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Abstract 
 
The term fading, in the context of mobile communications, refers to the 
interference caused by the reception of numerous scattered copies of a given 
signal at an antenna. Fading can produce significant random variations of signal 
power –in the scale of 10s of dBs over fractions of a wavelength- and hence, can 
be extremely destructive to the signal. Therefore, in order to achieve reliable 
mobile communications, provisions must be considered to counter the effects of 
fading. Indeed, a first step towards this end is to understand these effects 
through producing models of and simulating this phenomenon. 
 
This thesis discusses the development of an Object-Oriented MATLAB 
component that simulates the effects of fading, based on a somewhat simplified 
mathematical model. Clearly the simplified model might not present a very 
realistic view of the highly complex and random nature of fading; nevertheless, 
this simulation serves as an extremely useful research tool for comparing and 
measuring the effectiveness of different communication techniques. 
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Font Conventions 
 
A number of font conventions have been used to assist in the understanding of 
the text and to avoid confusion. These are listed in the following table. 
 
Sample Font Used Comments 
Normal text Normal Text! 
Special Word A term that has a specific meaning 

defined elsewhere in the text. Exception 
when italics are used to emphasize 
certain words. 

Class Name Name of a class (e.g. ComplexGainGen) 
memberFunction or memberVariable A member function or a member variable 

of a given class (e.g. process) 
A = generate( c, 0 ); MATLAB code 
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1 Introduction 
 
Designers and engineers of mobile communications systems are faced with three 
main challenges, which are introduced by the communication channel: Path 
Loss, Shadowing and Fading.  
 
Path Loss refers to the decrease in signal power, which is mainly brought about 
by the physical distance between the communications devices. Shadowing takes 
on a more local view and refers to the loss of power attributed to large obstacles 
such as hills and tall buildings. Finally, Fading, the main topic of this thesis, takes 
on a yet more microscopic view and is concerned with the interference caused by 
the reception of numerous scattered copies of the signal at the antenna. 
 
The interference caused by fading produces significant random variations of 
signal power –in the scale of 10s of dB over fractions of the wavelength- about a 
mean power predicted by the Path Loss and Shadowing models. As a result, 
fading can be extremely destructive to the signal and hence, in order to achieve 
reliable communication, provisions must be considered to counter the effects of 
fading. Indeed, a first step towards this end is to understand these effects 
through producing models of and simulating fading. 
 
This thesis project is concerned with producing a reusable simulation component 
in MATLAB, based on a somewhat simplified model of fading. Clearly the 
simplified model might not present a very realistic view of the highly complex and 
random nature of fading; nevertheless, this simulation serves as an extremely 
useful research tool for comparing and measuring the effectiveness of different 
communication techniques. The simulation model will be created in the form of 
an easily customizable component that can be effortlessly “plugged-in” to other 
MATLAB simulations. 
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2 A Brief Mathematical Model of Fading 
 
The transmission of a bandpass and narrowband signal to a mobile is modeled 
as a multipath channel structure shown in Figure 2-1. 

 
Figure 2-1: Multipath channel structure. [1] 

 
The above figure shows the reception of multiple scattered copies of the signal, 
each with gain ai and angle iθ , by a mobile moving with speed v. A simple 
mathematical derivation yields the following result for y(t), the complex envelope 
of the received signal. 

∑ −= −

i
i

tfj
i tseaty iD )()( cos2 τθπ     (2.1) 

Equation 2.1 shows that scatterer i  corresponds to a signal copy that is shifted in 

time by iτ and in frequency by )iDf cos(θ , where 
λ
vfD =  is the Doppler 

frequency. We also define the delay spread ( )dτ  as the largest delay )( iτ . 
 
 
We can also show the above equation as an integral over a density, 
 

∫ ∫
∞

∞− −

− −=
D

D

f

f
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where τντνγ dd),(  is the overall gain caused by all scatterers with a ‘delay τ  in 

τd  and Doppler ν  in νd ’ [1]. Consequently, the output corresponding to an input 
signal consisting only of the one frequency f is 
 

   (2.3) ),(),()( 2222 ftGeddeeety ftj
f

f

fjtjftj
D

D

πτππνπ τντνγ == ∫ ∫
∞

∞− −
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Here, G(t,f) is the gain experienced by frequency component f at time t –i.e., a 
time-dependent frequency response. Therefore, we can also write our 
input/output relationship in frequency domain as 
 

        (2.4) ∫
∞

∞−

= dfefSftGty ftj π2)(),()(

 
while the time-domain equivalent of the above equation is given by 
 

        (2.5) ∫ −=
d

dtstgty
τ

τττ
0

)(),()(

 
Using definition of G(t,f) given in Equation 2.3 and assuming a WSSUS channel, 
we calculate the autocorrelation (for components separated in time by  and in 
frequency by ∆ ),  

t∆
f

 

      (2.6) ∫ ∫
∞

∞− −

∆∆=∆∆
D

D

f

f

fjtj
G ddeeSftR τντν τππν

γ
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Here, ),( τνγS  is the ‘delay-Doppler power density’ [1], referring to the gain 
experienced at Doppler v and delay τ . 
 
In order to simplify our model we consider a special case with the following two 
properties: 
 

1. delay-Doppler power density is separable, i.e. we have ‘two one-
dimensional functions to describe the scattering, rather than one two- 
dimensional function.’[1] We then have 

 

g

g

g

g PS
S

σ
τ

σ
ν

τνγ

)(
.

