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Abstract—The combination of macrodiversity reception with maxi-
mum likelihood (ML) multiuser detection has the capability to reduce
the bit error rate (BER) for many users by several orders of magni-
tude compared with multiuser detectors that operate on each antenna
separately [1]. In this paper, we present the Conditional Metric Merge
(CMM) algorithm which reduces the computational complexity of the
ML multiuser-macrodiversity detector by an enormous factor. The
CMM algorithm can be viewed as a spatial variant of the Viterbi algo-
rithm. It is a new algorithm and is the ¿rst of its kind as ML multiuser-
macrodiversity detection (MUMD) is a relatively new area of research.

I. INTRODUCTION

Traditionally, multiuser detection has been combined
with antenna diversity where the antennas are co-located
and have the same set of users [2]. In contrast, when mul-
tiuser detection is combined with macrodiversity, widely
separated base stations or antennas share information about
users. Macrodiversity is unlike microdiversity since each
user’s signal arrives at the various antennas with different
mean square values. As a result, the antennas include dif-
ferent, but often overlapping, sets of users in the multiuser-
macrodiversity detection (MUMD).

Brute force ML-MUMD requires an exhaustive enumer-
ation over all users resulting in a computational complex-
ity that increases exponentially with the number of users in
the system. The spatial CMM algorithm presented in this
paper minimizes the complexity while achieving the same
optimality as brute force ML-MUMD. When the users are
evenly distributed throughout the system, the exponent of
exponential growth is scaled by a factor of about ��� � �,
where � is the number of macrodiversity antennas in the
system and � is the average number of antenna connec-
tions per user. For example, if there are � users in the
system, and each user is connected to � � � macrodiver-
sity antennas in a cluster of � � � cells, the computational
complexity is reduced from �N to �5N@:.

The different and often overlapping sets of users in the
ML multiuser-macrodiversity detection result in a metric
that is composed of sums of terms that depend on only a few
symbols at a time [1]. The resulting metric structure makes
the ML multiuser-macrodiversity detector well suited for a
dynamic programming approach which keeps its computa-
tional complexity at a minimum.

The Conditional Metric Merge (CMM) algorithm pre-
sented in this paper is the realization of this dynamic

programming approach. It is the key to ML multiuser-
macrodiversity detection as it illustrates how the ML
multiuser-macrodiversity detector would be implemented in
practice. Here we have assumed that the signals undergo
�at fading in a synchronous DS-CDMA system to simplify
the presentation of the spatial algorithm. A full treatment
with delay spread in an asynchronous CDMA system can
be found in [3].

The log-likelihood metric for ML-MUMD can be written
as

�l �
O�
o@4

�lo (1)

where there are a total of � macrodiversity antennas in the
system. The subscript, �, is used to show that all possible
data combinations are used in the decision process, and the
detector selects the data which minimizes (1). The individ-
ual metrics at each antenna, �lo, can be found in [1], and
are structured in a similar way to the original metric for ML
multiuser detection [4], [5]. Each antenna involves a unique
set of users, �o, in the ML-MUMD. Therefore, the metrics,
�lo, depend on �#o information symbols, where there are
�#o � ��o� users involved in the ML-MUMD at antenna 	,
and ��� applied to a set denotes the length of the set.

In order to be able to utilize a dynamic programming
technique, an optimization problem must have both an opti-
mal substructure and overlapping subproblems [6]. A prob-
lem has an optimal substructure if its optimal solution is
composed of optimal solutions to subproblems [6]. It can
be seen that the ML multiuser-macrodiversity detector ex-
hibits an optimal substructure since the minimization of �lo
is an optimal solution to a subproblem within (1). The ML
multiuser-macrodiversity detector also has overlapping sub-
problems since the metrics, �lo, include different, but of-
ten overlapping, sets of users in the MUMD. Therefore, the
CMM algorithm utilizes a dynamic programming approach
to reduce the number of computations required to perform
the MUMD.

As stated previously, the metric, �lo, depends on �#o in-
formation symbols� therefore, the number of probabilities
calculated per stage of the algorithm is �N#o . However,
since each user may be connected to a different number
of antennas, the complexity per binary decision is variable.
For example, if user 
 is connected to the antennas in �{,
the number of probabilities calculated per binary decision
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Fig. 1. Typical connections for 2 users and 2 antennas.

for user 
 is
�

o5D{
�N#o .

