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Further Analytical Results on the Joint Detection of Cochannel Signals
Using Diversity Arrays

Stephen J. Grant and James K. Cavers

Abstract—We derive a fully analytical expression for the union
bound on symbol-error rate for the joint detection of several
cochannel fading signals using a diversity antenna array, putting
numerical results previously published on a firm analytical base.
We prove that with pilot-based multiuser channel estimation, any
number of users can enjoy diversity order equal to the number
of antennas, and we quantify the performance penalty relative
to single-user binary phase-shift keying as a function of number
of users, constellation density, and number of antennas. We also
demonstrate the interdependence of all users participating in the
detection process.

Index Terms—Antenna arrays, cochannel interference, fading
channels, multidimensional signal detection, multiuser channels.

I. INTRODUCTION

I N [1], we considered reception of the cochannel signals from
mobile users at a base station with an array ofdiver-

sity antennas. We demonstrated that maximum-likelihood joint
detection of all user signals can provide asymptotic diversity
order , regardless of the number of users. This is in strong
contrast to nulling and minimum mean-square error (MMSE)
combining, in which each additional user reduces the order of
diversity by one for all users, and the maximum number of users
is limited by the number of antennas. However, our expression
for pairwise-error probability was left in terms of a pair of eigen-
values that had to be evaluated numerically. In this letter, we de-
rive a closed-form analytical expression for the ratio of the two
nonzero eigenvalues, which results in a fully analytical solution
for the pairwise-error probability, and hence the union bound on
symbol-error rate (SER).

Having this analytical solution allows the derivation of several
new results. First, some parameters of the joint detection process
are shown not to affect the resulting SER. Second, we prove that
all users enjoy -fold asymptotic diversity, in contrast to [1],
where it was simply observed from numerical calculation. Third,
we obtain expressions for the constant signal-to-noise ratio
(SNR) loss per additional user as a function of the phase-shift
keying (PSK)constellationsizeand thenumberofantennas.

II. A NALYTICAL SOLUTION FOR SER

A. Summary of the Method

In [1], the pairwise-error probability is defined as the prob-
ability that the maximum-likelihood detector chooses the erro-
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neous data vector instead of the trans-
mitted data vector , where the data
symbols and are for the th user. The data symbols
are drawn from a PSK constellation of sizeand unit radius.
The resulting pairwise-error probability is

(1)

where is the ratio of the two nonzero
eigenvalues of the matrix defined below. Our convention
is that is positive and is negative; consequently, is
negative.

The union bound on SER for user is then

(2)

where is the set of signal vectors that differ in theirth
position from . In [1], the eigenvalue ratio is calculated
numerically in order to evaluate the performance of joint detec-
tion. In Section II-B, we provide a closed-form analytical solu-
tion.

The matrix (see [1, eq. (21)])
has factors as in (3), shown at the bottom of the next page, and

with (4), shown at the bottom of the next page,
where and represent complex conjugate and complex conju-
gate transpose, respectively. In (3) and (4), is related to the
transmit power of the th user’s signal by ;

, where is the complex correlation co-
efficient between the true channel gain from user to an-
tenna and its estimate , and and are the standard
deviations of and , respectively. Note that for perfect
channel state information (CSI), we have , ,
and .

For simplicity in obtaining asymptotic results, in (3), we have
written the SNR of user as , where is
the power spectral density of the additive white Gaussian noise
(AWGN) process, is a scale factor, and is a reference
SNR. The reference SNR is arbitrary, but logical choices might
be the arithmetic or geometric average of theusers’ SNRs, or
one user’s SNR in particular—perhaps that of the strongest user.
In terms of the notation in [1], . Although (3) and
(4) are the same quantities as their counterparts in [1, eqs. (20),
(17)], they are written in a slightly different form (the former by
use of the relation and the reference
SNR) for convenience in eigenvalue derivation.
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B. Derivation of Eigenvalue Ratio

Since the rank of the matrix is only two, the character-
istic polynomial of the matrix may be expressed in the following
form:

(5)