)(
),( =      (2.7) 

 
where )(νgS  is referred to as the Doppler spectrum, i.e. the power at 
Doppler ν , and )(τgP  denotes the power delay profile, i.e. the power at 
delay τ . 

 
2. Scattering is isotropic, i.e. the power received by the mobile from all 

angles, )(θP , is uniform. We then have, 
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and, consequently 
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3 Component High-Level Description 
 
3.1 Usage 
 
Viewed as a ‘black-box’, the general usage scheme of the Fading Simulation 
Component is shown in the following diagram, where the input/output relationship 
is governed by Equation 2.1. The Fading Simulation receives the input signal s(t), 
adds simulated fading effects based on the Fading Parameters and outputs the 
signal y(t). The input signal s(t) is originated in a Transmitter, while the output 
signal y(t) eventually reaches a Receiver. 
 
 
 s(t) y(t)

Fading 
Parameters

Receiver Transmitter Fading Simulation 
Component 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.1: Black-box view of the Simulation Component 

 
The input and output of the component are in the form of arrays of complex 
numbers of an arbitrary length, containing the input and output samples 
respectively. In addition, the component could be used in real-time, in 
conjunction with another MATLAB program. 
 
3.2 Structure 
 
Internally, the Fading Simulation Component consists of a Tapped Delay Line 
(TDL) and a number of Complex Gain Generators. 
 
3.2.1 The Tapped Delay Line 
 
The TDL structure is shown in the following diagram.  Corresponding to Equation 
2.1, the TDL generates multiple time-shifted copies of the input signal, each of 
which is weighted by a complex gain (which is, in turn, generated by the complex 
gain generator.)  
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Figure 3.2: Tapped Delay Line [1] 

 
To mimic Equation 2.1, the TDL is, in effect, using discrete ‘delay bins’ of width 
ts=1/fs, where the complex gain corresponding to each bin reflects the weighted 
sum of the complex gain of all delayed signal copies that are included in that bin. 
Also, note that the Nyquist criterion requires fs>2W, where W is the bandwidth of 
the signal plus the Doppler frequency (fD). 
 
 
3.2.2 The Complex Gain Generator 
 
The following three properties must hold for the complex gain generator [1]: 
 

1. Real and imaginary parts of the generated complex gain must be 
independent and Gaussian, having the same autocorrelation. 

2. Different complex gain generators (corresponding to different taps in 
the TDL model) must be independent. 

3. The autocorrelation function must be the one given in Equation 2.8. 
 
Two of the most widely used methods for complex gain generation were 
implemented. These are Jakes Method and the method of Filtered White Noise. 
 
a) Jakes Method 
 
Here, a slightly modified version of Jake’s Method [1] is used. Basically, Jake’s 
Method works by simulating the physical model of isotropic scattering. It 
assumes that there are N equispaced scatterers around the mobile, all with the 
same gain. However, the phase angle associated with each scatterer is chosen 
at random.  
 
The following equation is used by Jake’s Method to generate complex gain 
samples: 
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e
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ty θπφ      (3.1) 

 
where, iφ  is the random phase and iθ  is the arrival angle. 
 
Through careful mathematical derivation, we can prove that Jake’s Method does 
in fact hold the three properties given above (In particular, Property 2 is only 
satisfied if no two complex gain generators share the same arrival angles, iθ ) 
Also, using Jake’s Method is advantageous in that it can be run backward and 
forward in time with desired spacing, it has low computational load and is fairly 
simple [1]. 
 
b) Filtered White Noise 
 

 
Figure 3.2-1: Power Spectral Density of the Coloring Filter 

 
The method of Filtered White Noise achieves the desired power spectrum by 
generating white Gaussian noise samples and passing them through a spectrum 
shaping filter (the frequency response is plotted in Figure 3.2-1). Two 
independent white noise generators are used for the real and imaginary parts 
respectively. The filters used have the following frequency response 
corresponding to Equation 2.7. 
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 )()( νν gSH =       (3.2) 

 
 
By virtue of its construction, the Filtered White Noise technique also holds the 
three properties stated above. Also, using this method is advantages in that it 
generates truly Gaussian and stationary samples. On the other hand, it requires 
a large FIR or IIR filter (and therefore a high computational load) and cannot be 
easily run backward in time. 
 
3.3 Input Parameters 
 
To be able to use the component, the user must specify a number of parameters 
to effectively customize the component to his/her needs. The basic parameters 
are the following: 
  
� Normalized sample spacing,  sD tf .
� Number of Taps in the TDL 
� The power delay profile, specified as a vector containing the variance of 

each Tap of the TDL (i.e. ) 2
giσ

� The LOS components for each tap (if any) 
 
In addition, when using Jake’s Method, Ns, the number of scatterers must be 
specified. On the other hand, when using the method of Filtered White Noise, the 
truncation length of the filter used and the Kaiser Window parameter, β , must be 
supplied as parameters. 
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4 Component Implementation 
 
 
As discussed before, the programming language chosen for this project was 
MATLAB. This is indeed a sensible choice because MATLAB is often the 
preferred language for creating communications simulations. Therefore, being in 
MATLAB, the component is available to a wide range of applications. 
 
Another crucial decision made was to use the Object Oriented extensions of 
MATLAB and create a modular and object-based program. As a result, this 
simulation consists of a number of subcomponents (or classes) that, on the one 
hand, form the Fading Simulation Component, and on the other hand, are 
independent enough to be used individually. 
 
