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Abstract—This paper deals with 2
`-ary transmission using

multilevel coding (MLC) and multistage decoding (MSD). The
known result that MLC and MSD suffice to approach capacity
if the rates at each level are appropriately chosen is reviewed.
Using multiuser information theory, it is shown that there is
a large space of rate combinations such that MLC and full
maximum-likelihood decoding (MLD) can approach capacity. It
is noted that multilevel codes designed according to the traditional
balanced distance rule tend to fall in the latter category and,
therefore, require the huge complexity of MLD. The capacity
rule, the balanced distances rules, and two other rules based
on the random coding exponent and cutoff rate are compared
and contrasted for practical design. Simulation results using
multilevel binary turbo codes show that capacity can in fact
be closely approached at high bandwidth efficiencies. Moreover,
topics relevant in practical applications such as signal set labeling,
dimensionality of the constituent constellation, and hard-decision
decoding are emphasized. Bit interleaved coded modulation, re-
cently proposed by Caireet al. is reviewed in the context of MLC.
Finally, the combination of signal shaping and coding is discussed.
Significant shaping gains are achievable in practice only if these
design rules are taken into account.

Index Terms—Bit-interleaved coded modulation, channel ca-
pacity, dimensionality, hard decision, multilevel coding, mul-
tistage decoding, set partitioning, signal shaping, trellis-coded
modulation.

I. INTRODUCTION

T HE idea ofcoded modulationis to jointly optimize coding
and modulation in order to improve the performance of

digital transmission schemes, see, e.g., [2]. Independently of
each other, the most powerful applicable coded modulation
schemes were presented in 1976/1977 by Ungerboeck [3], [4]
and Imai and Hirakawa [5]. The common core is to optimize
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the code in Euclidean space rather than dealing with Hamming
distance as in classical coding schemes.

Ungerboeck’s approach to coded modulation is based on
mapping by set partitioning. Thereby, the signal set (constel-
lation) of an -ary modulation
scheme is successively binary partitioned insteps defining a
mapping of binary addresses to signal
points . In almost all work dealing with coded modulation
the set partitioning strategy introduced by Ungerboeck is cho-
sen: maximize the minimum intra-subset Euclidean distance.
In the encoder, the binary addresses are usually divided into
two parts: the least significant binary symbols are convolu-
tionally encoded and the most significant binary symbols (if
present) remain uncoded. The code parameters are chosen by
means of an exhaustive computer search in order to maximize
the minimum distance of the coded sequences in Euclidean
space. Because of the trellis constraints on sequences of
signal points, Ungerboeck’s approach to coded modulation
is namedtrellis-coded modulation (TCM). Originally, TCM
was proposed for one- and two-dimensional signal sets using
one bit redundancy per signal point. Significant work was
performed in order to provide more flexible transmission rates
with TCM, using signal constellations in higher dimensions
[6], [7] or signal constellations derived from lattice theory, e.g.,
[8]–[13]. Alternatively, a pragmatic approach of punctured
TCM was proposed in [14]–[16]. Further work was done
to achieve desired properties such as rotational invariance
[17]–[21] or spectral zeros [22], [23].

Imai’s idea ofmultilevel coding (MLC) is to protect each
address bit of the signal point by an individual binary
code at level . (In retrospect, the constructions B through
E for dense lattices reviewed in [24] can be regarded as
the first MLC approach.) Originally, MLC was proposed for
one-dimensional signaling combined with labeling by binary
counting off the signal levels. The individual codes were
chosen in such a way that the minimum distance of the
Euclidean space code was maximized. In the following we
refer to this concept of assigning codes to the individual
levels asbalanced distances rule(see Section II). At the
receiver side, each code is decoded individually starting
from the lowest level and taking into account decisions of prior
decoding stages. This procedure is calledmultistage decoding
(MSD). In contrast to Ungerboeck’s TCM, the MLC approach
provides flexible transmission rates, because it decouples the
dimensionality of the signal constellation from the code rate.
Additionally, any code, e.g., block codes, convolutional codes,
or concatenated codes, can be used as component code.
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Although MLC offers excellent asymptotic coding gains,
it achieved only theoretical interest in the past. In practice,
system performance was severely degraded due to high error
rates at low levels. A lot of effort was devoted to overcome
this effect, see, e.g., [25].

A straightforward generalization of Imai’s approach is to
use -ary, , component codes based on a nonbinary
partitioning of the signal set. In this context, TCM is a
special case of MLC using a single convolutional code with a
nonbinary output alphabet while higher levels remain uncoded,
see, e.g., [26], [27]. In this paper we restrict ourselves to binary
codes, because a) the large class of binary codes has been
well established in coding theory for a long time, b) mainly
binary codes are of practical interest, and c) binary codes in
conjunction with multilevel codes turn out to be asymptotically
optimum, see Section III.

In 1988, Forney presented the concept of coset codes [28],
[29], a class of codes originally considered in [30]. By dealing
only with infinite constellations (neglecting boundary effects)
and using the mathematics of lattice theory, a general class
of codes was established. Similar to TCM, cosets instead
of signal points are selected in the encoding process. Coset
codes divide into two classes:trellis codes(a generalization
of TCM) which employ a convolutional encoder andlattice
codes(based on block codes) where the signal points in
dimensions exhibit group structure. Lattice codes can also
be generated by the MLC approach, if the individual codes
are subcodes of each other. Already de Buda [31] stated
that lattice codes can approach the channel capacity of the
additive white Gaussian noise (AWGN) channel. The proof
was recently refined by Urbanke and Rimoldi [32] as well as
by Forney [33].

For practical coded modulation schemes where boundary
effects have to be taken into account, Huberet al. [34]–[37]
and Kofmanet al. [38], [39] independently proved that the
capacity of the modulation scheme can be achieved by mul-
tilevel codes together with multistage decoding if and only
if (iff) the individual rates of the component codes are prop-
erly chosen. In these papers, equiprobable signal points and
regular partitioning were assumed. In this paper, the results
are generalized for arbitrary signaling and labeling of signal
points. We present theoretical concepts for the design and
analysis of practical coded-modulation schemes. The key point
is the well-known chain rule for mutual information [40],
[41]. As shown in Section II, the chain rule provides a
model with virtually independent parallel channels for each
address bit at the different partitioning levels, called equivalent
channels. Considering the information-theoretic parameters of
these channels leads to

a) theoretical statementsabout coded modulation and
b) practical rules for designing and constructing coded

modulation schemes.

The main intention of this paper is to show that power- and
bandwidth-efficient digital communication close to theoretical
limits is possible with properly designed MLC schemes not
only in theory but also in practice. For that purpose a variety
of aspects of coded modulation are discussed.

The organization of this paper is as follows. In Section II the
system model is given and the concept of equivalent channels
is introduced. It is shown in Section III that coded modu-
lation via the multilevel coding approach is optimum in the
sense of capacity. Additionally, the capacity region for coded
modulation schemes when using overall maximum-likelihood
decoding is derived, leading to conditions on optimality. In
Section IV, random coding exponents as well as cutoff rates
of the equivalent channels are investigated. Several rules
to assign rates to the individual codes are discussed and
compared. In particular, the optimality conditions of the rate
distribution according to the traditional balanced distances
rule are given and compared to the design according to the
capacities of the equivalent channels. Simulation results show
that the application of information-theoretical design rules
to multilevel codes leads to power- and bandwidth-efficient
transmission systems close to the Shannon limit.

In the remaining sections we deal with further aspects
of coded modulation schemes which are essential in prac-
tice. In Section V, the optimal dimensionality of the signal
set, on which MLC should be based, is derived. Although
Ungerboeck’s strategy is often used as “natural” method of
partitioning a signal set, the proof of optimality of MLC does
not depend on the actual set partitioning strategy. In Section
VI we investigate set partitioning strategies for finite codeword
length. Caireet al. [42] recently presented the derivation of
capacity for a pragmatic approach to coded modulation. In
this scheme, only one individual binary code with subsequent
bit interleaving is necessary to address the signal points. In
terms of capacity the loss with regard to Imai’s MLC scheme
is surprisingly small if and only if Gray labeling of signal
points is employed. A derivation of this scheme starting from
the standard approach of MLC and its multistage decoding
together with a discussion for finite block length is also
addressed in Section VI. In Section VII the use of hard-
decision instead of soft-decision decoding at the receiver is
investigated.

Since signal shaping is well known to provide an additional
gain by replacing a uniformly distributed signal by a Gaussian
distributed one in order to reduce average transmit power,
we address the optimum combination of shaping and channel
coding using MLC in Section VIII. The optimum assignment
of code rates to the individual levels and optimum sharing of
redundancy between coding and shaping is given.

Section IX summarizes the main results. The Appendix
sketches the derivation of the distance profile of multilevel
codes and an efficient technique to bound the error rate.

II. SYSTEM MODEL

Consider a modulation scheme with , , signal
points in a -dimensional signal space. The signal points
are taken from the signal set with

IR . Since we mainly focus on the AWGN channel,
the channel output signal points come from the alphabet

IR of real numbers in dimensions. In order to
create powerful Euclidean-space codes for such an-ary
signal alphabet, labels have to be assigned to each signal point,
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Fig. 1. Binary partitioning of the 8-ASK signal set.

see, e.g., [26]. Therefore, a (bijective) mapping of
binary address vectors to
signal points is defined. Usually, the mapping is derived
by successively partitioning the signal setinto subsets.

As an example, binary partitioning of the 8-ASK (8-ary
amplitude shift keying) signal set is illustrated in
Fig. 1. In contrast to most of the literature, most examples in
this paper are based on one-dimensional constellations. This
is not only for simplicity of presentation, but also due to
the results given in Section V. Of course,-ary ASK will
represent one quadrature component in a QAM scheme in
practice.

In the first step, at partitioning level , the signal set
is divided into two parts, namely, the subsets

and . Then, all subsets at partition-
ing level are iteratively divided into two further subsets

and at partitioning level .
Each subset at partitioning levelis uniquely labeled by the
path in the partitioning tree from the root to the
subset

(1)

The iteration stops when each subset at levelonly contains
one signal point. Then, the subset label equals
the address vector of the signal point. As we will see in Section
VI, the particular strategy for this mapping by set partitioning
influences the properties of the coded modulation scheme.

Since the mapping is bijective independently of the
actual partitioning strategy, the mutual information1

between the transmitted signal point and the re-
ceived signal point equals the mutual information

between the address vector
and the received signal point . The discrete-time

physical channel is characterized by the set
of conditional probability density functions (pdf’s) of the
received point given the signal point .

Applying the chain rule of mutual information [40, p. 22]
we get

(2)

1We denote the random variables corresponding to the transmitted and
received signal points, the binary address vector, and its components by capital
letters.

(a)

(b)

Fig. 2. Equivalent channels for coded 8-ASK modulation.

The equation may be interpreted in the following way. Trans-
mission of vectors with binary digits
over the physical channel can be separated into the parallel
transmission of individual digits over equivalent channels,
provided that are known (cf. [5]). This funda-
mental principle is illustrated in Fig. 2 for 8-ASK modulation
and the natural labeling of the signal points. Fig. 2(a) shows
the usual transmission scheme with the binary address vector
entering the 8-ASK modulator. The addressed signal point is
transmitted over the noisy channel. According to the chain rule
of mutual information, the scenario illustrated in Fig. 2 (b)
provides the same mutual information as Fig. 2 (a). Fig. 2 (b)
shows parallel transmission schemes for the individual binary
digits . Binary digits of “low” levels
are multiply represented in the modulator signal sets. The
underlying signal set of the equivalent modulatorfor digit
is time-variant depending on the digits of lower levels .
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For example, in Fig. 2 the equivalent modulators are shown
for one time instant where holds. The actual
signal point to be transmitted for digit is selected by digits

of higher levels ; . This example illustrates
that the equivalent channel for transmission of the binary
digit comprises the time-variant equivalent modulatorand
the actual noisy (physical) channel.

From the chain rule the mutual information

of the equivalent channel can be easily calculated by (cf.
[37], [33])

(3)

Since the subsets at one partitioning level may not be congru-
ent, the mutual information
is calculated by averaging over all possible combinations of

E (4)

This concept of equivalent channels of a coded modulation
scheme is the basic tool for the analysis and design of
such schemes. For the moment, let the digits
of the lower levels be fixed. Then, the pdf

characterizes the equivalent channel.
The underlying signal subset for the equivalent modulator

is given by . For all but the highest level
the binary symbol is multiply represented

in the subset . Therefore, the signal point
is taken from the subset . Thus the pdf

is given by the expected value of the pdf
over all signal points out of the subset

E

(5)

In general, the equivalent channelis completely characterized
by a set of probability density functions of the
received signal point if the binary symbol is
transmitted. Due to the time-variant equivalent modulator,
i.e., the underlying subset for transmission of symbol
depends on the symbols at lower levels this
set of pdf’s comprises the pdf’s for all
combinations of

(6)

Note that the characterization of the equivalent channel
by its set of pdf’s given in (5) and (6) is valid
for every memoryless channel that can be characterized by
pdf’s . This fact is quite notable since almost all work

Fig. 3. Multilevel encoder.

Fig. 4. Multistage decoding.

concerning coded modulation deals with minimum distance as
the essential design parameter which is relevant for at most
the Gaussian channel. Indeed, we will see later that even for
the Gaussian channel optimizing minimum distance does not
necessarily lead to asymptotically optimum schemes. With
the set of pdf’s the theoretical treatment of coded
modulation schemes is possible for arbitrary probabilities of
signal points as well as for arbitrary labeling of signal points.
This is the basis for analyzing schemes employing signal
shaping (approximately Gaussian-distributed signal points are
generated, see Section VIII), as well as for the assessment of
schemes with different labelings (Section VI).