In order to describe the CMM algorithm, an index vari-
able, �, is used to count through the antennas, where � � 	,
and � � 	 � �. The data symbols that are included in the
metric, �lo, are stored in the set

���� � ��{ ���
 � �o� (2)

where ������ � �#o . For example, the data symbol sets,
����, can be constructed using the connections depicted
in Fig. 1. As can be seen from the �gure, user 1, U1, is
communicating with antenna 1, A1, only, while user 2, U2,
is communicating with both antennas 1 and 2, A1 and A2.
By using Fig. 1 and (2), it can be observed that the data set
for A1 is ���� � ��4 �� � �5 ���, and the data set for A2
is ���� � ��5 ���.

The metric, �lo, is calculated for all values of the data
symbols in ����. If we de�ne � � ��� �� as the alpha-
bet for a BPSK signal, there are ���m�+k,m � �N#o possible
combinations of the data symbol values in ���� and thus
�N#o metric calculations.

The metrics that are calculated for all of the various data
symbol values in ���� are stored in the set

	 ��� �
�
�lo� � � �� ���� ���m�+k,m

�
(3)

The metrics at each stage of the algorithm can be merged
by using the Combine routine. If we de�ne � � 
�� ���� ��,
the combined metrics may be expressed as

	��� � 	 �� �	 	 ��� (4)

where � � 
�� ���� �
 �� and 	 represents the invoked Com-
bine routine. The Combine routine is analogous to metric
extension in the Viterbi algorithm where the computed met-
rics form continuations on the surviving sequences from the
previous stage [7]. The following section describes how the
Combine routine merges the two different sets of metrics,
	��� and 	���.

II. THE COMBINE ROUTINE

This section provides a description of the Combine rou-
tine in II-A, and it also provides a practical example of this
routine in II-B.

A. The Combine Routine’s Description

In this routine, we combine the metrics, 	 ��� and 	 ���.
The data symbols that correspond with 	��� and 	 ��� are
given by ���� and ���� respectively. In the atypical situa-
tion where ���� � ����, 	 ��� � 	 ���	 	 ��� could be
performed by simply adding the respective metrics within
each set. However, normally ���� �� ����. Therefore,
we create ���� � ��� � � ����, and we repeat the met-
rics in 	�� � and 	 ��� in a manner so that they correspond
with ����. In order to repeat the metrics, we use the func-
tion, �z � ������
 �� ��� ������ for both � � � and
� � �. The returned set, �z, contains the relevant in-
dices in ���� of the elements in ���� 
 ����. Once
we have �z for both � � � and � � �, we can use this
information to repeat the metrics in 	 ��� and 	 ��� so that
�	 ���� � �	 ���� � ���m�+k,m, and the sets can be merged by
simply adding the respective metrics. This type of repetition
can be performed since the data symbols in ���� 
 ��� �
have no effect on the metrics in 	�� �, and the data symbols
in ����
���� have no effect on the metrics in 	���.

In order to repeat the metrics in 	 ���, we use the ele-
ments in �z which are given by �z>m where � � � � ��z�.
By starting with � � � and working toward � � ��z�, we
repeat the metrics in 	��� as follows. The metrics are

sequentially divided into ���m�+z,m.m�Lz>m

groups, and each
group of ���Lz>m�4 metrics is repeated so that it appears
twice in succession. Therefore, within the Combine rou-
tine, the metrics, 	���, that initially correspond with����
are repeated so that they correspond with ����. Once
this repetition is performed for both � � � and � � �,
	��� � 	 �� � 	 	��� is easily calculated, and the Com-
bine routine returns both 	 ��� and ����.

B. Example of the Combine Routine

The inputs to the Combine routine are the data sym-
bol sets, ���� and ����, and their corresponding metrics,
	��� and 	��� respectively. Suppose the Combine routine
is initialized with the following data symbol sets

���� � ��7 �� � �8 ��� (5)

���� � ��8 �� � �9 ��� (6)

and the metrics in Figures 2 and 3, where �m�+z,m denotes
������ cross products on the set � [8]. In Figure 2, �m�+i,m

lists all possible combinations of the data symbol values
in ����, and the metrics in 	 ��� are calculated for each
corresponding entry of �m�+i,m. Normally the metrics are
calculated using the ML multiuser-macrodiversity detector.
However, in this example, the actual metrics are replaced
with integers for simplicity. In a similar manner to that de-
scribed above, �m�+k,m in Figure 3 lists all possible combi-
nations of the data symbol values in ����, and each entry
of �m�+k,m is used to calculate the metrics in 	 ���.