This section describes the Object Oriented structure of the simulation, including 
relevant details regarding each subcomponent (i.e. class) of the internal 
structure. While this section focuses on the general function of each 
subcomponent, as well as how this function is performed, Appendix B contains 
brief instructions on how each subcomponent should be used. 
 
Please note that a basic understanding of general Object Oriented concepts is 
required for this section. It is highly recommend that you read Appendix A for an 
introduction to Object Orientation, if you are not familiar with such concepts.  
 
4.1 Object-Oriented Static Architecture  
 
The UML static diagram contained in the next page depicts the internal class 
structure of the component. 
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Figure 4.1-1: Object-Oriented Static Diagram 
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As shown in Figure 4.1-1, the structure consists of four classes: ComplexGainGen, 
JakesGen, FWNGen and TDL. ComplexGainGen is an abstract base class from which 
JakesGen and FWNGen are derived. On the other hand, the class TDL forms an 
association with ComplexGainGen. 
 
4.2 Class description 
 
This section describes the functionality of each of the four classes listed above. 
Where appropriate, references are made to Section 3, to better explain the 
purpose of each class. Also, references are made to Section 2 to indicate the 
mathematical basis on which each class is built. 
 
4.2.1 ComplexGainGen: Complex Gain Generator Base Class 
 
ComplexGainGen is an abstract class defining the common interface shared by all 
types of Complex Gain Generator classes. This common interface is simply 
based on the following facts about any Complex Gain Generator, regardless of 
class: 
  

1. It needs to know the sampling frequency, fs. This is normalized by the 
Doppler frequency fD forming fD/fs or fDts. Thus, fDts is a member 
variable. 

 
2. It (obviously!) generates complex gain samples -hence the generate 

member function. This function returns an array of complex gain 
samples.  

 
It is important to note that generate is in fact an abstract function. In 
other words, the interface of ComplexGainGen merely suggests that a 
Complex Gain Generator should be able to generate an array of 
complex gain samples. This only specifies what needs to be done; how 
this is done is not specified and is left for the derived classes to 
implement. Obviously, different types of complex gain generators (i.e. 
derived classes) have different ways of implementing this function.  

 
3. It needs to know the size of the array of complex gain samples 

returned by generate –hence the blockSize member variable. 
 

4. It needs to know the seed to be used when generating random 
numbers. The complex gain generation is a random process and 
therefore, requires the use of a random number generator (which 
generates “random” numbers based on a given Seed.) In order to 
reproduce the same samples generated by a Complex Gain Generator 
‘A’, all we need to do is to set the Seed value of Complex Gain 
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Generator ‘B’ to be the same as that of ‘A’. Therefore, randomSeed is 
a member variable. 

 
5. It needs to know the Ricean K-factor1 used to add an LOS component 

to the generated gains –hence the Kfactor member variable. 
 

6. It should provide means of displaying a brief textual representation of 
its internal state -hence the display member function. 

 
7. It should provide means of changing and acquiring the values of its 

member variables -hence the get and set member functions. 
 

8. It should be able to determine if it is correlated to another Complex 
Gain Generator of the same type –hence the isCorrelated member 
function2. 

 
 
4.2.2 JakesGen: Complex Gain Generation using the Jakes Method 
 
JakesGen is derived from ComplexGainGen and implements the Jakes Method of 
Complex Gain Generation (this is described in Section 3.2.2.) As stated before, 
JakesGen is a self-contained module, which can be used independently to 
generate complex gain samples. 
 
The main function of the JakeGen class is to provide an implementation for the 
generate member function derived form ComplexGainGen, by employing Equation 
3.1.  To this end, JakesGen requires the number of scatterers ( ) along with the 
initial phase (

sN

iφ ) and the arrival angle ( iθ ) of each scaterrer. These values are 
initialized in the constructor:  
 
The constructor, stores the initial phase angles as an array of uniformly 
distributed random angles in the phase[]3 member variable. Since the scatterers 
are assumed to be equispaced around the mobile (see Section 3.2.2), all we 
need is the arrival angle of only one of the scatterers (which is selected at 
random); the rest of the arrival angles can be generated accordingly. The 
dopplerShift[] member variable is used to store the Doppler Shifts corresponding 
to each of the arrival angles. 
 

                                            
1 The K-factor is defined as the ratio of power in the LOS component to the power in the scattered 
component of the complex gain [1]. 
2 A general-purpose function called ‘createUncorGenerators’ has been provided that uses the 
isCorrelated member function to create an array of uncorrelated Complex Gain Generators of 
desired size. 
3 The square brackets in phase[] are used to signify the fact that this member is an array of 
values. 
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It is important to note that the constructor uses the following two criteria to ensure 
that the generated process is stationary [1]: 
 

1) Ns (numScat, the number of scatterers) should be odd 

2) No arrival angle should be equal to 
2
π±  

 
In order to make sure that the second criteria holds the constructor goes through 
the following steps: 
 

1. 0θ  = random angle  

2. iθ  = 0θ + i
numScat

.2π  for  1..1 −= numScati

3. Is any of the iθ   “close” to 
2
π± , if yes go to 1, otherwise go to 4 

4. Done 
 
Please note that, in step 3, “closeness” is determined using a user specified 
threshold value (wssThreshold.) 
 