Having the above derivation of the equivalent channels
in mind, the multilevel coding approach together with its
multistage decoding (MSD) procedure, originally presented by
Imai and Hirakawa [5], is a straightforward consequence of
the chain rule (2). The digits result from
independent encoding of the data symbols. The encoder is
sketched in Fig. 3. A block of binary source data symbols

, is partitioned into blocks

of length with . Each data block is
fed into an individual binary encoder generating words

of the component code .
For simplicity, we here assume equal code lengthsat all
levels, but in principle the choice of the component codes is
arbitrary. For example, binary block and convolutional codes
or concatenated codes like turbo codes [43], [44] can be
employed. The codeword symbols of the
codewords at one time instant , form
the binary label , which is mapped to the
signal point . The code rate of the scheme is equal to the
sum of the individual code rates , namely,

The right-hand side of the chain rule (2) suggests a rule
for a low-complexity staged decoding procedure that is well
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known asmultistage decoding(MSD), see Fig. 4. The compo-
nent codes are successively decoded by the corresponding
decoders . At stage , decoder processes not only the
block , , of received signal points,
but also decisions of previous decoding
stages . (Notice that decoding delays are not shown in Fig. 4.)
Actually, the staged decoding according to the chain rule in
(2) would require the transmitted symbol instead of the
estimate . But as long as error-free decisions are
generated by the decoder , MSD can be interpreted as an
implementation of the chain rule.

III. CAPACITY OF MULTILEVEL CODING

A. Capacity

In order to approach channel capacity, a maximization of
the mutual information over all selectable parameters has to
be performed. Usually, these are thea priori probabilities of
the signal points. Thus a specific probability distribution
over the channel inputs is required to achieve the capacity.
These probabilities cannot be optimized independently for
each individual level, but only for the entire signal set. Thus
the capacity of the equivalent channel is given by the
respective mutual information for these
specific channel input probabilities. In view of (3) and (7),
is given by

E

E (7)

where denotes the capacity when using
(only) the (sub)set with a priori probabilities

. Hence, in order to avoid confusion,
we use the term “capacity” throughout this paper for given
and fixeda priori probabilities of signal points.

Because the MLC approach directly results from the chain
rule for mutual information (Section II), the derivation of the
capacity of multilevel coded schemes is obvious. We review
the theorem given in [34]–[37], cf. also [38] and [39].

Theorem 1: The capacity of a -ary digital
modulation scheme under the constraint of givena priori
probabilities of the signal points is equal to
the sum of the capacities of the equivalent channelsof
a multilevel coding scheme

(8)

The capacity can be approached via multilevel encoding
and multistage decoding, if and only if the individual rates

are chosen to be equal to the capacities of the equivalent
channels, .

The proof is obvious from the chain rule and given in the
papers cited above.

Theorem 1 has the following consequences for digital
transmission schemes:

1) Out of the huge set of all possible codes with length,
where binary symbols are mapped to signal
points, the (comparatively very small) subset of codes
generated by the MLC approach—where
binary symbols are mapped to signal point label ele-
ments independently for each level—is a selection
with asymptotically optimum performance. As already
mentioned by Forney [33] and Urbanke and Rimoldi
[32] for the case of lattice codes, here Shannon’s coding
theorem is proved with well-structured in contrast to
random codes.

2) Although in multistage decoding (MSD) the code con-
straints at higher levels are not taken into account while
decoding lower levels, suboptimum MSD suffices to
achieve capacity. Optimum overallmaximum-likelihood
decoding (MLD) of the Euclidean-space code cannot
improve the asymptotic performance of the scheme as
long as the rates are chosen equal to the capacities

. Even in practice with finite code lengths, the gain
of MLD over MSD is expected to be relatively small as
long as the rate design is appropriate.

3) The theorem states that for any digital transmission
scheme (provided that the number of points is a power
of two), the problem of channel coding can be solved
in principle in an optimum way via MLC and MSD
by employing binary codes. That means there is no
need to search for good nonbinary codes to be used in
bandwidth-efficient transmission systems. Starting from
the huge field of good binary codes, their properties can
be directly translated to any bandwidth efficiency via the
MLC approach. Therefore, similar to the theoretical sep-
arability of source and channel coding, channel coding
and modulation can be treated and optimized separately.
(In practice, i.e., for finite data delay, nonbinary codes
may, of course, have some advantages in performance
or complexity, cf. TCM.)

4) The theorem implies no restriction on the particular
labeling of signal points. Thus mapping by set parti-
tioning according to Ungerboeck’s criterion [4] is not
essential to approach capacity. Nevertheless, for finite
code length, Ungerboeck’s partitioning strategy turns out
to lead to the highest performance among MLC schemes
with different partitioning strategies, see Section VI.
However, alternative partitioning strategies may be fa-
vorable for some other practical purposes as discussed
also in Section VI.

B. Capacity Region

In this section we regard MLC as a multiuser commu-
nication scheme as in [39], and show that a much larger
variety of rate combinations can approach capacity, provided
that overall MLD is used rather than MSD. Therefore, this
theoretical result may not be of much practical importance,
although it does help to elucidate the strengths and weaknesses
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Fig. 5. Bounding region for the individual rates of a two-level code.

of a broader class of MLC designs than those suggested by
Theorem 1 (cf. also [45]).

Applying known results from multiuser information theory
we can state the following theorem.

Theorem 2: The capacity of a -ary digital
modulation scheme with givena priori probabilities of
signal points can be achieved by multilevel encoding
and overall maximum-likelihood decodingif and only if the
rates satisfy the following conditions:

1) ;

2) , for all

possible sets of indices, where
is the complementary set of such that

and .

Proof: For simplicity, let us start with a two-level code,
i.e., -ary signaling. The symbols and of two single
independent users are combined via the mapping of symbols
to signal points and transmitted over the channel. Therefore,
we actually have to deal with a multiple-access channel where
the maximum feasible sum of rates is bounded by the
mutual information of the total scheme, see, e.g., [46]

(9)

Since overall MLD takes into account the constraints of
code at level for decoding of symbol at level ,
the maximum rate at level is given by the mutual
information [46], [39]. This argument is also
valid for decoding symbol at level , thus

and (10)

The bounding regions for and according to (10) and

(9) are shown in Fig. 5. Regarding point1

and hold, which corresponds to the
chain rule: . Hence,
symbol can be decoded as in the single-user case without
any knowledge of the actually transmitted symbol, and

point 1 marks the special result described above that MSD
suffices to achieve capacity. The analogous situation is given

for point 2 by interchanging and . Here, MSD starts
with the decoding of symbol . To be more specific, points
1 and 2 differ only in the labeling of the signal points.

For example, if point 1 corresponds to the labeling of a 4-

ASK constellation according to Ungerboeck, then point2

represents the situation for the labeling defined by ablock
partitioning, see Section VI. Notice that the individual rates
depend strongly on the particular labeling; i.e., is
not equal to in the general case (also illustrated in
Fig. 5).

Following Gallager [40], total randomness is not indispens-
able to prove the channel coding theorem. A careful analysis
shows that pairwise independence of codewords is sufficient. It
is easy to see that the pairwise independence of codewords in
the ensemble of multilevel codes is valid. Hence, the channel
coding theorem applies to this ensemble if overall maximum-
likelihood decoding is used. This is still valid even if the rates

are not chosen to be equal to the capacitiesof the
equivalent channelsbut the total rate is less than the capacity
of the channel. Thus capacity in the range

can still be achieved with MLC iff
. However, in this case it isunavoidable2

to replace the low-complexity MSD by an extremely complex
overall maximum-likelihood decoding in order to come close
to capacity. For rate exceeding or for rate

exceeding , respectively, the pair of rates
is outside the capacity region.

In summary, if lies on the straight line connecting

points 1 and 2 in Fig. 5, the capacity of the modulation
scheme can be achieved by MLC and MLD. In the special
case where lies on one of the vertices of the capacity

region (point 1 or 2 ), MSD is sufficient to achieve capacity.
Using the same arguments, the results for the two-level code

can be extended to the case of an-level code. Here, multiuser
theory gives not only upper bounds for the individual rates
and the sum of all rates , but also for the sums of
two or more rates [41]. This proves the theorem.

The consequences of Theorem 2 are discussed in the next
section.

IV. COMPARISON OFRATE DESIGN RULES

The essential point for the design of a coded modulation
scheme is the assignment of code rates to the individual coding
levels. In this section, five rules for rate design are reviewed,
and their similarities and differences are discussed.

A. Capacity Design Rule

Following Theorem 1, the first design rule is quite obvious:

Rate Design Rule 1 (Capacity Rule)
For a -ary digital modulation scheme the rate at the

individual coding level of a multilevel coding scheme should
be chosen equal to the capacity of the equivalent channel

2It is true that in the entire region MSD in combination with time sharing
is still sufficient to achieve capacity. Since this implies switching periodically

between code rates given by and , this strategy is not of interest in
practice for MLC.
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Fig. 6. CapacityC(AAA) and capacitiesC0, C1, andC2 of the equivalent
channels for 8-ASK with natural labeling. AWGN channel. Dashed vertical
line:C(AAA) = 2.5 bits/symbol. Dashed curve: CapacityC(BPSK) for a BPSK
scheme (same spacing of signal points relative to noise variance).

This capacity rule was proposed in [34], [35], [33] and
independently in [38], and [39].

For example, we assume an 8-ASK constellation
with natural labeling, cf. Fig. 1. In Fig. 6,

the capacity of the scheme as well as the capacities
of the equivalent channelfor transmission

over the AWGN channel are shown. In order to get a unified
representation, the abscissa is labeled by , where
denotes the average symbol energy. For the design of a scheme
with rate , see dashed line in Fig. 6, the capacities
coinciding with the optimum individual rates, are given by

. Additionally, for comparison, the
capacity BPSK for binary signaling corresponding to the
situation at level without multiple representation of symbol

is sketched in Fig. 6. Here the same spacing of signal
points relative to noise variance as in 8-ASK is assumed (i.e.,

- ). The gap between BPSK and
(e.g., 3 dB at ) is due to the multiple representation
of binary symbols by signal points at level(cf. also [35]).

B. Balanced Distances Rule

The second design rule, which was used traditionally, is
solely based on the minimum Euclidean distance in signal
space. Let us denote the minimum Hamming distance of code

at coding level by and the minimum Euclidean distance
of signal points in subsets at partitioning level

by . Then, the squared minimum Euclidean distanceof
multilevel codewords is lower-bounded by

(11)

see, e.g., [47], [26], and [48]. In order to maximize the
minimum Euclidean distance at lowest cost in total rate, it
is reasonable to choose the product equal for all levels ,
i.e., the product of distances should be balanced. This leads to

Rate Design Rule 2 (Balanced Distances Rule)
For a -ary digital modulation scheme, the rate at the

individual coding level of a multilevel coding scheme should

be chosen such that the following conditions are satisfied:

(12)

The intra-subset distances are given by the signal constel-
lation and the particular labeling strategy. Because the choice
of the minimum Hamming distance of the component codes

balances the levels, we refer to Rate Design Rule 2 as the
balanced distances rule (BDR).

The balanced distances rule has been used by most previous
MLC work starting with the lattice constructions B through E
presented in [24].

Consider again the 8-ASK constellation sketched in Fig. 1.
The intra-subset minimum Euclidean distances for this
example are . According to the balanced
distances rule, the normalized minimum Hamming distances
of the component codes with length must satisfy

(13)

As component codes, we use linear binary block codes with
minimum Hamming distances which meet the well-known
Gilbert–Varshamov bound with equality, see, e.g., [49]. Then,
for long component codes , the rate and minimum
Hamming distance are related by

(14)

where

denotes the binary entropy function. Using again the example
of a design for total rate 2.5 bits/symbol, the rate
distribution according to the balanced distances rule yields

with (15)

Since the multiple representation of symbols by signal
points is ignored, the rate according to the BDR
is substantially higher than the capacity of the
equivalent channel at level. According to the converse of
Shannon’s channel coding theorem, transmission over this
channel is not possible with arbitrarily high reliability. Nev-
ertheless, assuming MSD and comparing the required SNR
for and , respectively, we can observe a
loss of about 1.2 dB for an MLC scheme designed by the
BDR compared to an MLC scheme designed according to
the capacity rule. This degradation due to the increased rate

results mainly from a tremendous increase in the number
of nearest neighbor error events because of the multiple
representation of symbols by signal points, cf. [35] and the
examples in the Appendix. To illustrate this crucial effect, let
us consider the following example assuming one-dimensional
constellations: Regard two codewords at level, say and

, with Hamming distance . If each symbol of is only
represented by “inner” signal points, then two nearest neighbor
points represent the complementary binary symbol. Hence,
there are words in the Euclidean space representingwith
minimum squared Euclidean distance to codeword .
For Ungerboeck’s labeling, the minimum Hamming distance
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Fig. 7. Mutual informations according to (16) and capacitiesC0, C1,
andC2 of the equivalent channels for a multilevel coded 8-ASK scheme.
Ungerboeck’s set partitioning. AWGN channel. RatesR0, R1, andR2 are
chosen by the balanced distances rule for total rateR = 2.5 bits/symbol.

at level is the greatest one and hence, the greatest degradation
due to multiple symbol representation occurs at level.

Let us check whether the rate distribution (11) is optimum
in sense of capacity. As in Theorem 2, the individual code
rates must satisfy the following conditions:

(16)

In Fig. 7 the curves of the mutual informations appearing
in (16) are plotted together with the capacities of the
equivalent channels. The dashed vertical line marks the sit-
uation for 2.5 bits/symbol. We observe that the rate
distribution according to the balanced distances rule, see (15),
satisfies Theorem 2, because all marked points on the vertical
dashed line lie below the corresponding curves, marked by
the same symbol. But error-free multistage decoding of the
MLC scheme designed by the BDR is impossible in principle,
since the rate exceeds the capacity . Only by employing
overall MLD can the capacity of the 8-ASK constellation be
approached.