Now that the data symbol sets and their corresponding
metrics have been de�ned, the ������
 function is used
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Fig. 2. Sample metrics for \Eu�
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Fig. 3. Sample metrics for \E��

to provide the proper repetition for both 	�� � and 	 ���.
The function, �z � ������
 �� ��� ������ returns the
relevant indices in ���� of the elements in ����
����
for both � � � and � � �. ���� is simply the union of
the sets, ���� and ����. Therefore,

���� � ���� ����� � ��7 �� � �8 �� � �9 ��� (7)

From (5) and (6), we calculate

����
���� � ��9 ��� (8)

����
���� � ��7 ��� (9)

Therefore,

�i � ������
 �� ��� ������ � ��� (10)

and
�k � ������
 �� ��� ������ � ��� (11)

In other words, counting from left to right, the symbol
�9 �� in ���� 
 ���� appears in position �i � ��� of
����, and the symbol �7 �� in ���� 
 ���� appears in
position �k � ��� of ����. Now that �i and �k have been
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Fig. 4. The merging of sample metrics, \ Eu� and \E��

calculated, they will be used to repeat the metrics in 	�� �

and 	��� so that �	 ���� � �	 ���� � ���m�+k,m.
As stated previously, the metrics in 	 ��� for both � � �

and � � � are sequentially divided into ���m�+z,m.m�Lz>m

groups, and each group of ���Lz>m�4 metrics is repeated so
that it appears twice in succession. Since ��i � � ��k� � �
in this example, only one repetition is needed for both 	�� �
and 	 ���, and � attains a maximum value of � for both
� � � and � � �.

The metrics in 	 ��� are divided into ���m�+i,m.m�L
i>m

�

�5.4�6 � � group of ���Li>m�4 � �6�4 �  metrics,
and this group is repeated so that the metrics appear as
shown in 	��� of Figure 4. Similarly, the metrics in 	 ���

are divided into ���m�+k,m.m�Lk>m

� �5.4�4 �  groups
of ���Lk>m�4 � �4�4 � � metric, and these groups are
each repeated so that they appear twice in succession as
shown in 	��� of Figure 4. As can be seen from Figure
4, �	 ���� � �	���� � ���m�+k,m as expected, and 	 ��� can
now be calculated by simply adding the respective metrics
within 	��� and 	���.

It is observed that ���� may contain data symbols that
do not appear in any of the subsequent data symbol sets,
���� for � � �. If this is the case, we can discard the
least-probable metrics with respect to these data symbols
in the Select routine. The Select routine is analogous to
the selection process in the Viterbi algorithm where the se-
quences are subdivided into groups that differ only in the
symbol which is not involved in any subsequently received
signals. From each group, the surviving sequence is the one
having the largest probability, and the rest are discarded [7].



III. THE SELECT ROUTINE

This section describes the Select routine in III-A, and a
practical example is provided in III-B which further por-
trays the functionality of this routine.

A. The Select Routine’s Description

We can make tentative decisions on the data symbols in
the set

���� � � ���

�
nAk

���� (12)

since the symbols in ���� do not appear in any of the sub-
sequent data symbol sets, ���� for � � �. The elements
in ���� are given by �m ��� where � � � � ������.
Assuming that we start with � � � and work toward
� � ������, we can make a tentative decision on �m ��� by
dividing the ���m�+k,m�m.4 metrics into ���m�+k,m�m groups
with each group containing ��� metrics that differ in the
symbol �m ���. From each group of the ��� metrics, we
select the minimum and discard the remaining ��� 
 � met-
rics. In a similar way to the Viterbi algorithm, the decision
for �m ��� is �nal if all of the groups make the same deci-
sion. Otherwise the decision for �m ��� remains tentative
and is deferred to a later stage. Once tentative decisions
have been made on all of the symbols in ����, the num-
ber of metrics in 	 ��� has been reduced by a factor of
���m�+k,m, and ���� is replaced by ���� 
 ����. In to-
tal, we have made tentative decisions on the data symbols
in ���� �

�
4�m�k����, and these tentative decisions are

stored in � ���, where each entry of � ��� contains ������
tentative decisions, and the entire set has ���m�+k,m entries.

B. Example of the Select Routine

The outputs of the Combine routine are used as inputs
for the Select routine. From the example in Section II-B,
the data set, ���� and corresponding metric set, 	��� are
shown in Figure 4. As stated previously, tentative deci-
sions can be made on the data symbols in the set, ���� �
���� 
 �

nAk����. For example, if the data symbol,
�8 ��, does not appear in any of the future data symbol sets,
i.e. �8 �� �� �

nAk����, then �8 �� � ����. Further, if
�8 �� is the only symbol in ���� that does not appear in
future data symbol sets, then ���� � ��8 ���. The ele-
ments in ���� are given by �m ��� where � � � � ������,
and since ������ � � in this example, � attains a maxi-
mum value of �. Therefore, a tentative decision is currently
made for �8 �� only. In order to make a tentative deci-
sion for �8 ��, the ���m�+k,m�m.4 � �6�4.4 � � metrics
are divided into ���m�+k,m�m � �6�4 �  groups with each
group containing ��� � � metrics that differ in the symbol
�m ��� � �8 ��.