JakesGen also provides an implementation for the isCorrelated member function. 
This implementation is based on the fact that, as mention in Section 3.2.2, when 
using the Jakes Method, two Complex Gain Generators are uncorrelated if they 
do not share the same arrival angles ( iθ ). Since the arrival angles are 
equispaced and are generated using a random initial angle, for two Complex 
Gain Generators to be uncorrelated it suffices to check that their initial arrival 
angles are not too close (again “closeness” is determined using a threshold 
parameter passed to isCorrelated). 
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4.2.3 FWNGen: Complex Gain Generation using Filtered White Noise  
 
FWNGen is derived from ComplexGainGen and implements the Method of Filtered 
White Noise (this is described in section 3.2.2.) As stated before, FWNGen is a 
self-contained module, which can be used independently to generate complex 
gain samples. 
 
The main function of the FWNGen class is to provide an implementation for the 
generate member function derived from ComplexGainGen. As discussed in Section 
3.2.2, this implementation directly filters White Gaussian Noise samples to 
achieve the desired power spectral density (Equation 2.7.) This is done through 
the Overlap-Add Filter Method [2] as described in the following flowchart: 
 

START

wgNoise = White Gaussian
Noise Samples

wgNoiseSpectrum
= fft( wgNoise )

Pad wgNoise with
zeros at the end

length( wgNoise ) =
blockSize

length( wgNoise ) =
2*blockSize

temp =
wgNoiseSpectrum * filter

Output = temp(1..blockSize)
+ postCursor

postCursor = temp
(blockSize+1..blockSize*2)

Apply coloring filter to noise
(filter is a member variable

initialized in the constructor)

Add post cursor produced
from last invocation

(postCursor is a member
variable)

save the post cursor for
the next invocation

END

Figure 4.2-1: Overlap-Add Filter Method Flowchart 
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The coloring filter used in generate is created by the constructor and stored in 
the filter member variable. It is important to note that the length of this filter (i.e., 
the truncation length) is equal to the blockSize member variable (i.e., the length 
of the complex gain blocks returned by generate.) Figure 4.2-3 shows a flowchart 
that describes how the filter is created by the constructor. 
 
 

START

timeFilter = time domain
filter

filter = fft( timeFilter )

pad timeFilter with
zeros

length( timeFilter ) =
blockSize

length( timeFilter ) =
2*blockSize

initialize postCursor to
zero

(filter is a member variable
used in ‘generate’)

reset post cursor to zero

END

apply Kaiser
Window to
timeFilter

Figure 4.2-2: Creating the coloring filter for FWNGen 

 
4.2.4 TDL: The Tapped Delay Line 
 
As discussed in Section 3.2.1, the main function of the TDL class is to apply the 
effects of fading to an input signal, according to the time varying linear transfer 
function of Equation 2.3; this is done in the process member function. The 
function receives as an argument, an array of complex samples representing the 
signal, simulates the effects of fading on this signal and returns the results.  
 
In order to perform this function, the TDL class maintains the following information 
as member variables:  
 

- Power Delay Profile: This information is supplied by the user as an 
argument to the constructor. The Power Delay Profile is an array of 
variances, one for each tap of the TDL, defining the power of the 
complex gain in each “delay bin”. 
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- Convolution Buffer: This array is used to hold the results of the 
convolution resulting from a call to process. Obviously, the results of 
the convolution are retained in this buffer between successive calls to 
the process member function, ensuring continuity of the process.  

 
- Array of Complex Gain Generators: This array holds multiple 

instances of Complex Gain Generators (either JakesGen or FWNGen), 
one for each tap of the TDL. The association relationship in Figure 
4.1-1 represents this array. 

 
The following flowchart describes how the process function works.  
 
 

START

buffer[0] = input[i]

Output[i] = sum(Gains[] *
buffer[])

ENDShift all samples in
buffer[] to right

last input
sample?

Gains[] = generate
new complex

gains for each tap

Gains[] = (Gains[] + K-factors) *
PowerDelayProfile[]

i = i + 1;

i = 0

call
ComplesGainGen.generate

 
4.3 Design Adv
 
The Object-Orien
advantages. This
are gained from th
 

 

Figure 4.2-3: Flowchart of the process member function of
the TDL class
antages 

ted design outlined in Section 4.1 brings about numerous 
 section briefly discusses some of the important benefits that 
is design. 
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4.3.1 Modularity 
 
One of the most important aspects of Object Oriented systems is Modularity. An 
effort has been made to construct loosely coupled and independent modules, 
which can be used individually as well as together as a system.  For instance, 
although the JakesGen class is used in conjunction with the TDL for the purpose of 
Fading Simulation, it can very well be used on its own for the purpose of 
Complex Gain Generation.  
 
4.3.2 Extendibility 
 
A very important aspect of this system is the fact that it can be effortlessly 
extended. This is brought about by the use of polymorphism in the construction 
of the Complex Gain Generator classes.  
 
As discussed in section 4.2.1, ComplexGainGen has an interface for which no 
implementation is provided. By relying on this common interface, the TDL class 
decouples itself from the specific type of generator used. As long as a Complex 
Gain Generator conforms to this interface, the TDL will be able to use it. This 
notion is depicted in figure 4.3-1. 

Server 
Type 1 

Server 
Type 2 

Server 
Type 3 

Client

 

Figure 4.3-1: Polymorphism 

 
 
The important result of this property is that in the future, other techniques of 
generating complex gains can be implemented as new ComplexGainGen derived 
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classes and be used in conjunction with TDL –all that, with absolutely no change 
being required in the implementation of TDL.  
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5 Testing 
 
After (and during) implementation, extensive testing was done on each 
subcomponent of the simulation to ensure that the operation of each was as 
expected. To this end, various properties were measured and compared with 
their theoretical counterparts. The MATLAB test code used is attached in 
Appendix C.  
 