These differences between MLC schemes designed by the
capacity rule (Cap-MLC) and MLC schemes designed by the
balanced distances rule (BDR-MLC) can be similarly observed
for other schemes [50].

Nonetheless, in the majority of the work concerning coded
modulation, see (e.g., [48], [26], [27], [51], and [52]), the
balanced distances rule was used for rate design although mul-
tistage decoding was applied. These papers gave schemes with
excellent asymptotic coding gains, becausewas maximized.
In practice, however, the real coding gains are far below the
asymptotic gains. At least at the lowest level, the rate

significantly exceeds the capacity of the equivalent channel,
and, therefore, many errors occur at decoder. These errors
propagate through higher levels in the MSD procedure, so the
performance of the scheme is quite poor.

In order to overcome this effect, several strategies have
been proposed [53], [54]. First, reliability information about
decoding decisions may be passed to higher decoding stages in
order to mitigate the effect of error propagation, cf. also [26]
and [25]. But this method requires the use of sophisticated
decoders generating reliability information for each output
symbol. Moreover, especially for concatenated codes which
are iteratively decoded such as turbo codes [43], [44], it is
not yet possible to generate reliability information of good
quality.3

Second, interleaving between binary codewords at the in-
dividual coding levels has been proposed. Then, error bursts
at decoding stagecan be broken up into almost independent
single errors, facilitating the task for the decoders,
, at higher levels. But in fact, interleaving increases the

effective code length. Hence, using codes whose performance
increases with the block length, e.g., turbo codes, it seems
more efficient to increase the code length in a direct way
instead of introducing interleaving. Nevertheless, interleaving
within one codeword can still improve performance without
introducing additional delay when employing codes which are
sensitive to the structure of the error event. For example, this
holds for turbo codes or terminated convolutional codes.

Third, instead of performing multistage decoding once per
multilevel codeword, it has been proposed to iterate the
decoding procedure, now using decoding results of higher
levels at lower levels [25]. Consider, e.g., a second decoding
of symbol by the decoder , where estimates of all
symbols , , are already known. Now, symbol is
no longer multiply represented in the signal set—only the
signal points

and

remain and thus the effective error coefficient is decreased. If
the decisions at other levels are error-free, then simple binary
signaling remains. (Fortunately, this is true for a practical
decoder, since the number of errors usually decreases during
the iteration proceeds [37].) In this way, the enormous increase
in the number of error events by multiple representation
of binary symbols is avoided and performance is greatly
improved. Obviously, such an iterative decoding strategy over
several levels only works if there is sufficient interleaving
between levels. Thus this method not only causes a multiple
decoding effort, but also an increased data delay, which is not
usefully exploited in the sense of information theory.

These methods proposed to improve the suboptimum MSD
procedure are indeed more or less good attempts to approxi-
mate an overall maximum-likelihood decoder. The complexity

3Due to the remaining statistical dependencies in the feedback loop, the
reliability information of iteratively decoded symbols tends to a hard-decision
value with an increasing number of iterations.
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and the decoding delay due to this approximate MLD are
substantially larger than for usual MSD. If the rates at the
individual coding levels of an MLC scheme are designed
according to the BDR, the use of MLD is indispensable to
avoid a significant performance loss. However, as shown in
Section III, there is no need to use an extremely complex
overall MLD if the individual code rates are chosen according
to the capacity rule. Therefore, we conclude that the reason for
performance deficiencies of BDR-MLC schemes is actually
not the suboptimality of MSD, but the rate design itself.

Strictly speaking, the optimality of MSD holds only in the
asymptotic case of capacity-approaching component codes.
But in practice the gain of approximate MLD over MSD is
expected to be very small if the rate design is appropriate.

Let us now consider the special case of trellis-coded mod-
ulation (TCM) in this context. TCM is actually a two-level
MLC scheme in which the second level is “uncoded”—or,
more precisely, coded only per symbol. TCM schemes are
always designed for maximum minimum Euclidean distance
in signal space. Hence, TCM schemes are actually a special
case of BDR-MLC schemes. The traditional decoding method
for TCM involves first doing ML decoding at thehigher levels
for all possible lower level symbol values (finding the closest
point in each subset), and then using these decisions to do ML
decoding at the lower levels. The combination is an overall
ML decoder. In contrast, to apply MSD principles, one should
first decode thelower levels, e.g., using lattice decoding for
coset codes, and then, given the lower level decoder outputs,
decode once per symbol at the higher level. The results in this
paper and in [33] show that the latter approach will also work
provided that the lower level rate is below capacity, although
it will clearly not be as good as full MLD.

C. Coding Exponent Rule

Now, we sketch a rate design rule suited for practical
applications in which the data delay and the codeword length

are restricted, see also [37]. Additionally, a certain error
rate can often be tolerated depending on the particular ap-
plication. Therefore, we subsequently employ the well-known
random coding bound [40], which provides a relation between
codeword length and word error rate , for design and
discussion of MLC schemes.

Although some of the results are illustrated only for the
particular example of 8-ASK, they are in principle valid for
all pulse amplitude modulation (PAM) transmission schemes
based on sets of real or complex signal points, i.e., ASK, PSK,
QAM.

From [40], the random coding exponent is4

(17)

where

4Note that the symbol E followed by curly brackets denotes the expected
value operation, whereas the symbolE followed by parentheses denotes a
coding exponent.

The channel input symbol and input alphabet are denoted by
and , respectively. Using the random coding exponent, the
word error rate is bounded by .

Now, let us consider theth level of an MLC scheme. As
shown in Section II, the underlying subset for
transmission over this equivalent channelvaries. Hence, the
parameter of the equivalent channelis given by aver-
aging the parameter over all combinations
of , cf. [40]

E (18)

where

(19)

Usually (19) has to be evaluated numerically. Clearly, the
random coding exponent of the equivalent channelis

(20)

Fixing the random coding exponent and hence the error rate
to a constant value, a tradeoff between rate and SNR is
possible. We obtain the so-called isoquants of the random
coding exponent

(21)

For high SNR’s the bound can be improved employing the
expurgated coding exponent , see [40]. The coding
exponent for the subsequent analysis is simply the
maximum of the random and the expurgated coding exponent.

For illustration, the isoquants of the coding
exponent for all levels of 8-ASK with natural
labeling (cf. Fig. 1) and the AWGN channel are plotted versus

in Fig. 8. Additionally, the sum of individual rates
is shown. The presented isoquants are used

to compare the power efficiency of different MLC schemes
as well as to assign rates to the individual codes for a given
length . Similar to Design Rule 1 (capacity rule), we propose
the following design rule for MLC schemes with given block
length :

Rate Design Rule 3 (Coding Exponent Rule)
Consider a -ary digital modulation scheme combined with

a multilevel coding scheme applying binary component codes
of length . For a maximum tolerable word error rate , the
rates at the individual coding levels
should be chosen according to the corresponding isoquants of
the coding exponents .

Continuing the example of 8-ASK with a total rate
(see the dashed line), we obtain from Fig. 8 the rate design

(22)
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Fig. 8. 8-ASK, Ungerboeck’s set partitioning. RatesRi; i = 0; 1; 2; and
total rateR = 2

i=0
> Ri from isoquants ofEi(Ri) for N = 500 and

pw = 10�3 versusEs=N0. Dashed line:R = 2.5 bits/symbol. AWGN
channel.

Fig. 9. 8-ASK with natural labeling. AWGN channel. Distribution of rates
Ri; i = 0; 1; 2; derived from isoquants ofEi(Ri) versus block lengthN .

for codeword length and word error rate .
(The particular values for and are chosen because
experience shows that with and a
bit-error rate is achievable.)

For a given total rate and desired reliability , the iso-
quant curves serve to determine the distribution of individual
rates dependent on the block length. It is worth noting
that if the error probability of the equivalent channels is not
low enough to neglect error propagation, then one may choose
different error rates for different levels to compensate for this
effect; i.e., lower levels should operate at lower (designed)
error rates then higher levels.

For the particular case of and total rate ,
the rate distribution is plotted versus the block lengthfor
the 8-ASK example in Fig. 9. This representation gives a nice
illustration of the variation of the rate distribution versus the
codeword length . The rates of the component codes
of an MLC scheme derived from the capacity or the coding
exponent rule are quite different from those derived from the
balanced distances rule, as long as the block lengthis

not very small. In particular, the rates at lower levels are
substantially decreased due to the multiple representation of
binary symbols by signal points.

For moderate to high block lengths and word
error rate , the individual rates according to the
coding exponent rule differ only slightly from the asymptotic
values for given by the capacity rule. Therefore, the
capacity rule is a good choice for practical codes. However, for
short codes, the rates derived from the coding exponent rule
tend to those derived by the balanced distances rule, because
in this region error probabilities are mainly determined by the
minimum Euclidean distance rather than by the effective error
coefficient. Thus rate design according to the coding exponent
rule connects the capacity rule and the balanced distances rule
in a certain way.

D. Cutoff Rate Rule

In order to complete the discussion of design rules based on
information theoretical parameters, a rate design rule employ-
ing cutoff rates of the equivalent channels is stated here, cf.
[55]. The cutoff rate is an appropriate parameter for convolu-
tional codes using sequential decoding [2]. More generally, the
cutoff rate criterion may be useful for those classes of codes
that are not capacity approaching but ratherapproaching.

The cutoff rate for equivalent channel is simply [40]

(23)

Thus we arrive at the following design rule for MLC schemes
when is the significant parameter.

Rate Design Rule 4 (Cutoff Rate Rule)
For a -ary digital modulation scheme, the rates

at the individual coding levels of a multilevel
coding scheme using -approaching codes and decoding
schemes should be chosen equal to the cutoff ratesof the
equivalent channels:

The rates derived from the cutoff rate rule are very similar
to those derived from the capacity rule. Therefore, we do not
present an example for this rate design rule.

It is noteworthy that there is no simple relation between
the sum of the individual cutoff rates and the cutoff
rate of the underlying modulation scheme as there is for the
respective capacities (Theorem 1). Interestingly, the results of
[55] show that the sum of the in an MLC scheme using
Ungerboeck’s partitioning can exceed the cutoff rate of the
modulation scheme.

E. Equal Error Probability Rule

The design rules given so far are mainly based on random
coding principles rather than on specific component codes.
An alternative way is to choose codes with known proper-
ties in such a way that the word or bit-error probabilities
of the equivalent channels or their bounds are equal. This
leads to anequal error probability rule. For this purpose,
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TABLE I
RATE DISTRIBUTION FOR DIFFERENT RATE DESIGNS. 8-ASK

CONSTELLATION, UNGERBOECK LABELING, R = 2.5 BITS/SYMBOL

an analytic expression for the error probability is required.
In the Appendix, calculations of the distance enumerators of
the individual levels are presented which allow estimating the
error probability using an union bound approach.

To summarize, Table I displays the different rate designs
proposed in this section. Again the 8-ASK constellation with
Ungerboeck labeling and a total rate 2.5 bits/symbol are
assumed. We see that all rules give similar results except the
balanced distances rule.

F. Examples

In order to confirm the relevance of the presented de-
sign rules in practice, simulations for several digital PAM
transmission schemes with MLC and MSD over the AWGN
channel were performed. In particular, 8-PSK with 2
bits/symbol, 16-QAM with 3 bits/symbol, 32-QAM with

4 bits/symbol, and 64-QAM with 5 bits/symbol
(all with equiprobable signal points) were investigated. Turbo
codes (TC) using 16-state convolutional codes [44], [56] with
rates derived from the coding exponent rule are used as
component codes. Flexible rates of turbo codes are achieved
via puncturing as in [57], [37]. Block lengths
and of turbo codes with interleaver lengths

(number of information symbols fed to level)
are used.

The results are presented in the power–bandwidth plane for
the band-limited AWGN channel, see Fig. 10. The bandwidth
efficiency of the digital communication schemes, measured in
bits/s/Hz, is plotted versus the required to achieve a
desired reliability. As usual, denotes the energy per bit at
the receiver input and the one-sided spectral noise power
density. The solid line marks the Shannon limit for reliable
digital transmission. The squares mark the capacity limits for
these PAM schemes with equiprobable signal points. Note that
in order to overcome the gap to the Shannon limit, shaping
methods as described in Section VIII are indispensable.

Each sketched triangle marks the required to achieve
a bit-error rate (BER) of by the corresponding transmis-
sion scheme. Of course, the results for these QAM schemes
can be extended to 64-QAM schemes by imposing
further uncoded levels. Additionally, results for the “original”
turbo codes with the above given block lengths transmitted
with QPSK and as well as results for several uncoded
schemes are plotted for reference. The results show that the
gap between the Shannon limit and the power efficiency of
the investigated transmission schemes remains quite constant,
nearly independent of the bandwidth efficiency of the scheme.

Fig. 10. Power–bandwidth plane for the band-limited AWGN channel.
(MLC/TC: Multilevel coded PAM scheme employing turbo codes with block
lengthN as components, MSD.)

Fig. 11. Bit-error rate for the individual levels of a multilevel code for
16-QAM using turbo codes as component codes, block lengthN = 2000,
total rateR = 3, individual rates:R0=R1=R2=R3 = 0:29=0:75=0:96=1:0,
Ungerboeck’s set partitioning, no error propagation in multistage decoding.

For brevity, we have included an additional simulation result
which relates to Section VIII. The diamond in Fig. 10 shows
a result for a multilevel coded 64-QAM constellation using
signal shaping.