In Figure 4, �m�+k,m lists all possible combinations of the
data symbol values in ����, and 	 ��� lists the correspond-
ing metrics. Fig. 5 repeats this information, but initially
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Fig. 5. The Select routine applied to sample metrics, \ E��

reverses the order of �m�+k,m and 	��� for purposes of de-
scription. As can be seen from Fig. 5, the arrows show
how the � metrics are divided into  groups, and each group
differs only in the symbol, �8 ��. Within each group, a
decision is formed by selecting the minimum metric and
discarding the larger of the �. It can be seen from Fig. 5
that the number of metrics has been reduced by a factor of
���m�+k,m � �4 � �, and ���� is replaced by ����
����.
Thus, ���� becomes ��7 �� � �9 ���, and the tentative de-
cisions for �8 �� are stored in � ���.

The Combine and Select routines form the major compo-
nents of the CMM algorithm. Now that these routines have
been described in detail, the following section will provide
an additional example which further illustrates the CMM
algorithm’s operation.

IV. A TYPICAL SYSTEM USING THE CMM
ALGORITHM

The major components of the CMM algorithm have now
been addressed in terms of the Combine and Select routines.
This example is used to demonstrate how these components
�t together to form the overall algorithm. It is based on the
connections for the � � � users and � � � antennas de-
picted in Fig. 1. Neither the Combine routine or the Select
routine will be described in detail as examples of both of
these were given in the Sections II-B and III-B respectively.
Therefore, in Fig. 6, double arrows are used to represent the
Combine routine, while single arrows represent the Select
routine.

The relevant metrics, 	 ���, are normally calculated us-
ing the ML multiuser-macrodiversity detector. However,
for this example the actual metrics are replaced with in-
tegers for simplicity. As can be seen in Fig. 6, the data
set for A1 is ���� � ��4 �� � �5 ���, and the data set for
A2 is ���� � ��5 ���. The CMM algorithm in Fig. 6
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Fig. 6. CMM example for the connections shown in Fig. 1

is initialized by setting ���� � ���� and 	 ��� � 	 ���.
Since no tentative decisions have been formed at this point,
���� � �, and each entry of � ��� is set to �. It is imme-
diately observed that the symbol, �4 �� does not appear in
the subsequent data symbol set, ����. Therefore, a tenta-
tive decision can be made on �4 �� without impacting the
�nal result. As expected, the number of metrics in 	 ���
has been reduced by a factor of �. Once the appropriate
tentative decisions have been made, the Combine routine is
used to execute 	 ��� � 	 ��� 	 	 ���. Once 	��� has
been calculated, no further metrics need to be combined to
this result. Therefore, �nal decisions can now be made for
�4 �� and �5 �� by calling the Select routine one last time.
These �nal decisions are found in � ��� at the bottom of
Fig. 6.

V. PRACTICAL CONSIDERATIONS OF THE CMM
ALGORITHM

In each stage of the CMM algorithm, �N#o probabilities
are computed. Therefore, in total

�
O

o@4
�N#o probabilities

are computed to detect the symbols for each of the � dif-
ferent users at any time .

So far in the CMM algorithm’s description, 	 ��� has
been calculated in a consecutive fashion, starting with � �
� and ending with � � �. However, in order to speed up
the process, the 	 ���’s could be calculated simultaneously
since data is received at a number of different antennas. In

a similar way to traditional ML multiuser detection, a pro-
cessor at each antenna could calculate its metrics, �lo. The
unique aspects of ML-MUMD enter through the use of the
Combine and Select routines in the CMM algorithm. In
fact, the Combine routine could be invoked many times in
parallel, but the Select routine should not be invoked until
the interim metrics have been added to the current total at
the system controller.

VI. CONCLUSIONS

This paper has described the CMM algorithm for ML
multiuser-macrodiversity detection in general terms, and it
has also provided speci�c examples which illustrate the al-
gorithm’s operation. The complexity of the ML multiuser-
macrodiversity detector grows exponentially with the num-
ber of users since it is based on the detector developed in
[4]. To mitigate this growth, the new CMM algorithm is de-
signed to keep the exponent of exponential growth for the
ML multiuser-macrodiversity detector to a minimum while
producing the same data decisions as the brute force ML
multiuser-macrodiversity detector. The CMM algorithm
presented in this paper can be viewed as a spatial variant
of the Viterbi algorithm. It can be applied to a synchronous
DS-CDMA system using ML-MUMD when the signals un-
dergo �at fading. A later publication will show how the
CMM algorithm can be extended to operate in both space
and time to encompass asynchronous DS-CDMA systems
in which the users experience frequency selective fading.
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