Each of the following subsections deals with the testing done on one of the 
classes. 
 
5.1 JakesGen 
 
The following table lists the parameters used for the various test performed on 
the complex gain samples generated by the JakesGen class.  
 
Table 1: Parameters used for testing JakesGen. 

Parameter Value 
Number of Scatterers 25 
Block Size 10,000 
Number of Blocks Generated 100 
Normalized Sampling Frequency (fDts) 0.001 
 
 
The testing was carried out in four steps (please note that the code used for 
these tests can be found in Appendix C) 
  
5.1.1 Step One: Mean and Variance 
 
The following table shows the measured as well as theoretical values for the 
Mean and Variance of the generated gain samples. 
 
Table 2: Measured/Theoritical Mean and Variance4. 

Parameter Measured Theoretical 
Mean 8.7113e-004 -9.4914e-004i 0 
Variance 0.995 1 
 
 
5.1.2 Step Two: Probability Density Function 
 
Clearly, the real and imaginary parts of the generated gain samples should follow 
a Gaussian PDF. Figure 5.1-1 shows the PDF of the real part of the generated 
                                            
4 These statistics were calculated over 100 blocks of 10,000 samples each or 1,000,000 samples 
in total. 
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gains whereas Figure Figure 5.1-2 shows the theoretical Gaussian PDF 
(variance = ½ and mean = 0). 
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Figure 5.1-1: PDF of gain samples generated by JakesGen 

 

 
Figure 5.1-2: Theoretical Gaussian PDF 
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Each of the above graphs is plotted using a corresponding vector of sample 
frequencies. As another measure of the similarity between the theoretical and 
measured results, the difference between these two vectors is plotted in Figure 
5.1-3. 

 
Figure 5.1-3: Difference between actual and theoretical PDFs 

 

Alternatively, we perform the Chi-squared goodness-of-fit test to compare the 
actual PDF and the theoretical Normal PDF. To this end, we use the following 
formula to calculate the statistic: 2χ
 
 

       (5.1) ∑
=

−=
k

i
iii EOE

1

2 /)(χ

 
where k is the number of bins, is the expected frequency in bin i andO is the 
observed frequency in bin i. We then use the formula 

iE i

 
 

        (5.2) )(1 2
1 χ−−= kCP

 
where  denotes the CDF of the   distribution with k-1 degrees of freedom, 
to obtain the P-value. 

1−kC
2χ
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In this case we achieve a P-value of 0.1076 which is large enough for us to 
conclude that the PDF of our gain samples is in fact Gaussian.
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5.1.3 Step Three: Autocorrelation 
 
In this step we compare the measured autocorrelation to the theoretical one 
given in Equation 2.8. Figure 5.1-4 shows a plot of the difference between the 
real part of the measured and theoretical autocorrelation vectors (please note 
that, in order to be able to zoom in sufficiently, only the middle 20,000 samples 
are shown.) 

 
Figure 5.1-4: Difference between actual and theoretical autocorrelation. 

 
The mean and variance the difference vector plotted above were measured to be 
0.000157 and 0.005998 respectively. These statistics indicate that the measured 
and theoretical autocorrelation functions are indeed close. 
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5.1.4 Step Four: Cross-Correlation Between Real and Imaginary Parts 
 
As discussed in Section 3.2.2, the real and imaginary components of the 
generated gain samples should be completely uncorrelated. The plot of the cross 
correlation function between the real and imaginary parts of the generated gain, 
shown in Figure 5.1-5, indicates the two are in fact uncorrelated.  
 

 
Figure 5.1-5: Cross-correlation between real and imaginary components. 

 
The mean and variance the cross-correlation vector plotted above were 
measured to be -4.1342e-007 and 0.001627 respectively, which also indicate 
that the real and imaginary components are uncorrelated. 
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5.2 FWNGen 
 
The following table lists the parameters used for the various test performed on 
the complex gain samples generated by the FWNGen class.  
 
Table 3: Parameters used for testing FWNGen. 

Parameter Value 
Block Size 10,000 
Number of Blocks Generated 100 
Normalized Sampling Frequency (fDts) 0.01 
Beta (used for Kaiser Windowing) 5 
 
The testing procedure used was almost identical to the one used for the JakesGen 
class, and was also carried out in four steps (please refer to Appendix C for the 
test code.) 
 
5.2.1 Step One: Mean and Variance 
 
The following table shows the measured as well as theoretical values for the 
Mean and Variance of the generated gain samples. 
 
Table 4: Measured/Theoretical Mean and Variance. 

Parameter Measured Theoretical 
Mean -0.0037 - 0.0068i 0 
Variance 0.9637 1 
 
 
5.2.2 Step Two: Probability Density Function (PDF) 
 
Clearly, the real and imaginary parts of the generated gain should follow a 
Gaussian PDF. Figure 5.2-1 shows the PDF of the real part of the generated gain 
samples whereas Figure 5.2-2 shows the theoretical Gaussian PDF (variance = 
½ and mean = 0). Please note that the PDF of the gain samples generated by 
FWNGen is somewhat more Gaussian than its counterpart, generated by JakesGen 
(see Figure Figure 5.1-1.) 
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Figure 5.2-1: PDF of gain samples generated by FWNGen. 