Finally, in order to check the proposed design of the MLC
scheme, measurements of the BER for the individual levels

without any error propagation in MSD
were performed. Instead of using the symbols of lower
levels that were estimated by previous
decoding stages, the correct transmitted symbolswere fed
to higher stages so that the correct subset is always addressed.
The results in Fig. 11 show the desired error behavior of
the component codes with a “crossover area” of the different
curves in the interesting rangeBER . Note that the
abscissa parameter refers to the entire scheme. The
slopes of the curves stem from the very different code rates and
increase as the code rate decreases. Additionally, as one can
see from Fig. 11 the SNR required to achieve a bit-error rate
of increases from the lowest to the highest level. Hence,
in the case of this particular example, error propagation would
only marginally degrade the total performance of the scheme.
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The reason is that the code rate increases significantly from the
lowest to the highest coded levels, as is always the case when
using a labeling according to Ungerboeck’s set partitioning.
Thus Ungerboeck’s set partitioning is essential to reduce the
effect of error propagation in practical schemes.

Our main result is that by using binary codes with the
capacity design rule for the rates at each level, the unshaped
Shannon limit can be approached within tenths of a decibel
independently of spectral efficiency in the bandwidth-limited
regime, with no more decoding complexity than is needed
for comparable capacity-approaching codes on ordinary binary
channels. Moreover, the complexity per information bit is
decreased because of further uncoded levels.

In order to conclude this section the similarities and differ-
ences between MLC and TCM are briefly discussed:

• Turbo TCM schemes perform similarly over the AWGN
channel as the presented MLC schemes with turbo com-
ponent codes at comparable complexity and coding delay
[58], [59]. The main difference is that in MLC binary
turbo codes are the building blocks of the entire scheme,
whereas in turbo TCM the component TCM schemes are
building blocks of the turbo scheme.

• The usual TCM schemes and MLC with convolutional
component codes perform similarly, but with a clear
advantage to MLC at the same entire number of trellis
branches per information bit, especially for high numbers
of states.

• The main difference between MLC and TCM is not
performance, but, first, how to design the coding scheme,
and second, the achievable code rates. While for TCM
the best codes for a particular modulation scheme are
found by an exhaustive computer search, the best binary
codes may be applied as component codes in an MLC
scheme in conjunction with the proposed rate design.
Because for TCM the code rate is strongly related to
the dimensionality of the signal set, only integer code
rates with respect to the considered dimensionality can
be achieved. In contrast, the choice of the total rate in
an MLC scheme is arbitrary; however, component codes
with “strange” rates usually have to be implemented, e.g.,
by puncturing. In summary, there is much more flexibility
in MLC design.

V. DIMENSIONALITY OF THE

CONSTITUENT SIGNAL CONSTELLATION

A TCM scheme usually generates one bit of redundancy
per -dimensional constituent signal set. Thus the redundancy
per dimension is bits/dimension. In contrast, for MLC
schemes, the dimensionality and the rate per dimension

can be chosen independently. Thus an important question
when employing MLC schemes is the optimum dimension-
ality of the constituent signal constellation, cf. also [60]. In
this section, we discuss the differences between multilevel
codes based on one- or two-dimensional constellations. As
we aim at approaching capacity, we neglect the necessity for
higher dimensional constellations which may be present in
some practical applications. Moreover, we have to distinguish

Fig. 12. SumR=D of individual ratesRi=D for multilevel coded 4-ASK
(MLC4ASK) with code lengthN1 = 4000 and for multilevel coded 16-QAM
(MLC16QAM) with N2 = 2000 derived via isoquants of corresponding
coding exponents. AWGN channel.

between MLC employing block codes and convolutional codes
as component codes.

A. Block Component Codes

Consider an MLC scheme based on a-dimensional signal
set , which is the -fold Cartesian product of a one-
dimensional constellation . The set partitioning is performed
in steps in the -dimensional signal space. To minimize
complexity, it is preferable to base the MLC scheme on a
one-dimensional signal set, because the least numberof
individual encoders and decoders are necessary compared to
a -dimensional approach with . For a fair
comparison of MLC schemes using block codes as component
codes, we fix the dimensionality of the entire multilevel
codeword to, say, , where denotes the length of
the binary component codes of an MLC scheme based on a

-dimensional signal constellation. Thus all schemes can be
compared based on the same delay per codeword.

As an example, we look at the power efficiency of MLC
for 16-QAM, first based on the one-dimensional 4-ASK signal
set per dimension, and second based on the two-dimensional

-ary signal set. Because capacities are equal for both ap-
proaches, the coding exponents of the equivalent channels are
applied (cf. Section IV-C) to assess the power efficiency of
an MLC scheme with block codes of fixed length . The
sum of rates for MLC with 4-ASK derived
via the isoquants of the coding exponent is compared
to the sum of rates for MLC with 16-QAM.
We fix the code length to 2000 QAM symbols, resulting in

and . Fig. 12 shows the code rate
per dimension versus SNR for both approaches. An

MLC scheme based on the one-dimensional ASK constellation
with component codes of length promises better
performance than MLC based on the two-dimensional QAM
constellation with codes of length .

In order to verify this result, simulations were performed
for 4-ASK and 16-QAM schemes with MLC of code lengths

and , respectively, and transmission
over the AWGN channel. Again, turbo codes using 16-state
convolutional codes are employed as component codes. The
normalized total code rate per dimension is fixed to
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Fig. 13. Simulation results for 4-ASK and 16-QAM schemes with MLC of
total rateR=D = 1.5 bits/dimension, transmission over the AWGN channel
and MSD. Individual rates for 4-ASK:R0=R1

= 0:52=0:98. Individual
rates for 16-QAM:R0=R1=R2=R3 = 0:29=0:75=0:96=1. MLC/TC denotes
an MLC scheme using turbo codes (using 16-state convolutional codes) as
components, MLC/CC denotes an MLC scheme using (64-state) convolutional
codes as components.

1.5 bits/dimension. The individual code rates are assigned ac-
cording to the coding exponent rule. The two leftmost curves,
depicted in Fig. 13, represent the results for both schemes.
Indeed, it can be observed that multilevel coded transmission
based on the one-dimensional constellation exhibits a power
efficiency which is about 0.25 dB higher than that based
on the two-dimensional constellation. This result is quite
close to the predictions derived from the coding exponent
calculations.

Concluding, we state that, for a fixed data delay, it is more
power and complexity efficientto apply block codes as long
as possible to MLC schemes based on a one-dimensional
constellation instead of increasing the dimensionality of the
signal constellation. For MLC schemes based on a one-
dimensional signal set, the signal points in dimensions,
i.e., the multilevel codeword, are exclusively given by the
code constraints of the component codes, whereas for a

-dimensional signal set we have concatenated coding con-
sisting of two constituent parts. The first part is covered
by the component codes applying only to
dimensions. The second part is given by the constraints
between the components of a signal point

which are introduced by the set partitioning
strategy. Our previous result indicates that the direct approach
is more efficient than the concatenated one, as long as the
overall dimensionality of the multilevel codeword is fixed.

This result is quite obvious since the set of codes that can
be realized by MLC of two binary codes of length
on a four-way two-dimensional partition is a subset of the set
of codes that can be realized by a single binary code of length

on a two-way one-dimensional partition. Moreover, even
if the codes were the same, one-dimensional MLD will be
superior to two-dimensional two-level multistage decoding.

This disadvantage of two-dimensional constituent constella-
tions could be overcome if quaternary component codes were
admitted. Then the same set of codes could be generated as in
the one-dimensional case. Therefore, in the case of nonbinary
component codes the question of the optimal dimensionality
of the constituent signal set translates to the question of the
optimal partitioning depth of the lowest level, cf. [33].

Fig. 14. Selection of subsets of a set partitioning for a QAM
cross-constellation with 32 points implementing a particular labeling.

Fig. 15. Multilevel encoding scheme for a 32-QAM cross-constellation with
set partitioning according to Fig. 14.

B. Nonsquare QAM Constellations

In QAM schemes based on nonsquare constellations, like
the popular cross constellations with 32 or 128 points [61], di-
mensions are not completely separable. But interdependencies
between the dimensions are only relevant at the perimeter of
the constellation. Hence, if we neglect these interdependencies,
it is possible to encode the lowest partitioning levels of cross
constellations exactly as is done for ASK signal sets. Because
of the high intra-subset Euclidean distance, the highest levels
(where the interdependency of dimensions has to be taken into
account) remain uncoded. For example, Fig. 14 shows some
subsets of a set partitioning for the-ary cross-constellation
implementing a specific labeling. Obviously, since the subsets

and , respectively, differ only by a rotation they
provide equal capacities. Additionally, if we again neglect the
boundary effects, only the in-phase (quadrature) component of
the noise is effective at level( ). Thus the transmission of
( ) is essentially based on a 6-ASK constellation, multiplexed
to in-phase and quadrature components, and the coding of the
symbols and can be done by a single encoder .
The block diagram of the resulting MLC scheme of rate
4 bits/symbol 2 bits/dimension is given in Fig. 15.
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Fig. 16. Partitioning tree for the 8-ASK signal set when block partitioning is used.

When signal shaping for minimum average signal power
is applied, a square QAM constellation can always be used,
because a proper constellation boundary is determined in a
high-dimensional space by the shaping procedure. Therefore,
simple MLC based on a one-dimensional constellation is
always possible.

C. Convolutional Component Codes

Using convolutional codes as component codes, a compar-
ison is much more difficult, because in this case no clear
concept of dimensionality exists. Simulation results using 64-
state convolutional codes (CC) as component codes promise
better performance for two-dimensional signaling, see Fig. 13.
Again, the total code rate per dimension is fixed to
1.5 bits/dimension. (The individual code rates, which are im-
plemented by nonoptimized, regular puncturing, are assigned
by the cutoff rate rule, cf. Section IV.) 16-QAM with MLC
using convolutional codes outperforms the MLC scheme based
on 4-ASK. The reason is that increasing the dimensionality of
the constituent signal constellation and applying MLC with
Ungerboeck’s set partitioning leads to an increased effective
constraint length, as we have chosen equal constraint lengths
for each code.

But this improvement has to be paid for twice: the re-
ceiver complexity is increased, because the two-dimensional
approach needs three individual decoders instead of two for the
one-dimensional case, and the signal delay is doubled when
the lengths of the survivor memories are fixed. However, when
employing convolutional codes, data delay generally is not a
problem, and only half the processing speed for each individual
decoder is necessary under a two-dimensional approach.

Strictly speaking, the result of Section V-A applies only
if the block length of the component code is a relevant
parameter, i.e., for codes where performance is related to
the code length. In the case of convolutional codes, the
higher dimensional constituent constellation leads to a more
power-efficient concatenated coding scheme since the effective
constraint length is enlarged.

VI. L ABELING STRATEGIES

In this section labeling strategies that offer some practical
advantages, are presented. MLC/MSD with finite code length
is considered, cf. also [35], [37], [62], and [63]. Moreover,
an analysis of bit-interleaved coded modulation, cf. [42], for
finite code length is presented.

Fig. 17. CapacitiesCi of the equivalent channels versusEs=N0 for the
8-ASK signal set when block partitioning is used. AWGN channel. Dashed
line: aggregate transmittable rate forRi

= 0:5; i = 0; 1; 2. Bad channel
marks the range with low SNR, medium channel with medium SNR, and
good channel with high SNR.

A. Labeling Strategies for MLC/MSD

1) Block Partitioning: Usually, the strategy for partitioning
a signal set is to maximize the minimum intra-subset Euclidean
distance, as introduced by Ungerboeck [4] and Imai [5]. Here,
an alternative labeling with the opposite strategy, called block
partitioning (BP), is investigated. The minimum intra-subset
Euclidean distance remains constant for all partitioning levels
and the partitioned subsets form dense clusters of signal points.
The strategy for block partitioning is to minimize the intra-
subset variance. As an example, the block partitioning tree for
the 8-ASK signal set is depicted in Fig. 16.

Fig. 17 sketches the corresponding capacity curves for
8-ASK. Since the minimum intra-subset Euclidean distance
is equal for all partitioning levels, the capacities of
the equivalent channels of an MLC scheme with block
partitioning decrease from the lowest level to the highest level

(24)

This property is well suited for softly degrading schemes for
transmission over channels with time-varying SNR. Consider
the following example: The individual code rates

of an MLC scheme with BP and 8-ASK signal set can
be chosen to be equal for all levels, say . According
to Fig. 17, three states of the channel—“good,” “medium,”
“bad”—are defined, depending on the current at the
receiver side. First, for transmission over the “good” channel,
the capacities exceed the code rates at each level and,
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hence, in principle, error-free transmission of
1.5 bits/symbol is possible. Second, for transmission over
the “medium” channel, the code rate at the highest level
exceeds the capacity while and are still smaller
than the corresponding capacities and . Hence, starting
at level , error-free multistage decoding at levelsand is
still possible resulting in a total transmission rate of
1.0 bit/symbol. Third, for transmission over the “bad” channel,
only code rate is smaller than capacity , while code rates

and exceed the corresponding capacities and .
Hence, over the “bad” channel error-free transmission of 0.5
bit/symbol is possible. To summarize, using this construction
a soft degradation of the scheme over a wide range of SNR is
enabled. It adapts automatically to the channel state without
the need of a feedback channel, simply by estimation of the
SNR at the receiver side or a cyclic redundancy check (CRC),
and by delivering only the reliable part of the information
to the sink. In the above example, the information increases
in steps of 0.5 bit/symbol with increasing SNR. Such softly
degrading schemes may be employed in “scalable” source
coding schemes (video, audio), cf. [64]–[66], in broadcasting
systems, cf. [67], or in mobile communications.

Of course, this way of constructing softly degrading
schemes by designing rates for upper levels according to
transmission at high SNR can be based on any labeling
strategy. But with natural mapping, the rate steps are quite
different and very little rate remains at low SNR. Block
partitioning is a simple way to achieve equal rate steps.
Moreover, it is interesting to note that, in the case of equal
code rates at the individual levels , MLC schemes with
BP do not suffer from error propagation in MSD.