According to Bôcher’s formula [2], the coefficients of
the quadratic polynomial are given by and

, where .
Knowing the coefficients allows us to calculate the ratio of the
two nonzero eigenvalues as

(6)

Note that the subscripthas been dropped since it is assumed,
without loss of generality, that is the all-ones vector. Evalua-
tion of the various traces is made easier if the matrixis written
as the sum of two simpler matrices and , where con-
tains the first column and first row of with the remainder of
the elements set to zero, and contains the main diagonal of

(excluding the top left element) with the remainder of the el-
ements set to zero. and are then given by

(7)

The above expressions require evaluation of the traces of sev-
eral matrix products: four twofold products in the former, and
16 fourfold products in the latter. Fortunately, the sparse nature
and special form of the matrices make some of the traces zero
and limit the complexity of others. We have not shown these in-
termediate calculations because of their size.

After laborious evaluation of the nonzero traces using
for all in (3) and (4), we find the ratio of eigenvalues to be

(8)

where

(9)

In the derivation, we have made explicit use of
for PSK. In (1), (8), and (9), we have an analyt-

ical expression for the pairwise-error probability, and therefore
the union bound on detection SER (2).

We can draw two immediate inferences from this result: first,
the pairwise-error probability depends only on the erroneous
data vector and each user’s own SNR and channel es-
timate correlation coefficient . It does not depend separately
on or , a fact that was not evident in the numerical ap-
proach of [1].

Second, in the special case of equipower users and perfect
CSI, we obtain an interesting interpretation of SNR. With per-
fect CSI, we have all , and the parameter in (9) simpli-
fies to . If the cochannel signals arrive at the base station
with equal average powers, perhaps as a result of power control,
then for all users, and the parameterin (9) simplifies
to Consequently, from (8), we see

...
...

...
. . .

...

(3)

...
...

...
. . .

...

(4)
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that the eigenvalue ratio, and therefore the SER, depend only on
an effective SNR

(10)

Further, if the modulation is binary phase-shift keying (BPSK),
then becomes twice the Hamming distance between
and (the number of positions in which the transmitted and er-
roneous data vectors differ), since we have taken the transmitted
vector to be all ones. Thus, the SER depends only on the ef-
fective SNR , which is intuitively satisfying.

III. A SYMPTOTIC BEHAVIOR

Much insight into the behavior of joint detection may be
gained by considering its asymptotic performance; that is, the
performance as the common SNRbecomes large. We would
hope to see the eigenvalue ratio (8) continue to increase with,
in order to drive the pairwise-error probability (1) toward zero.
The questions are whether the ratio does increase without limit
and, if so, how quickly.

A. Asymptotic-Error Rate

A realistic model of imperfect CSI allows the channel esti-
mation correlation coefficients to improve as the SNR in-
creases, thereby eliminating the error floor (an irreducible SER
for large SNR). As an example, we use the pilot-based mul-
tiuser channel estimation scheme of [3], where it is shown that,
for large SNR, the normalized channel estimation error variance
for user , given by , is inversely proportional to that
user’s own SNR . The constant of proportionality,
denoted here as , depends on the number of usersas well
as the parameters of the channel estimation scheme such as in-
terpolator order, frame length, Doppler fade rate, and the choice
of training sequences. Typical values for are on the order of
10 . We now have . Substitution
into (9) and (8) gives the eigenvalue ratio in the following alter-
native form after collecting terms with like powers of:

(11)

where the coefficients are

(12)

Fig. 1 Comparison of the true union bound on symbol-error rate and its
asymptotic form for BPSK modulation, equipower users, and perfect CSI.

To obtain the asymptotic-error rate, we let the SNRin (11)
become very large. The eigenvalue ratio approaches

(13)

which increases without bound asincreases. As a check, the
special case of equipower users, perfect CSI, and BPSK modu-
lation produces , which is identical to the
result obtained by setting and in (8) and
allowing to approach infinity.