 
 

 
Figure 5.2-2: Theoretical Gaussian PDF. 
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Each of the above graphs is plotted using a corresponding vector of sample 
frequencies. As another measure of the similarity between the theoretical and 
measured results, the difference between these two vectors (of relative 
frequencies) is plotted in Figure 5.2-3. 
 

 
Figure 5.2-3: Difference between actual and theoretical PDFs. 

 

Alternatively, we perform the Chi-squared goodness-of-fit test to compare the 
actual PDF and the theoretical Normal PDF. Using the same process described 
in Section 5.1.2, we calculate a P-value of 0.1455 which is large enough for us to 
conclude that the PDF of our gain samples is in fact Gaussian.
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5.2.3 Step Three: Autocorrelation 
 
In this step we compare the measured autocorrelation to the theoretical one 
given in Equation 2.8. Figure 5.2-3 shows a plot of the difference between the 
real part of the measured and theoretical autocorrelation vectors (please note 
that, in order to be able to zoom in sufficiently, only the middle 2,000 samples are 
shown.) 
 

 
Figure 5.2-4: Difference between actual and theoretical autocorrelation. 

 

 
The mean and variance the difference vector plotted above were measured to be 
-0.000014 and 0.000056 respectively. These statistics indicate that the measured 
and theoretical autocorrelation functions are indeed close. 
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5.2.4 Step Four: Cross-Correlation Between Real and Imaginary Parts 
 
As discussed in section 3.2.2, the real and imaginary components of the 
generated gain samples should be completely uncorrelated. The plot of the cross 
correlation function between the real and imaginary parts of the generated gain, 
shown in Figure 5.2-5, indicates the two are in fact uncorrelated.  
 

 
Figure 5.2-5: Cross-correlation between real and imaginary components. 

 
The mean and variance the cross-correlation vector plotted above were 
measured to be 0.000012 and 0.000006 respectively, which also indicate that the 
real and imaginary components are uncorrelated. 
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5.3 TDL: Fading Simulation Example 
 
Subsequent to performing unit testing on each of the Complex Gain Generators, 
we can put the whole system together for testing, which constitutes an actual 
Fading Simulation example. This is done by putting a known signal through the 
TDL and observing the results5.  
 
The following table lists the parameters used to setup the system for testing. 
 
Table 5: Parameters used for testing TDL. 

Parameter Value 
Sampling Frequency (fs) 320 KHz 
fD 1Hz 
Number of Taps 8 
Delay Spread 250us 
Generator Block Size  1000 
Number of Scatterers (JakesGen only) 25 
Beta (FWNGen only) 10 
 
In addition to the parameters above, we need to specify a Power Delay Profile. 
That is, we need to state what the complex gain power is at each tap of the TDL. 
Therefore, in this case, we use a linearly decaying Power Delay Profile that 
matches the specifications above (see Figure 5.3-1.), and also whose total power 
equals 1. 
 

                                            
5 The test scenario used here is taken from [1]. 
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Figure 5.3-1: Power Delay Profile. 

 
Now that we have defined the parameters of the system we should define our 
input signal. To generate a sample input signal, we phase modulate a complex 
carrier using a cosine: 
 
 
        (5.1) )..2cos(.mod.2.)( tfIndexj mets ππ=
 
 
The parameters used for the input signal are given in the Table 6 and the signal 
is plotted in Figure 5.3-1. 
 
Table 6: Input signal parameters 

Parameter Value 
Modulation Index 0.4 
Modulation Frequency 10Khz 
Delay Spread 250us 
Number of input samples 100 
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Figure 5.3-2: Input signal. 
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Finally, we simply pass the signal through the TDL and plot the results (see 
Figure 5.3-36).  

 
Figure 5.3-3: Output of the Fading Channel Simulator. 

 
In addition, for the sake of comparison we generate another plot using a smaller 
delay spread (125us), and consequently less taps in the TDL (4 taps to be exact.) 
As expected, when using a smaller delay spread, the effects of fading are 
somewhat less destructive to the signal. 

                                            
6 Note that the plot contains a “spike” going from the center of the graph towards the bottom right. 
This is caused by the transient component of the output of the convolution and shows the initial 
contents of the convolution buffer. In fact, this result is even expected in real physical systems. 
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Figure 5.3-4: Output of the Fading Channel Simulator (4 taps.) 

 
A simple plot of the spectrum of the input signal reveals that the bandwidth is 
approximately 50Khz while the delay spread ( dτ ) is sµ250  ( sd µτ 125= in the case 
of four taps). Consequently, the product of these two quantities (bandwidth times 
delay spread) is large, which shows that the channel is a very frequency 
selective one. The effects of this frequency selectivity are evident from both 
Figure 5.3-3 and Figure 5.3-4: in both cases the signal is significantly damaged. 
 
On the other hand, our observation interval of 312.5us (100 samples at 320Khz) 
is quite short compared to our Doppler frequency of 1Hz (the product of the two 
quantities is very small). Therefore, we are faced with slow fading, the 
consequence of which is the fact that damages to the time structure of the signal 
(e.g. its periodicity) are small (refer to Figure 5.3-3 and Figure 5.3-4). 
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6 Conclusions 
 
The research and development carried out for the purpose of this thesis was 
focused on creating a Fading Channel Simulator in MATLAB. This simulation 
models a simplified view of the Fading phenomenon encountered in 
communications systems. By being embedded in other MATLAB programs, the 
simulation can prove to be very useful for measuring the performance of various 
communication techniques. 
  