The concept of capacities of the equivalent channels pro-
vides the framework for optimization of constellations for
softly degrading schemes, sometimes calledmultiresolutional
constellations[68]. Results presented in [69] show that an
optimization via information-theoretic parameters leads to
constellations completely different from those constructed
from Euclidean distance arguments, like those used in digital
video broadcasting in Europe [70]. If powerful coding is
applied, the Euclidean distance becomes a less important
parameter and the latter approach becomes very inefficient.
The differences are comparable to those observed in our
comparison of the capacity rule and the balanced distances
rule.

2) Mixed Partitioning: Now, we will focus on a labeling
strategy for 8-PSK such that for MLC/MSD the capacities
and of the equivalent channelsand are approximately
equal. The important feature of such a scheme is that if the
code rates at the individual levels are chosen to be
approximately equal to the capacities, then is
possible. Hence, it is sufficient to implement one encoder and
one decoder for both levels. The proposed scheme is depicted
in Fig. 18. Encoders and are both implemented by the
encoder , and decoders and are both implemented
by the decoder .

In order to provide similar capacities and , the
(sub)sets and must exhibit similar distance prop-
erties. This can be achieved by mixing Ungerboeck and block

Fig. 18. MLC/MSD transmission system for mixed partitioning of 8-PSK
set.

Fig. 19. Tree for mixed partitioning of 8-PSK set.

partitioning, called mixed partitioning (MP). At partitioning
level the subsets should maximize minimum intra-
subset Euclidean distance as in Ungerboeck’s approach. The
goal of the first partitioning step is to minimize the intra-subset
variance under the constraint that subsets with the
properties described above are still possible.

Fig. 19 shows an example of mixed partitioning for the
8-PSK signal set. Let us compare distance properties for
transmission of symbol by the set and symbol by the
set or set . In each case, even for small SNR’s, the
performance is dominated by the respective minimum distance

. From Fig. 19 it is obvious that

Additionally, the number of nearest neighbors representing the
complementary binary symbol coincides in both cases. Hence,
coded transmission using the (sub)setand exhibits
similar distance properties.

The capacities of the 8-PSK scheme with
MP operating on the AWGN channel are plotted in Fig. 20
versus . Indeed, one can see that and

are hardly distinguishable. If we design the corresponding
MLC scheme for total rate 2 bits/symbol according to
the capacity rule, the rates are

(25)

In comparison, the corresponding rates for an MLC scheme
and 8-PSK signal set based on Ungerboeck’s partitioning are

(26)

In this case, three different encoders and decoders are required.
For the MLC scheme based on mixed partitioning,
holds, and hence two different encoders ( and ) and
decoders ( and ) are sufficient, cf. Fig. 18.
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Fig. 20. CapacitiesCi of the 8-PSK scheme with MP versusEs=N0 for
the AWGN channel.

Fig. 21. RequiredEb=N0 versus codeword lengthN for transmission over
the AWGN channel using MLC and MSD with 8-PSK for a tolerable
word-error ratepw = 10

�3. R = 2 bits/symbol. UP: Labeling by Unger-
boeck’s partitioning. MP: Mixed partitioning. BP: Block partitioning.

It is worth mentioning that with this mixed partitioning
approach, coding is still based on MLC/MSD. Levelsand

are not combined into a single level as in bit-interleaved
coded modulation, cf. Section VI-B. Instead, with the proposed
scheme, the hardware of one encoder and one decoder can be
saved. Clearly, since usually the individual encodersand

of an MLC scheme work in parallel, encoder has to
work at double speed.

3) Coding Exponent Analysis:Using block codes of length
at all levels, the power efficiency of these labeling strategies

may be evaluated by the coding exponents of the equiva-
lent channels, cf. Section IV. As an example, we consider
transmission of 2 bits/symbol over the AWGN channel
using an 8-PSK constellation. The tolerable word-error rate is
assumed to be . In each case, the required
for an MLC scheme with block length is calculated via
isoquants of coding exponents, see Fig. 21. As expected, as
block length tends to infinity, the required SNR for all labeling

Fig. 22. Set partitioning tree of a 8-PSK constellation with Gray labeling
of the signal points.

strategies merges into the capacity limit of
2.7 dB for 2 bits/symbol and 8-PSK. For finite , the
labeling strategy introduced by Ungerboeck and Imai in an
intuitive manner shows the best performance, but the gain
compared to the other labelings is relatively small. Simulation
results confirm this statement, cf. [60] and [63]. Thus the
alternative labeling strategies, which offer some interesting
practical advantages, do not suffer a significant degradation
in power efficiency.

B. Gray Labeling

Beside the set partitioning strategies discussed up to now,
Gray labelingof the signal points is an interesting alternative.
In [71], a pragmatic approach to coded 8-PSK modulation is
presented using a single rate- convolutional encoder. In
this approach, the three encoded bits are (randomly) inter-
leaved independent of each other and mapped to the signal
points using Gray labeling. It was shown for the Rayleigh
fading channel that because of increased diversity due to bit
interleaving, this scheme outperforms the best known trellis
codes. Stimulated by this work, Caireet al. [42], [1] recently
investigated the capacity ofbit-interleaved coded modulation
(BICM) schemes over the AWGN channel. In BICM schemes
one binary encoder is used with subsequent (random) bit
interleaving, followed by demultiplexing the bits to select the
signal point. The results show that for 8-PSK and 16-QAM
schemes in the range of practical interest, the capacity loss of
BICM versus the optimum approach is negligible if (and only
if) Gray labeling is used.

In what follows, we present a strict derivation of BICM
starting from MLC and MSD using Gray labeling. For this
discussion 8-PSK is assumed as an example.

1) MLC and MSD Using Gray Labeling:First, we study
the properties of an 8-PSK MLC scheme with MSD and
Gray labeling. The corresponding set partitioning tree is
sketched in Fig. 22. Notice that, in contrast to Ungerboeck’s
set partitioning, the minimum intra-subset Euclidean distance
remains constant for all partitioning levels. Moreover, in
contrast to the other labeling strategies discussed here, the set
partitioning for Gray labeling is irregular, e.g., subset
is not a rotated version of . Hence, according to (7) the
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Fig. 23. CapacitiesCi of the equivalent channels of an MLC scheme based
on 8-PSK constellation with Gray labeling for transmission over the AWGN
channel. Solid lines: MSD, dashed line: PDL. Vertical line: total rateR = 2

bit/symbol.

capacities and of the equivalent channels have to be
averaged over the different subsets. Using the fact that some
subsets have equal capacities, the individual capacities

and

for transmission over the AWGN channel have been plotted in
Fig. 23 (solid lines). The equivalent channels at leveland
provide nearly the same capacity; the difference is not visible
in Fig. 23. The reason is that the transmission of symbolby

and exhibits very similar distance properties to the
transmission of symbol by and , respectively.
The rate distribution according to the capacity rule for MLC
and MSD based on 8-PSK with Gray labeling and rate
bit/symbol yields (see solid vertical line in Fig. 23)

(27)

Note that, compared to Ungerboeck labeling with individual
capacities , the range of individ-
ual code rates for Gray labeling is substantially smaller.

Regarding the subsets of the set partitioning tree in Fig. 22,
a careful analysis shows that in each case the number of nearest
neighbor signal points representing the complementary binary
symbol (error coefficient) is equal to. In particular, neither
the error coefficient nor the minimum intra-subset distance
changes when decisions of lower levels are not taken into
account for decoding at higher levels. Hence, we conjecture
that without significant loss, the transmission of the address
symbol can be based on theentire signal
constellation, i.e., the individual levels may be decodedin
parallel without any preselection of signal points at higher
levels. Subsequently, independentparallel decodingof levels
is investigated in detail.

2) MLC and Parallel Independent Decoding of the Indi-
vidual Levels Using Gray Labeling:In MLC with parallel,
independent decoding of the individual levels (PDL), the
decoder makes no use of decisions of other levels . In
order to investigate this scheme, the definition of the equivalent
channel and its characterizing pdf has to be adapted appropri-
ately. In the case of MLC/MSD, the equivalent channelfor
transmission of digit comprises the time-varying equivalent
modulator , depending on the binary digits of lower levels

and the actual physical channel. Here, in
the case of MLC/PDL, the equivalent modulatoris no longer
time-varying. Since decoding at levelis done independently
of other levels, the equivalent modulatorfor MLC/PDL
is based on the entire signal set, whereby all signal points
with address digit , , represent the binary
symbol . Therefore, the equivalent channelfor MLC/PDL
is characterized by the pdf’s

E

(28)

Thereby, subset is defined by

(29)

Since decoder makes no use of decisions of other levels
, , in MLC/PDL the maximum individual rate at level

to be transmitted at arbitrary low error rate is bounded by

(30)

Consequently, the total rate is restricted to

(31)

The bound

(32)

is valid in general, with equality iff for a given channel output
variable the input symbols and , , are
independent. This is true as the signal-to-noise ratio goes to
infinity. Therefore, combining (6), (31), and (32) yields that
the sum of maximum rates in an MLC/PDL scheme must
be less than or equal to the mutual information for the total
scheme

(33)

Thus asymptotically, the mutual information of the modulation
scheme can be approached with MLC/PDL iff .

Equation (33) shows that the MLC/PDL approach is simply
a suboptimum approximation of an optimum coded modulation
scheme. In contrast to the optimum scheme, the capacity of the
MLC/PDL scheme strongly depends on the particular labeling
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Fig. 24. SubsetsAAAi(xi = 0) according to (29) with 8-PSK with Gray
labeling.

of signal points. Caireet al. showed in [42] and [1] that the
gap to an optimum scheme is surprisingly small with Gray
labeling of the signal points. However, we will show now that
the gap increases significantly if the finite length of the code
is taken into account.

For example, the 8-PSK subsets for
and Gray labeling are sketched in Fig. 24. Since the subsets

and differ only by
rotation, they provide equal capacities. Moreover, the subsets

and differ only by rotation, too.
Hence, according to (7), the individual capacities for the
equivalent channels using PDL are given by

(34)

(See dashed line in Fig. 23.) Since at levelthe equivalent
channels for MLC using MSD and PDL are equal
holds. Clearly, the capacities and using PDL are
lower than those using MSD. But from Fig. 23 it is apparent
that in the range of interest the loss of parallel compared
to multistage decoding is very small. Additionally, the rate
distribution for MLC using PDL according to the capacity
design rule for a total rate 2 bits/symbol is nearly the
same as for MSD (cf. dashed vertical line in Fig. 23).

Finally, following Section IV and considering (28), the
coding exponent of the equivalent channel for
an MLC scheme using PDL is

(35)

3) Bit Interleaved Coded Modulation:As described above,
in MLC schemes using PDL the output symbolof encoder

is transmitted over the time-invariant equivalent channel.
Thus independent binary coding and decoding levels are
present in parallel. An obvious approach is to apply only one

binary code and to groupencoded bits to address the current
symbol. Assuming ideal bit interleaving,5 the address symbols
are independent of each other and, hence, this scheme can
be interpreted—at least for infinite code length—as multilevel
encoding together with parallel, independent decoding of the
individual levels.

BICM transmission of binary symbol can again be
viewed as transmission over the equivalent channelfor
MLC/PDL. But here, the equivalent channels

for MLC/PDL are not used in parallel; rather, they are time-
multiplexed. Hence, the equivalent channel using BICM is
characterized by a set of pdf’s for the binary
encoder output symbol

(36)

Since the equivalent channel using BICM is time-variant
with ideal channel state information at the receiver (side in-
formation actual level), the corresponding coding parameter

is the average of for .
Assuming equal probability for all channels, we have

(37)

The random coding exponent for the equivalent channel using
BICM is then

(38)

Here, denotes the rate of the binary code used in BICM.
For simplicity, MLC/PDL and BICM are assumed here at all

levels. For the AWGN channel and very large signal constel-
lations, it is more efficient to apply a mixed labeling strategy,
i.e., to use Ungerboeck labeling in order to separate coded
from uncoded levels and thus to save complexity. A relabeling
within the coded levels according to the Gray criterion allows
use of MLC/PDL or BICM for subset coding/decoding. For
fading channels, Gray labeling and PDL or BICM over all
levels is recommended.

The same principle applies when hard-decision decoding at
higher levels is possible without significant loss, see Section
VII. In this case also, only the levels with soft-decision
decoding should be combined.

4) Coding Exponent Analysis:To compare the power ef-
ficiency of the previously presented schemes, the coding
exponents given above are evaluated. Coded 8-PSK transmis-
sion at 2 bits/symbol over the AWGN channel is chosen
with a tolerable word-error rate . Additionally, the
result of the previous section for the usual MLC scheme with
Ungerboeck partitioning and MSD is included for reference. In
all cases, the required SNR for the different schemes and fixed
total rate was calculated via isoquants of coding exponents.
For MLC/MSD and MLC/PDL the code length is used for
all component codes, whereas for BICM only a single code
of this length is used. In the case of BICM, the calculation

5Ideal interleaving increases data delay to infinity, whereas code length is
not affected.
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Fig. 25. RequiredEb=N0 versus code lengthN for coded transmission over
the AWGN channel with 8-PSK for a tolerable word-error ratepw = 10�3.
Coding schemes: 1. UP: MLC and MSD with Ungerboeck labeling. 2.
MLC + PDL: MLC and PDL with Gray labeling (solid line). 3. BICM with
Gray labeling (dashed line).

of isoquants provides the rate of the single code, which
has to be multiplied by to obtain the total rate for
BICM. The results for the competing schemes are shown in
Fig. 25 as a function of the code length.