The pairwise-error probability is obtained by substituting
(13) into (1) and noting that the asymptotic form of the re-
sult is determined by the last term in the summation, giving

. Substitution of (13) yields,
finally

(14)

This analytical result shows clearly that the pairwise-error prob-
ability, and therefore the union bound on SER, varies asymptoti-
cally as , regardless of the number of users. That is, all users
enjoy -fold diversity with no error floor, a result that was ap-
parent only from numerical results in [1] for the special case of
equipower users.

This behavior is illustrated in Fig. 1, which compares the true
union bound, obtained analytically using (8), with the asymp-
totic form, obtained from (14). Note that this graph considers
equipower users (all ) so that is the common SNR.
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Numerical comparison of the true union bound and the simu-
lated SER can be found in [1]. Both the graph and (14) demon-
strate that the effect of additional users is simply to shift the
curves to the right by an SNR penalty that is constant, measured
in decibels. Below, we use our asymptotic expressions to obtain
several new results for the SNR penalty.

B. SNR Penalty for Imperfect Channel Estimation

We have expressed the quality of multiuser pilot-based
channel estimation by the coefficients . It is clear from (14)
that imperfect estimation degrades the SNR by an asymptotic
factor of for every pairwise error event. This
is one illustration of the interdependence of data detection
for different mobiles, since any mobile with poor channel
estimation (a large value of ) degrades the performance of
all users, even those with perfect CSI ( ).

C. SNR Penalty for Additional Users

This performance degradation is quantified by the additional
SNR required to support users at a fixed symbol-error rate in
the asymptotic region, compared with that required to support a
single user at the same error rate. Here, we derive an expression
for the SNR penalty experienced by a system with equipower
users and perfect CSI ( and ). The asymptotic
SER is then

(15)

where the subscript is dropped because the transmitted vector
is all ones, and subscript is dropped because the mobiles

have identical conditions, allowing us to consider only,
the set of vectors that differ from unity in the first position.
The SNR has been denoted to emphasize the number of
users. For the reference single-user system withpoints in
the PSK constellation, we have and

, resulting in the simple expression
for asymptotic

SER.
Define as the penalty factor by which the SNR

must be increased to maintain the same SER as a single-user
system. From (15), we have the SNR penalty as

(16)

A plot of (16) in Fig. 2 for BPSK modulation shows that, for a
given number of antennas, there is a constant penalty in deci-
bels for each additional user. Moreover, as the number of an-
tennas increases, the degradation per additional user decreases
dramatically. For example, for a single antenna ( ), the
degradation is approximately 2 dB per additional user, whereas

Fig. 2 SNR penalty in the asymptotic region for BPSK, equipower users, and
perfect CSI.

Fig. 3 SNR penalty in the asymptotic region for several different modulation
formats with equipower users and perfect CSI.

it is less than 0.1 dB per additional user for . Thus, not
only do multiple antennas give better performance for a single
user, they maintain that performance better than a single antenna
in the face of an increasing user population.

D. SNR Penalty for Larger Constellations

Fig. 3 plots the SNR penalty for three different modulation
formats, namely BPSK, quadrature PSK (QPSK), and 8-PSK.
Note that for a given number of constellation points, the SNR
penalty is always referenced to a single-user system with the
same . As can be seen, increasing the constellation size results
in a significant degradation in performance, especially for the
four-user system. More importantly though, the degradation is
quickly reduced as the number of antennas in increased. In fact,
for , the performance degradation is less than 2 dB for all
three modulation formats and for both the two- and four-user
systems.
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IV. CONCLUSIONS

In this letter, we have extended the results of [1] for the joint
detection of several fading cochannel signals with use of a diver-
sity antenna array. In particular, we derived a fully analytical ex-
pression for the pairwise-error probability and the union bound
on symbol-error rate. Using the asymptotic forms of the analyt-
ical expressions, we confirmed several results obtained numer-
ically in the previous paper. We also obtained several new re-
sults, such as the fact that a single user with poor channel estima-
tion degrades even those users with perfect channel estimation.
We have also quantified the performance loss as the number of

users increases and as the constellation density increases, and
we showed that the losses shrink dramatically as the number of
antennas is increased.
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