The work mainly consisted of creating a Tapped Delay Line structure to 
implement a time varying linear filter and also implementing two different 
techniques of Complex Gain Generation: The Jake’s Method and The Method of 
Filtered White Noise. To this end, an Object Oriented architecture was designed, 
consisting of a number of autonomous classes, which can be used together in a 
system, or otherwise independently. Various advantages of this design such as 
Modularity and Extendibility were explored. 
 
Furthermore, extensive testing was carried out at the unit and also at the system 
level. These tests ensured that each component as well as the whole system 
performed as expected. 
 
The end result of this project is a MATLAB class library. In order to improve the 
performance of the various functions included, in the future, some or all of the 
functions could be ported to a more low level programming language such as C. 
Furthermore, additional Complex Gain Generator classes can be implemented to 
support other types of Complex Gain Generation.  
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Appendix A: A Quick Intro to Object Orientation 
 
An Object-Oriented program consists of Objects and Classes. Classes are 
specifications about a given type of data (hence, they are also referred to as 
Abstract Data Types.) A class is a “package” or “bundle” consisting of a number 
of functions and data variables; these are referred to as member functions and 
member variables respectively.  
 
An Object is an instance of a class. Any number of objects can be created from a 
given class, each having its own member variables while sharing the same 
member functions. As an analogy, if we consider the 2.0 MHz Intel Pentium 4 
Processor a class, then the one I have in my computer is an instance and 
therefore an object of this class. 
 
The following figure shows an example of simple class diagram using UML 
(Unified Modeling Language.) The diagram illustrates a number of important 
Object-Oriented concepts, which are discussed below. 
 

+Draw()
+Move()
+GeometricShape()

-Color
GeometricShape

+Circle()

Circle

+Rectangle()

Rectangle

+Triangle()

Triangle

+Point()

Point

1 n

A 1: A simple class diagram. 

In the diagram, each class is represented by a box, which is divided into three 
sections: the top section contains the class name, the middle section lists the 
member variables while the bottom section lists the member functions. Notice 
that every class has a member function with the same name as the class; these 
are called the constructors. A constructor is used to create and initialize an 
instance (object) of a class. 
 
The Circle is in fact, a special type of Geometric Shape –i.e. it has all the 
properties of a Geometric Shape as well as its own properties. Therefore, there is 
an inheritance relationship between GeometricShape and Circle, and as a result, the 
class Circle inherits all the member variables and member functions of 
GeometricShape -this indeed makes sense because a Circle too can have a color 
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and Circle too can have a move and a draw member function. The same idea 
holds for the Rectangle and Triangle classes. 
 
Another very important point to consider is that it does not make sense for the 
class GeometricShape to provide an implementation for the Draw member function, 
it is only there to define the interface. Derived classes like Circle or Rectangle 
provide their own specific implementation for the Draw member function inherited 
from GeometricShape. Now, if we had a list containing a number of Circle, Rectangle 
and Triangle objects, we could draw them without knowing of which exact type 
they are, by simply calling the Draw member function of each. This concept is 
referred to as polymorphism: the same function takes different meanings in 
different classes. 
 
The last relationship to consider in Figure A1 is the 1-n aggregation between the 
GeometricShape and the Point classes. This association indicates that a given 
instance of GeometricShape can own and use more than one instance of the class 
Point. This is modeling the fact that any given Geometric Shape (like a rectangle 
for example) consists of a number of points that are connected to each other. 
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Appendix B: Component User’s Guide 
 
This section briefly discusses how the Fading Simulation Component should be 
used through a number of examples7.  
 
B.1 Using The JakesGen Class 
 
The following MATLAB code excerpt, illustrates how a JakesGen object is created: 
 
% generator parameters 
Ns=25;               % Number of scatterers, odd 
blockSize=10000; % the block size  
fDts=0.001; % normalized sampling period 
wssThreshold=.0001; % threshold value used to determine if WSS criteria is satisfied 
randomSeed=1; % seed value used to init random number generators (optional)  
Kfactor=0;  % Ricean K-factor 
 
% create complex gain generator 
gainGen = JakesGen( blockSize, fDts, Kfactor, randomSeed, Ns, wssThreshold ); 
 
The following line of MATLAB code shows how JakesGen can be used to 
generate a block of 10,000 (the block size) complex gain samples into an output 
vector: 
 
[gainGen, y] = generate( gainGen, 0 ); 
 
Please note that the first argument passed to generate indicates which Complex 
Gain Generator object is used, while the second argument is a sequence 
number. Each generated block is identified with a sequence number (i.e. the 
blocks follow each other sequentially.) Using the sequence number the complex 
gain generation can be run forwards or backwards in time. 
 
Furthermore, note that gainGen appears as a return value as well as an 
argument. This allows generate to update the state of the gain generator. 
 