From Fig. 25 it is evident that the performance of BICM
schemes and that of MLC schemes using PDL is almost
identical and inferior to that of MLC/MSD. For decreas-
ing , the loss of BICM and MLC/PDL compared to the
optimum MLC/MSD approach using Ungerboeck labeling
(UP) increases. The reason for this is as follows: Assume
that the signal point in the subset
is chosen for transmission of binary symbol , cf.
Fig. 24. Then, both nearest neighbor signal points represent
the same binary symbol . Hence, the minimum distance
of to signal points representing the complementary
binary symbol is relatively large, and the transmission of

by is relatively robust against the channel
noise. The situation changes if, e.g., the signal point
in the subset is chosen for transmission of
binary symbol . Then, one nearest neighbor point
represents the complementary binary symbol resulting
in a substantially lower minimum distance than in the former
case. Hence, the transmission of by is
relatively sensitive to the channel noise. The same is true for
the transmission of the binary symbol .

This example shows that the distance properties of a BICM
scheme with Gray labeling are extremely time-varying. There-
fore, in order to compensate for these varying distances a large
block code is required. In particular, since convolutional codes
can be viewed as short block codes with a sliding encoding
window, they are not well suited to BICM schemes over the
AWGN channel.

VII. H ARD-DECISION DECODING AT INDIVIDUAL LEVELS

Up to now, we have considered only coded modulation
schemes in which the individual decoding stages optimally de-

Fig. 26. Equivalent binary channel 1 for the transmission of symbolx1 for
an 8-ASK scheme when hard-decision decoding is used.

code the channel output. In this section, we investigate coded
modulation schemes in which error-correcting binary codes are
employed at selected coding levels; i.e., the corresponding de-
coders use only binary decisions without additional reliability
information.

In the previous MLC literature, usually all component codes
are either exclusively error-correcting algebraic block codes,
e.g., [26], [72] or all codes are soft-decodable codes like
convolutional or turbo codes [39], [25], [37]. With error-
correcting codes, decoding complexity is usually much lower
than with soft-decodable codes. It is well known, however,
that hard decisions incur a performance loss compared to soft
decisions; for binary antipodal signaling the loss is about 2 dB.

Results concerning the performance loss due to error-
correcting codes in MLC schemes are thus desirable. In
this section, we compare hard- and soft-decision decoding
in MLC schemes. We show that the performance gap between
hard- and soft-decision decoding decreases with increasing
bandwidth efficiency. It turns out that soft-decision decoding
at only the lowest level is sufficient to achieve near-optimum
performance.

A. Capacity

For hard decisions, the concept of equivalent channels
introduced in Section II has to be modified appropriately.
Only binary variables should be fed to the decoder at
decoding stage; i.e., the channel output is quantized to
binary symbols . To distinguish between equivalent channel

with hard and soft decisions, we refer to the former one as
equivalentbinary channel .

For example, let us consider the equivalent binary channel
for transmission of symbol for an 8-ASK scheme (level 1),
see Fig. 26. Assuming equiprobable signal points, the detec-
tion thresholds are half-way between two adjacent points. In
general, for a nonuniform distribution of signal points, the
decision region of signal point out of the set has to
be optimized according to the maximuma posteriori (MAP)
criterion

(39)

Due to the multiple representation of binary symbols by signal
points, the decision region of binary symbol is the union
of the corresponding regions (see Fig. 26)

(40)
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For the calculation of the capacity of the equivalent binary
channel the transition probabilities are
needed. Let us first assume that is transmitted using the
fixed signal point . Then, the probability
of detection error is6

(41)

The desired detection error probability is given by expec-
tation over all possible signal points representing symbol

E (42)

If the a priori probabilities of the signal points are fixed, the
capacity of the equivalent binary channel(hard decision)
equals the corresponding mutual information:

E

E

(43)

The results derived above are valid for an arbitrary distribu-
tion of signal points and for arbitrary labeling. When equiprob-
able signal points and regular partitioning (subsets at one parti-
tioning level differ only by translation and/or rotation) are con-
sidered, the transition probabilities are
independent from the particular values of . In
this particular case, the resulting equivalent binary channelis
symmetric; i.e., it is abinary symmetric channel(BSC). The
transition probability is simply
the bit-error probability of the equivalent BSC. Thus its
capacity is given by

H (44)

where H again denotes the binary entropy function.
Now, the capacity of a coded modulation scheme with a

mix of hard- and soft-decision decoding at the individual
levels is simply the sum of the capacities of the corresponding
equivalent channels . For example, consider
a three-level scheme with soft-decision decoding at leveland
hard-decision decoding at levelsand

(45)

Here, the index of the capacity denotes the decoding
manner (soft or hard) at the individual levels. If the index is
omitted, soft-decision decoding is assumed at all levels.

6The probability of detection error may be upper-bounded by the respective
symbol error probability for transmittinga 2 AAA(x0 � � � xi�10). Thereby, the
detection of signal points~a 2 AAA(x0 � � � xi�10); ~a 6= a; are counted as errors
although they represent the transmitted symbolxi = 0. Especially when the
detection error probability is mainly determined by the nearest neighbor signal
points as it is the case with Ungerboeck set partitioning, this approximation
becomes quite tight.

Fig. 27. 8-ASK with natural labeling. AWGN channel. Capacities for the
curves SSS, SHH, and HHH (see text) and corresponding capacitiesCi and
Ci

H
for the equivalent and binary equivalent channeli; i = 0; 1; 2. Dashed

line: Capacity for the equivalent DMC. Solid vertical line:CSSS = 2.5
bits/symbol. Dashed vertical line:CSHH = 2.5 bits/symbol.CFEC: binary
FEC, Gray mapping and interleaving.

Using the chain rule of mutual information (2), it was
shown in Section II that with soft-decision decoding at all
levels, MLC together with MSD is an asymptotically optimum
coding approach. However, when hard-decision decoding is
used at several levels, the chain rule no longer holds, and
the MLC approach is not necessarily optimum. Thus the
MLC/MSD transmission scheme with hard-decision decoding
at all levels operating on the AWGN channel is compared to
a coded modulation scheme operating on an-ary discrete
memoryless channel (DMC). For example, we look at 8-ASK.
The channel input and output alphabet is equal to the 8-ASK
signal set . The transition probability

for receiving symbol is given by the probability
that the output of the underlying AWGN channel falls into
the decision region if symbol is transmitted. The
capacity of this scheme is given by

E (46)

B. Examples and Discussion

Again the coded modulation scheme with 8-ASK and nat-
ural labeling operating on the AWGN channel will be inves-
tigated. Fig. 27 depicts:

• capacity , soft-decision decoding at all levels (case SSS,
reference);

• capacity , soft-decision decoding at level and
hard-decision decoding at levelsand (case SHH);

• capacity , hard-decision decoding at all levels (case
HHH);

together with the corresponding capacities of the equivalent
and the equivalent binary channels.

First, we compare the capacities and .
At level , the underlying signal set for the transmission of
symbol is the ordinary BPSK signal set, i.e., symbol



WACHSMANN et al.: MULTILEVEL CODES: THEORETICAL CONCEPTS AND PRACTICAL DESIGN RULES 1381

is not multiply represented. In this case, the well-known gap
of about 1.7 dB between the capacities
is observed. At level , symbol is represented twice in
the underlying 4-ASK signal set. Here, the gap between the
capacities is only 1.1 dB. This gap is
further reduced to 0.9 dB at level. Thus when symbols are
multiply represented by signal points, the gap between soft-
and hard-decision channels becomes smaller.

We interpret this different behavior by the following obser-
vation: For binary antipodal signaling, the gain of soft-decision
decoding mainly results from those highly reliable symbols
that are received far away from the decision boundary. But
for multiamplitude/multiphase modulation, the existence of
boundaries of the decision regions on all sides of inner points
reduces the soft-decision advantage. Also, as usual, the gap
between the capacities and , respectively,
decreases for increasing SNR.

Second, we compare the cases SSS and SHH. It is apparent
from Fig. 27 that the gap between and is negligible
for rates above 2.5 bits/symbol. In particular, for 2.5
bits/symbol, the loss for the case SHH versus the optimum
case SSS is 0.15 dB. Even for rates down to 2.0 bits/symbol
a loss of only 0.6 dB is visible. Hence, the performance loss
due to hard-decision decoding at higher levels is dramatically
reduced compared to BPSK. The explanation is as follows.
For set partitioning according to Ungerboeck’s criterion, the
individual rates increase from lowest level to highest level.
Thus the performance loss due to hard-decision decoding
decreases. Hence, if hard-decision decoding is used at higher
levels, where high-rate codes are employed, the loss remains
small.

An additional loss occurs if hard-decision maximum-
likelihood decoding is replaced by bounded-distance decoding.
This loss cannot be assessed exactly, but for high-rate
codes bounded-distance decoding is close to hard-decision
maximum-likelihood decoding. In the case SHH, where only
high-rate codes are used for hard-decision decoding, there is a
little additional loss for practical bounded-distance decoding
algorithms.

If we design the 8-ASK system for a total rate 2.5
bits/symbol, the rate distribution according to capacities in the
case SSS (solid vertical line) is

(47)

whereas in the case SHH (dashed vertical line) it is

(48)

For SHH, the rate at level with soft-decision decoding is
slightly increased while the rate at levelwith hard-decision
decoding is decreased by the same amount when compared
to SSS.

Next, we assess hard-decision decoding at all levels (HHH).
For a total rate 2.5 bits/symbol, the gap between
and is about 0.9 dB (see Fig. 27). The loss due to
full hard-decision decoding in a coded modulation scheme is
thus substantially less than with BPSK. The reason is that with
Ungerboeck’s set partitioning, the lowest rate is transmitted at

level and, hence, the capacity loss at this level dominates.
But, as shown above, at levelthe loss due to hard-decision
decoding is moderate because of the multiple representation
of the symbol in the underlying signal set.

In conclusion, we see that for 8-ASK and 2.5
bits/symbol, it is sufficient to employ soft-decision decoding
at level . Hard-decision decoding at higher levels can be
done without any significant performance loss while offering
a reasonable reduction in complexity, cf. also [33]. Even if
hard-decision decoding is used at all levels, the loss compared
to soft-decision decoding is less than 1 dB.

Finally, the capacities of the equivalent DMC and
for the MLC/MSD scheme with hard-decision decoding

at each level are compared. It can be observed from Fig. 27
that, in the region of interest (rates above 2.0 bits/symbol),
the MLC approach with hard-decision decoding at each level
outperforms the scheme operating on the equivalent DMC. The
difference between the schemes lies in the way the soft output
of the underlying AWGN channel is exploited. For the-ary
DMC, the soft channel output is quantized once. In multistage
decoding, the soft value is used at each level for binary
detection. This leads to the important observation that, in the
case of hard-decision decoding, an efficient way to exploit the
channel information is to split up the coding and decoding
procedure in multiple, ideally binary, levels so as to use the
soft channel output multiply. Therefore, when designing coded
modulation schemes, the two cases of soft- and hard-decision
decoding have to be carefully distinguished. As shown in the
previous section, in the case of soft-decision decoding and
very large block length it is possible to link several coding
levels into a single one without significant performance loss
when Gray mapping is used. In the case of hard-decision
decoding, this is not true since combining multiple levels into
a single one results in an unavoidable performance loss due to
a suboptimum exploitation of the soft information. It is well
known that adapting binary error-correcting codes (forward
error correction (FEC)) to an -ary transmission scheme by
Gray mapping does not lead to satisfactory results. This effect
is confirmed by the curve in Fig. 27, where for
2.5 bits/symbol a loss of approximately 2 dB compared to

results, which is in accordance to binary transmission.
In contrast, the MLC approach with individual error-correcting
codes at each level promises much better performance.

The question of the optimum dimensionality of the con-
stituent signal set (cf. Section V) has to be discussed again
for hard-decision decoding. Especially, hard-decision decod-
ing at all but the lowest level is addressed, because of its
interesting tradeoff between performance and complexity. As
in Section V, an MLC scheme based on a 4-ASK signal set
is compared to an MLC scheme based on a 16-QAM signal
set. Again, the overall block length is assumed to be equal.
In Fig. 28 the corresponding isoquants for a block length of
2000 QAM symbols are shown. A total rate of 1.5
bits/dimension is chosen. Here, the loss of the two-dimensional
QAM scheme when compared to the one-dimensional ASK
scheme is higher than with soft-decision decoding at all
levels, cf. Fig. 16. The reason is that for the 16-QAM scheme
there are three levels with hard-decision decoding with a rate



1382 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 5, JULY 1999

Fig. 28. Total ratesR=D =
i
Ri=D per dimension from isoquants

Ei(Ri) of 4-ASK in the case SH (soft-decision decoding at level0,
hard-decision decoding at level1) and of 16-QAM in the case SHHH. For
4-ASK block lengthN = 4000 and for 16-QAMN = 2000 is assumed.
pw = 10�3. Ungerboeck set partitioning. AWGN channel.

at level rather far away from . Contrary, there
is only one level with hard-decision decoding in the one-
dimensional approach with a rate quite close
to . This result further supports the statements concerning
dimensionality in Section V. If hard-decision decoding at all
but the lowest level is used, the less complex MLC scheme
based on a one-dimensional signal set is more power-efficient
than an MLC scheme based on a two-dimensional set.

As stated in Section V, if nonbinary codes are considered
these differences are conjectured to vanish. Moreover, we
assume that a two-dimensional SSHH approach will perform
close to the one-dimensional SH scheme. But since two soft-
decision decoders are required, complexity is almost doubled.

