumerator

strictly upperbounded bEf;é Pw,i- COnsequentlyp,, can be

upper-bounded by bounding the individual error raigs. Nirel(Z) = W;(D = B, sa(Z)) (60)
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with the constellation enumerat(Bél)(Z) can be reduced in order
to tighten the error probability bound if the following fact
Biet(Z) =Ea, ca(a0.i-10) Z Zlar—a; (given in [24] and also used in [83]) is taken into account:

The error probabilityp,, ; is still upper-bounded by the union
61) bound when only adjacent signal points are counted, i.e.,

those points determining the walls of the Voronoi region
whereV (ay, A(z° - - - #°~11)) denotes the set of signal pointsof the considered signal point. Thus the resultiregevant
which determine the Voronoi region af,, with respect to constellation enumerator in (61) is validif = 0 is assumed
A0 21, to be transmitted. Additionally, since signal points representing
the same symbol are irrelevant for determining the \Voronoi

Sketch of _Proof:For simplicity of nc_)tat|or_1 and W'thou’? cells, the same-subset enumerator equals one. In the case of
loss of generality subsequently the considerations are restricieg |ar partitions, (61) also holds for transmissionzBf= 1
to the leveli = 0. We start with a simple two word linear code ' '

C% = {e) = 0,0} of length V, where the weight o&! is 6. hamely

If we first assume the all-zero codewaoefi to be transmit-
ted, the signal points representing the complementary binary Bose(Z) = Eqcam) Z Zlax—a;|?
symbol z° = 1 have to be considered to upper-bound the ’ ’
error probability by the union bound. In this case the averaged
different-subset constellation enumeraﬁé}g_)l(z) at level0
is given by the mean Euclidean distance enumerator counting
each signal point;, € A(0) representing:® = 0 with respect
to each signal poink; € A(1) representing:’ = 1 0

a; CV(ap, A(z0---zi—11))

ax €V (a;,A(0))

12
= Eupca) > Zlemul i (65)
a; €V (ar,A(L)

@ B lax—a; |2 The derivation of the upper bound on the error probability of
Bj,0-1(%) = Ea,ca0) Z Z e (62) multilevel codes on the AWGN channel is sketched for regular
a;€A) partitions. This symmetry property of a Euclidean space code
was already exploited by Zehavi and Wolf [93] and in a
weaker form by Ungerboeck in his code search criteria [4];
Forney called it “Ungerboeck—Zehavi-Wolf symmetry” [94].
However, the calculation can still be applied to nonregular
Béjlf_)o(Z) =Ea,caq) Z Zla—a;l* L (63) partitions if the formulas are adapted to the time variance of
ax EA(0) the equivalent channel in a similar way as is done for the
Rayleigh fading channel, see, e.g., [95].
For regular partitionsBé}Sﬁl(Z) = Bé,ll)_)o(Z) = B{M(2) Additionally, in almost all cases relevant in practice the
holds; the average constellation enumeraﬂﬁ)(z) is in- results also hold for nonuniform, i.e., shaped, transmission.
dependent of the actual transmitted codeword. The saméAnalogous to the derivation of an upper bound on the
derivation applies to the averaged same-subset constellatigprd error probability p,, ;, an upper bound on the bit-
enumerato3\” (Z), which is required to consider all possibleerror probabilityp, ; can be obtained by the modified weight
Euclidean space representations of those positions, which @féimerator as usual [89].
identical in both codewords. If error propagation in MSD is neglected, the bit-error
Due to the orthogonality of the signal space, the Euclide&@kobability p, for multilevel coded transmission is given by
distance enumerator of the component c68avith respect to .
all possible Euclidean-space codeword representations is given R
by the product of the different-subset constellation enumerators by = Z P,
for all differing positions times the product of the same-subset

constellation enumerators for all equal positions (see, e.gf, [39], wherep;; denotes the bit-error probability for de-

By the same argument, the constellation enumerBﬁé?(Z)
in the case of the transmission df is

=0

[35]), hence coding at level: when error-free decisions are assumed at
N—§ s decoding stages of lower levels.
No(2) = [B(2)) - [BP(2)] 9 589
W1’
r | By (4
_ [B(()O)(Z)]A ) (()0)( ) (64) B. Examples- | |
By’ (Z) Two special cases of the calculation of the Euclidean

distance enumerator that are of practical interest are discussed

Applying this result to a general linear binary cod® with in the following examples.

weight enumeratoi¥co (D) yields (56).
In order to calculate an upper bound on the error probability, Example 1: The use of a lineafn, k, §) codeC® with mini-

the entire Euclidean distance enumeraig(Z) of the code is mum Hamming distanc&at level0 of an equiprobable 8-ASK

not required. Here, due to the union bound, many error eveotnstellationA = {+1,+3,+5,+7} with natural labeling

are counted more than once. The number of terms comprisiagnvestigated (regular partitions). The relevant constellation
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Q ay | ap ag
—e ® | ® *—
-3 -1 1 3 4]
X 0 0 1 1 (5]
Fig. 35. Signal constellation at levelof a 4-ASK constellation with block
partitioning. [6]
[71

enumeratorBy(Z) is calculated according to (61)

1 1 1 1 7
Zozt 4 Tozt 4 Cozty Szt = — 7%
R e T e 4 [9]
Hence, the relevant Euclidean distance enumerator of the c?gﬁ

CY in this example is given by

(8]

Bo(Z) (66)

7 [11]

Noser(Z) = wol8) - <_)bz4a L

; (67)

From (67) one can see that the minimum-distance error c%?]
efficient of the code’® is dramatically increased by a factor

of (%)5 due to the multiple representation of binary symboIELS]
in the signal constellation at levél Even for relatively small
Hamming distances, e.g.,6 = 15, an increase of the effective [14]
error coefficient by £)1> ~ 4422 results. In general, the factor

is given by theéth power of the average number of nearesis)
neighbors in the constituent signal set.

Example 2: The 4-ASK constellatiod = {41, £3} with
block partitioning for transmission at level of an MLC ;4
scheme as shown in Fig. 35 is investigated. Equiprobable sig-
nal points are assumed. The relevant constellation enumereﬁg{
By(Z) reads:

[16]

1

2
20
Here not only the minimum squared Euclidean distance E)f]

4 contributes to the relevant constellation enumerator but also
the additional distancks, because walls of the Voronoi region[
are at different distances for signal poinrts and a;.
Remarkably, ass increases the minimum-distance errof22]
coefficient ()° decreases. Thus in case of block labeling
asymptotically the minimum distance is of almost no intereg3]
This again emphasizes our conclusion that minimum Euclidean
distance is not the most appropriate design criterion. [24]

Bo(2) = Z(Z* + Z'). (68) [19]
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