C. Simulation Results

In order to verify these capacity results, simulations for
8-ASK transmission with an MLC/MSD scheme over the
AWGN channel have been performed. In particular, we are
interested in the loss of an MLC scheme using hard-decision
decoding at the two highest levels when compared to a scheme
using entirely soft-decision decoding. For reference, the MLC
scheme with the individual rates
derived from the coding exponent rule is used, where turbo
codes of 16-state convolutional codes [44], [56] and code
length are employed as component codes. Again,
flexible rates of turbo codes are achieved via puncturing,
see [57] and [37]. For the competing scheme, a turbo code
with at level and a primitive Bose-Chaudhuri-
Hocquenghem (BCH) code of length at level
are employed. Level remains uncoded. The error-correcting
capability of the BCH code is adjusted such that the individual
performance at level and level is similar (equal error
probability rule). As a result, the required error-correcting
capability of the BCH code is errors and, hence,

.
The simulation results are depicted in Fig. 29. For the

reference scheme 10.1 dB is required to
achieve BER with a total rate 2.5 bits/symbol.
Since the capacity 2.5 bits/symbol is reached for

Fig. 29. BER of 8-ASK transmission with MLC/MSD over the AWGN
channel. Codeword lengthN = 4095. Solid line (case SSS): Rate distribution
R0=R1=R2 = 0:52=0:98=1:0, total rateR = 2.5 bits/symbol. Turbo codes
are employed as component codes. Dashed line (case SHH): Rate distribution
R0=R1=R2 = 0:52=0:96=1:0, total rateR = 2.48 bits/symbol. Component
codes: Turbo code at level0, 14-error-correcting BCH code at level1.
Simulation results.

9.1 dB, this scheme works about 1.0
dB above capacity. From Fig. 29, it can be seen that the
competing scheme with the BCH code at levelachieves
BER at 10.15 dB with a total
rate 2.48 bits/symbol. Here, the capacity 2.48
bits/symbol is reached for 8.9 dB. Hence,
the MLC scheme using a BCH code at levelworks about
1.25 dB above capacity, resulting in a loss of about 0.25 dB
versus the MLC scheme using turbo codes at the coded levels.
This loss of 0.25 dB observed in simulations corresponds well
to the loss of 0.15 dB predicted from capacity arguments.

In conclusion, in practice we recommend multilevel
coding schemes based on Ungerboeck set partitioning, where
soft-decision decoding is employed only at leveland hard-
decision decoding is applied at higher levels. With this
approach, MLC transmission based on a one-dimensional

-ary signal set requires only modest additional complexity
(since low-complexity hard-decision decoding is used at higher
levels) compared to binary transmission. Thus to approach
capacity with bandwidth-efficient digital transmission requires
much less decoding complexity per bit than to approach
capacity with binary antipodal signaling.

VIII. A PPLICATION OF SIGNAL SHAPING

It is well known that signal shaping provides further gain
by replacing a uniform signal distribution by a Gaussian-like
distribution in order to reduce average transmit power. In many
situations, it is easier to obtain shaping gain than to obtain a
similar gain by more powerful coding. In order to approach
the Shannon limit, shaping is indispensable.

In this section, the combination of MLC and signal shaping
is discussed. We find that the achievable shaping gain does
not correspond directly to a gain in capacity. The optimum
assignment of code rates to the individual levels and optimum
sharing of redundancy between coding and shaping is given.
The section closes with implementation issues and simulation
results.

In view of the results of Sections V and VII, we restrict
ourselves to one-dimensional constellations throughout this
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section. As mentioned earlier, because shaping algorithms
automatically impose proper spherical boundaries in many
dimensions on a given signal set, it is sufficient to restrict
the discussion to uniformly spaced -ary one-dimensional
constituent constellations.

A. Aspects from Theory

As is well known, optimization of thea priori probabilities
of signal points is necessary in order to approach channel
capacity. In the literature, the gain due toshapingis mostly
derived only for very large constellations using the continuous
approximation. This leads to the following two statements
[10].

I: The maximum shaping gain, i.e., the maximum reduction
in average transmit power, is given by

1.53 dB

But for situations most relevant in practice, using “small”
signal sets, the limit of 1.53 dB can never be achieved. In
[73] the shaping gain of finite constellations is calculated to
be approximately

(49)

where is the transmission rate per dimension. The term
can be regarded as a quantization loss due to

approximating a continuous distribution by a discrete distri-
bution with entropy bits/dimension. In terms of ASK
signaling, it is the ratio of the power of a -ary equiprobable
constellation to that of a continuous, uniform distribution.

II: Coding gain and shaping gain are separable.

This statement is true only asymptotically for very large
constellations. In contrast to other authors (e.g., [10], [33])
we are interested in the analysis of finite constellations. Here,
coding and shaping gains interact and cannot simply be added
(in decibels). The reason is that, on the one hand, signal power
is decreased, leading to a gain. But, on the other hand, a loss
in channel output differential entropy and, hence, in
mutual information is observable,
where denotes the differential entropy of the additive
Gaussian noise: . Shaping fixes the entropy
of the transmit symbols instead of the differential entropy
of the channel output symbols. Thus we have to distinguish
between the pureshaping(power)gain (fixing ) and the
gain for fixed mutual information , which we denote
by capacity gain.

Subsequently, the maximum capacity gain in using an
optimized channel input distribution is derived (cf. [74]).
Consider the capacity (bits/dimension)
of the AWGN channel with a continuous Gaussian distributed
input. To transmit a certain rate , the minimum signal-
to-noise ratio is thus

(50)

Without loss of generality, we force a uniformly distributed
signal to be for and otherwise.

Fig. 30. Capacity gainGc according to (53) (solid line) and shaping gain
Gs for discrete constellation according to (49) (dashed line), respectively,
versus capacity.

Since here , the noise variance is related to the
signal-to-noise ratio by . Thus the capacity
reads

(51)

where again denotes the differential entropy of the
channel output with density

(52)

Hence, assuming and replacing a uniformly dis-
tributed channel input signal by a continuous Gaussian dis-
tributed one, the maximum capacity gain is given by

(53)

where denotes the inverse function of .
In Fig. 30, is plotted versus the desired capacity.

Additionally, the maximum shaping gain of discrete constel-
lations (49) is shown.7 As one can see, in a wide range the
shaping gain is much greater than the gain in capacity. Strictly
speaking, the true shaping gain is even greater, because some
constellation expansion is necessary to realize coding gain.
Hence, the shaping gain of a constellation supporting a certain
rate plus the coding redundancy can be exhausted. Thus the
shaping gain curve has to be moved left by the redundancy.
Only for asymptotically high rates does the whole shaping
gain translate directly to a gain in capacity, approaching the
ultimate shaping gainof . This is because

for high signal-to-noise ratios (cf. [74], [75]). In contrast, for
the capacity gain completely vanishes.

7The approximation is tight only forC > 1.5 bits/dimension.
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Fig. 31. SNR gap (capacity limit to Shannon limit, see (55)) for rateR = 2.0
bits/dimension and 8-ASK constellation as a function of the entropyH(A)
of the constellation.

Note that an additional loss appears for discrete constella-
tions compared to the corresponding continuous ones. Hence,
for discrete constellations (53) is actually a lower bound.

In order to come close to the optimum, an optimization over
the probabilities of the signal points of finite constellations
has to be performed, cf., e.g., [76]. This procedure is quite
difficult. Therefore, we force the channel input to be (discrete)
Gaussian distributed, i.e.,

(54)

where

normalizes the distribution. This distribution, which max-
imizes the entropy under an average power constraint, is
sometimes called aMaxwell–Boltzmann distribution[73]. The
parameter governs the tradeoff between average power
of signal points and entropy . For , a uniform
distribution results, whereas for , only the two signal
points closest to the origin remain (even). From (54), higher
dimensional constellations may be simply obtained by taking
the Cartesian product. As we will see later, by selecting
(and hence ) properly, the performance of the optimum
(not necessarily discrete Gaussian) distribution is approached
very closely.

For a given -ary constellation and target transmission rate
, this variation of entropy moreover leads

directly to the optimum partitioning of redundancy between
coding and shaping. For example, consider the transmission of

2.0 bits/dimension using an 8-ASK signal constellation.
In Fig. 31 the SNR gap to the Shannon limit (normalized SNR)

SNR
required , discrete Gaussian distribution

(55)

Fig. 32. Top: Shannon limit and the capacityC of 8-ASK (AWGN channel,
Ungerboeck set partitioning) with uniform signaling (solid) and with an
optimized discrete Gaussian constellation (dashed). Middle: Sharing of coding
and shaping redundancy. Bottom: CapacitiesCi of the equivalent channels
of the corresponding MLC scheme.

is plotted over the entropy . There are three important
points: First, for a uniformly distributed 8-ASK
constellation results where only coding is active. Second, as

approaches only signal shaping is used. Because
for error-free transmission is in principle only
possible for a noiseless channel, the gap here goes to infinity.
Third, the minimum is obtained for . Thus in
the optimum point redundancy of bit has
to be divided into 0.63 bit coding redundancy and 0.37 bit
shaping redundancy for this specific example. Additionally,
it should be noted that for the entropy in the range
of 2.5 to 2.8 bits/symbol SNR differs only slightly. Thus
the selection of the optimum entropy is not very sensitive.
In the optimum, an additional capacity gain of about
0.78 dB over channel coding only results. Since shaping is
done without extra constellation expansion the shaping gain
is somewhat smaller than would be possible in principle. But
this residual loss in shaping gain is very small; about 0.06 dB
at the optimum point, cf. Fig. 31.

Since we have now derived the quasi-optimal distribution
of the signal points, the individual rates of the MLC scheme
can be calculated and plotted in Fig. 32. Again, an 8-ASK
constellation and Ungerboeck set partitioning is assumed. At
the top, the capacity is plotted versus the signal-to-noise
ratio in decibels. The solid line is valid for uniform
signaling, whereas the dashed one assumes an optimized
discrete Gaussian constellation. It is important to notice that
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Fig. 33. Capacity ofM -ary ASK schemes with and without shaping.

at each point the optimization is performed individually and,
hence, different distributions result. Additionally, the Shannon
limit is shown (dotted line). As one can see, the Shannon limit
can be approached very closely over a wide range.

In addition, an optimization for an arbitrary discrete distribu-
tion was done using a modified version of the Blahut–Arimoto
algorithm [77]. The resulting optimum is not exactly Gaussian,
but the difference from the curve shown in Fig. 32 is invisible
(below 0.001 dB).

The plot in the middle displays the optimal sharing of total
redundancy between coding and shaping. As a rule of
a thumb, we propose that one bit total redundancy should be
divided into bit coding redundancy and bit shaping
redundancy.

On the bottom, the capacities of the equivalent channels
of the MLC scheme according to (7) are shown. Again, the

solid lines correspond to uniform signaling and the dashed
lines hold for the optimized Gaussian distributions. It is
important to observe that rate design completely changes when
shaping is active. In particular, the rate of the highest level
decreases strongly. The reason is that this level has to carry
the entire shaping redundancy. This observation leads directly
to a simple construction of MLC schemes with signal shaping,
see Section VIII-B.

Finally, in Fig. 33 this optimization is performed for
and -ary ASK constellations. (Obviously no

shaping gain can be achieved for 2-ASK.) The gain increases
as the size of the constellation increases (cf. Fig. 30).

Ungerboeck stated [4] that by doubling the size of a QAM
signal constellation, i.e., by introducing 0.5 bit redundancy
per dimension, almost the entire coding gain can be realized;
going to larger constellations is not rewarding. Less total
redundancy than 0.5 bit/dimension causes an inevitable loss
from the maximum coding gain for equiprobable signal points.
This statement has now to be formulated more precisely: as
long as no signal shaping is applied. For combined coding and
shaping no improvement can be gained beyond doubling the
number of signal points per dimension, i.e., by introducing 1
bit redundancy per dimension. Here, the Shannon limit curve is

Fig. 34. Application of trellis shaping to MLC.

approached very closely by applying the usual ASK or QAM
constellations. Reducing total redundancy to 0.5 bit/dimension
already causes an inevitable loss of approximately 0.5 dB to
the Shannon limit curve, although even here, the SNR gain for
shaping and coding is already much greater than for coding
solely. For shaping becomes inactive and the
curves merge.

As our aim is to approach capacity, we are not concerned
with the constellation expansion ratio. In these examples we
have chosen 1 bit total redundancy, i.e., approximately
bits/dimension shaping redundancy. But in contrast to coded
uniform constellations, shaping is here done without further
constellation expansion.

B. Implementation and Simulation Results

We now apply the theoretical considerations of the previous
section to practical schemes. A shaping algorithm has to
generate a distribution of signal points approximating the
theoretical Maxwell–Boltzmann distribution while preserving
the optimum entropy. In principle all shaping techniques,
e.g., shell mapping [78], [79] or trellis shaping [80] can
be combined with an MLC scheme. Here, we prefer trellis
shaping, because shell mapping is only suited for very large
constellations, partitioned in a large enough number of two-
dimensional shells. By contrast, since trellis shaping takes
the lower levels into account (without modifying them), only
a small portion of data has to be scrambled with shaping
redundancy. Here, we will not describe trellis shaping in detail
(see [80]), but we give a possible approach to combining
MLC with shaping. The idea is sketched in Fig. 34. The
lower levels are assumed to be coded using block
codes of length with appropriate rates. Only the highest
level to which no coding is applied is involved in shaping.
This approach preserves the MLC philosophy, and coding and
shaping are decoupled. In spite of this separation, in terms of
rate design and calculation of gains, coding and shaping still
interacts. consecutive symbols form one shaping step (
does not need to be a multiple of ). Shaping redundancy
can be adjusted properly by combining an appropriate number

of modulation intervals into a shaping step. Because a
rate- shaping convolutional code is used, data
bits are scrambled with one shaping bit, resulting in an

-dimensional shaping scheme. This construction can be
interpreted as shaping based on an-dimensional lattice,
where the dimension is equal to the number of bits
selecting one of regions (cf. [80]). A generalization would
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be the application of rate- , , shaping codes in
order to get a finer granularity of rate.

Simulations for a multilevel coded 64-QAM constellation,
where MLC is based on a 8-ASK constellation with turbo
codes of large block length and total rate
2.0 bits/dimension were performed. Three-dimensional trellis
shaping is applied at the highest level, i.e., bit shaping plus

bit coding redundancy per dimension is spent as discussed
above. Using this scheme we achieve BER within
1 dB of the Shannon limit (see Fig. 10). Notice that, while
using shaping, the nonuniform distribution of signal points
has to be taken into account in the decoding procedure, i.e.,
maximum-likelihood decoding has to be replaced by maximum
a posterioridecoding. Further simulation results can be found
in [81].

In conclusion, these rules lead to very powerful transmission
systems bridging the gap between signaling with uniformly
distributed signal points and the Shannon limit.

Similar results can be derived if hard-decision decoding is
used at certain levels. Here also an optimal tradeoff between
coding and shaping redundancy can be found. But because
the poorer performance of channel coding, it is advantageous
to spend more redundancy for shaping and achieve a higher
shaping gain. For -ary signaling with strategy SHH (see
Section VII) and a target rate of 2.0 bits/dimension, a two-
dimensional shaping scheme with is close to the
optimum, cf. [82].

IX. CONCLUSIONS

The concept of equivalent channels for the individual coding
levels of an MLC scheme establishes a basis to derive tools
for the analysis and design of coded modulation schemes. The
key point for a power-efficient design of MLC schemes is the
proper assignment of individual rates to the component codes.
Iff the individual rates are chosen to be equal to the capacities
of the equivalent channels, the capacity of the underlying-
ary modulation scheme is achieved by an-level MLC scheme
together with the suboptimum MSD for arbitrarya priori
probabilities and for an arbitrary labeling of signal points. Thus
the problem of channel coding can be solved in principle in an
optimum way by employing binary codes in an MLC approach.

There exists a wide region for the individual code rates
within which capacity is achievable. But, except for the
vertices of this region, which correspond to the capacities
of the equivalent channels, one must replace relatively low-
complexity MSD by extremely complex MLD. In particular,
the individual rates of coded modulation schemes which are
designed by the BDR differ substantially from the capacities
of the equivalent channels, leading to an unavoidable perfor-
mance loss when using MSD. In this case capacity is only
achievable by overall MLD.

Various information-theoretic parameters (capacity, coding
exponent, and cutoff rate) of the equivalent channels of an
MLC scheme lead to various design rules for coded modula-
tion schemes based, e.g., on block codes with given length
or -approaching codes as component codes. Simulation
results for the AWGN channel show that transmission schemes

designed by these rules exhibit power and bandwidth efficiency
close to the Shannon limit. In practice these rules do not lead
to very different rate designs.

From the coding exponent and the cutoff rate of the equiva-
lent channel of an MLC scheme, the optimum dimensionality
of the constituent signal set operating on the AWGN channel
was derived, assuming binary codes at each level. For a fixed
data delay it is more efficient in power and complexity to base
MLC schemes on a one-dimensional constellation combined
with as long block codes as possible, instead of increasing the
dimensionality of the constellation. In contrast, using binary
convolutional codes with equal constraint lengths, it is more
efficient to use MLC in combination with a multidimensional
constellation.

As shown in Section III, the capacity of MLC schemes is
independent of the particular labeling. For finite code length,
the labeling introduced by Ungerboeck and Imai, leads to the
most power-efficient schemes. However, two MLC schemes
based on block and mixed partitioning were also presented
which are suited for softly degrading transmission schemes
and for a reduction of hardware complexity, respectively. With
hard-decision decoding, low individual code rates lead to a
significant performance loss and thus should be avoided. With
an appropriate labeling strategy, rates can be assigned much
more uniformly. Additionally, combining several levels into
a single one and applying a sufficiently large block code
with subsequent bit interleaving was discussed. This BICM
approach using Gray labeling of signal points seems to be
a relatively low-complexity attractive alternative approach to
coded modulation. On the other hand, convolutional coding is
not suited to BICM.

Employment of hard-decision decoding at several coding
levels is an efficient method to save complexity in coded mod-
ulation schemes. With Ungerboeck labeling of signal points,
the performance loss compared to soft-decision decoding (in
terms of capacity as well as in simulations) is only about 0.2
dB for 8-ASK transmission over the AWGN channel, when
hard-decision decoding is employed at all but the lowest level.
Since in general the complexity of hard-decision decoding is
substantially lower than that of soft-decision decoding, we
observe that power-efficient coded-ary, , modulation
requires only slightly more complexity than coded binary
transmission. If hard-decision decoding is employed at all
levels, then an MLC approach withindividual binary error-
correcting codes is recommended. Since multistage decoding
exploits the soft channel output to some extent, it promises
better performance than a single binary code adapted to the

-ary modulation scheme by Gray mapping.
In combination with channel coding, signal shaping provides

further gain by reducing average transmit power. Since for
finite constellations coding and shaping are not separable,
their interaction has to be taken into account when designing
an MLC scheme. Assuming discrete Gaussian constellations,
the key design point is the optimum sharing of redundancy
between coding and shaping. It turns out that a redundancy
of 1 bit/dimension is sufficient to approach to the Shannon
limit very closely. Less redundancy results in an unavoidable
performance loss. In order to achieve significant shaping gains
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in practice, one must take into account these rate design
principles. Using codingandshaping results in completely dif-
ferent rate designs than without shaping. Moreover, maximum
a posteriori decoding should be used instead of maximum-
likelihood decoding.

In the Appendix, a tight upper bound on the error prob-
ability for binary transmission over the equivalent channels
of an MLC scheme is derived. Here finite constellations and
boundary effects are taken into account leading to results that
are more useful in practice.

APPENDIX

REVIEW OF UPPERBOUNDS ON THE ERROR

PROBABILITY OF MULTILEVEL CODED TRANSMISSION

Selected previous work on the performance evaluation of
coded modulation schemes over the AWGN channel includes
the derivation of the following.

• Upper bounds on the word-error probability of mod-
ulation schemes based on binary lattices and-ary
PSK constellations, respectively, with MLC where overall
maximum-likelihood decoding and MSD are considered
[83] and [52].

• The probability of decoding error when overall maxi-
mum-likelihood decoding is used [51].

• The Euclidean distance enumerator of MLC [35].
• The bit-error probability for 8-PSK with MLC and MSD

when error propagation is taken into account [39].
• The probability of decoding error at levelas a function

of the Chernoff bounding parameter for -ary PSK,
4-QAM and QAM with an infinite number of signal points
[84], [85].

• A minimum-distance bound on the word error probability
for block-coded modulation schemes using MSD when
error propagation is taken into account [86].

• A lower bound on the symbol error probability for lattice
codes [87].

• An upper bound on the word error probability for lattice
codes [88].

In this appendix, we sketch the derivation of a tight upper
bound on the word error probability for -ary trans-
mission using an MLC scheme with linear binary component
codes. In [83] a derivation is given for component codes
based on lattice constellations that neglects boundary effects.
Here, the results are generalized to constellations with a finite
number of signal points and almost arbitrary labelings. Thus
boundary effects are included. Note that the main results are
in [35].

Let denote the probability that the word of estimated
source symbols is in error and let
denote the probability that the estimated component data word

contains errors, provided the correct subset is known at each
decoding stage, i.e., error-free decisions at lower levels, or
parallel decoding of the individual levels (PDL) are assumed.
Using the union bound principle, the error probability is
strictly upperbounded by . Consequently, can be
upper-bounded by bounding the individual error rates.

If the mean Euclidean distance enumerator

of component code in Euclidean space is known ( :
minimum Euclidean distance for coded transmission at level;

: average number of codewords at Euclidean distance;
: indeterminate) the usual union bound for the error rate

can be applied, cf., e.g., [89]. Notice that the upper bound for
the error probability given by the union bound is rather tight
for only for codes with rates smaller than or
close to the cutoff rate.

For low-to-moderate SNR, where this bound may not be suf-
ficiently tight, an improved bounding technique was proposed
by Hughes [90] and refined by Herzberg and Poltyrev [91],
[92]. As the Hughes–Herzberg–Poltyrev (HHP) bound is also
based on the union bound (cf. [83]), the distance enumerator

of codewords of the component code in Euclidean
space is a key parameter, which we now derive.

A. Euclidean Distance Enumerator of
Multilevel Component Codes

For brevity, we restrict ourselves to equiprobable signal
points and a regularly partitioned constellation; i.e., all subsets
at one partitioning level are congruent. The Euclidean distance
enumerator of the Euclidean space representation of the
multilevel component code of length is given by

(56)

where

(57)

denotes the weight enumerator of the linear binary component
code (minimum Hamming distance ).

E

(58)

is the averaged different-subset constellation enumerator at
level and

E

(59)

is the averaged same-subset constellation enumerator at level.
The bound on the error probability can be tightened by using

a relevantEuclidean distance enumerator

(60)
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with

E

(61)

where denotes the set of signal points
which determine the Voronoi region of with respect to

.

Sketch of Proof:For simplicity of notation and without
loss of generality subsequently the considerations are restricted
to the level . We start with a simple two word linear code

of length , where the weight of is .
If we first assume the all-zero codeword to be transmit-

ted, the signal points representing the complementary binary
symbol have to be considered to upper-bound the
error probability by the union bound. In this case the averaged
different-subset constellation enumerator at level
is given by the mean Euclidean distance enumerator counting
each signal point representing with respect
to each signal point representing

E (62)

By the same argument, the constellation enumerator
in the case of the transmission of is

E (63)

For regular partitions,

holds; the average constellation enumerator is in-
dependent of the actual transmitted codeword. The same
derivation applies to the averaged same-subset constellation
enumerator , which is required to consider all possible
Euclidean space representations of those positions, which are
identical in both codewords.

Due to the orthogonality of the signal space, the Euclidean
distance enumerator of the component codewith respect to
all possible Euclidean-space codeword representations is given
by the product of the different-subset constellation enumerators
for all differing positions times the product of the same-subset
constellation enumerators for all equal positions (see, e.g.,
[35]), hence

(64)

Applying this result to a general linear binary code with
weight enumerator yields (56).

In order to calculate an upper bound on the error probability,
the entire Euclidean distance enumerator of the code is
not required. Here, due to the union bound, many error events
are counted more than once. The number of terms comprising

the constellation enumerator can be reduced in order
to tighten the error probability bound if the following fact
(given in [24] and also used in [83]) is taken into account:
The error probability is still upper-bounded by the union
bound when only adjacent signal points are counted, i.e.,
those points determining the walls of the Voronoi region
of the considered signal point. Thus the resultingrelevant
constellation enumerator in (61) is valid if is assumed
to be transmitted. Additionally, since signal points representing
the same symbol are irrelevant for determining the Voronoi
cells, the same-subset enumerator equals one. In the case of
regular partitions, (61) also holds for transmission of ,
namely

E

E (65)

The derivation of the upper bound on the error probability of
multilevel codes on the AWGN channel is sketched for regular
partitions. This symmetry property of a Euclidean space code
was already exploited by Zehavi and Wolf [93] and in a
weaker form by Ungerboeck in his code search criteria [4];
Forney called it “Ungerboeck–Zehavi–Wolf symmetry” [94].
However, the calculation can still be applied to nonregular
partitions if the formulas are adapted to the time variance of
the equivalent channel in a similar way as is done for the
Rayleigh fading channel, see, e.g., [95].

Additionally, in almost all cases relevant in practice the
results also hold for nonuniform, i.e., shaped, transmission.

Analogous to the derivation of an upper bound on the
word error probability , an upper bound on the bit-
error probability can be obtained by the modified weight
enumerator as usual [89].

If error propagation in MSD is neglected, the bit-error
probability for multilevel coded transmission is given by

cf. [39], where denotes the bit-error probability for de-
coding at level when error-free decisions are assumed at
decoding stages of lower levels.

B. Examples

Two special cases of the calculation of the Euclidean
distance enumerator that are of practical interest are discussed
in the following examples.

Example 1: The use of a linear code with mini-
mum Hamming distanceat level of an equiprobable 8-ASK
constellation with natural labeling
is investigated (regular partitions). The relevant constellation
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Fig. 35. Signal constellation at level0 of a 4-ASK constellation with block
partitioning.

enumerator is calculated according to (61)

(66)

Hence, the relevant Euclidean distance enumerator of the code
in this example is given by

(67)

From (67) one can see that the minimum-distance error co-
efficient of the code is dramatically increased by a factor
of due to the multiple representation of binary symbols
in the signal constellation at level. Even for relatively small
Hamming distances, e.g., , an increase of the effective
error coefficient by results. In general, the factor
is given by the th power of the average number of nearest
neighbors in the constituent signal set.

Example 2: The 4-ASK constellation with
block partitioning for transmission at level of an MLC
scheme as shown in Fig. 35 is investigated. Equiprobable sig-
nal points are assumed. The relevant constellation enumerator

reads:

(68)

Here not only the minimum squared Euclidean distance of
contributes to the relevant constellation enumerator but also

the additional distance , because walls of the Voronoi region
are at different distances for signal points and .

Remarkably, as increases the minimum-distance error
coefficient decreases. Thus in case of block labeling
asymptotically the minimum distance is of almost no interest.
This again emphasizes our conclusion that minimum Euclidean
distance is not the most appropriate design criterion.
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[79] M. V. Eyuboğlu, G. D. Forney Jr., P. Dong, and G. Long, “Advanced
modulation techniques for V.fast,”Europ. Trans. Telecommun. (ETT),
vol. 4, pp. 243–256, May–June 1993.

[80] G. D. Forney Jr., “Trellis shaping,”IEEE Trans. Inform. Theory, vol.
38, pp. 281–300, Mar. 1992.

[81] R. Fischer, U. Wachsmann, and J. Huber, “On the combination of
multilevel coding and signal shaping,” inITG-Fachbericht: Codierung
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