 

                                            
7 The classes discussed here contain implementations of a number of algorithms provided in the 
book ‘Mobile Channel Characteristics’ by James K. Cavers, Kluwer Academic Publishers Inc. In 
particular, Appendix B of the book contains information about the Jakes Method, while Appendix 
K provides a description of the Filtered White Noise Method. 
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B.2 Using the FWNGen Class 
 
The following MATLAB code excerpt, illustrates how the FWNGen object is 
created: 
 
% generator parameters 
blockSize=10,000; % block size 
fDts=0.01; % normalized sampling period 
beta = 5;  % beta value used for the Kaiser Window 
randomSeed=1; % seed value used to init random number generators (optional)  
Kfactor=0;  % Ricean K-factor 
 
% create complex gain generator 
gainGen = FWNGen( blockSize, fDts, Kfactor, randomSeed, beta ); 
 
The following lines of MATLAB code shows how FWNGen can be used to generate 
a block of 10,000 (the block size) complex gain samples into an output vector: 
 
[gainGen, y] = generate( gainGen, 0 ); 
 
Please note that the first argument passed to generate indicates which Complex 
Gain Generator object is used, while the second argument is ignored. Also, note 
that gainGen appears as a return value as well as a parameter to allow generate 
to update the state of the gain generator. 
 
B.3 Using the TDL Class 
 
The following MATLAB code excerpt, illustrates how a TDL object is created: 
 
% create complex gain generator 
gainGen = JakesGen( blockSize, fDts, Kfactor, randomSeed, Ns, wssThreshold ); 
 
% create the power delay profile, 4 taps 
Ps = [ 0.5 0.25 1.5 0.1 ]; 
 
% the K-facors 
Kfactors = [ 0 1 1 0 ]; 
 
% threshold value used to check whether two Jakes Generators are correlated 
corThreshold = 0.01; 
 
% create the TDL 
myTDL = TDL( Ps, Kfactors, gainGen, corThreshold  ); 
 
As can be seen from the above code excerpt, to initialize the TDL it is necessary 
to create a “sample” gain generator object and pass it as the second parameter 
the constructor of TDL. The constructor will then “clone” a copy of this parameter 
for each tap. This is how the type and specifications of the Complex Gain 
Generator used in the TDL is determined.  
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In order to create a TDL consisting of FWNGen Complex Gain Generators instead, 
the first line of the above code excerpt should be replaced by the following line: 
 
gainGen = FWNGen( blockSize, fDts, Kfactor, randomSeed, beta ); 
 
The following lines of MATLAB code illustrate how a given input signal is 
processed through the TDL: 
 
% input signal 
s = exp( j * 2*pi*modIndex*cos(2*pi*fm*t) ); 
 
% process the input  
[myTDL, y] = process( myTDL, s ); 
 
After the completion of this code sequence the vector y will contain the results. 
Please note that, since the process member function changes the state of the 
TDL, in addition to the processed vector y, the function returns the new TDL –this 
is why myTDL is also on the left hand side of the assignment operator. 
 
B.4 Creating a Set of Uncorrelated Complex Gain Generators 
 
In order to create a set of uncorrelated Complex Gain Generators, we need to 
make sure that each new Complex Gain Generator we put into the set is 
uncorrelated to all other generators in the set. This is performed by calling the 
isCorrelated member function of the ComplexGainGen on the newly created 
generator and all other generators in the set. 
 
The process outlined above has been gathered in a general-purpose function 
called createUncorGenerators. The following code excerpt shows how this function 
is used: 
 
% create complex gain generator 
gainGen = JakesGen( blockSize, fDts, Kfactor, randomSeed, Ns, wssThreshold ); 
 
% threshold value 
threshold = 0.01; 
 
% create array of generaros 
v = createUncorGenerators( 10, gainGen, threshold ) 
 
Much like creating a TDL outlined in B.3, a sample generator is created first. 
Then, this sample generator is passed, along with the number of generators to 
be created, to the createUncorGenerators function where the required number of 
generators is created by “cloning” the sample generator. 
 
The third parameter passed to createUncorGenerators is a threshold value used to 
determine if two generators are indeed correlated. For example, in the case of 
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JakesGen, the parameter is used to determine if the initial arrival angles of two 
generators are “too close”.

 49



 
Appendix C: Source Code 
 
C-1.  ComplexGainGen\ComplexGainGen.m 
 
% 
% Complex Gain Generator base class 
% 
 
 
% 
% Constructor.  
% 
function c = ComplexGainGen( blockSize, fDts ) 
 
% 
% arguments are, 
%   blockSize: determines the number of samples processed at one time. 
%   fDts: (fD * ts) normalized sample spacing     
% 
    c.blockSize = blockSize; 
    c.fDts      = fDts; 
     
    c = class( c, 'ComplexGainGen'); 
 
C-2.  ComplexGainGen\Display.m 
 
% 
% Complex Gain Generator base class 
% 
 
% display the contents of the object 
 
function display( c ) 
 
fprintf( 'BlockSize: %d\n', c.blockSize ); 
fprintf( 'Normalized sample spacing (fD * ts): %d\n', c.fDts ); 
 
C-3.  ComplexGainGen\generate.m 
 
% 
% Complex Gain Generator base class 
% 
 
% 
% function 'generate': this function returns a vector of blockSize elements that 
% contains complex gain samples. 
% 
 
% The baseclass provides no implentation. Derived classes should implement this 
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% function 
%  
function y = generate( c, blockNum ) 
 
C-4.  ComplexGainGen\get.m 
 
% 
% Complex Gain Generator base class 
% 
 
% 
% This function allows public members to be accessed 
% 
function val = get( c, prop_name ) 
 
switch prop_name  
    case 'blockSize' 
        val = c.blockSize; 
    case 'fDts' 
        val = c.fDts; 
      
    otherwise 
        error([prop_name,' is not a valid property.']) 
end 
 
C-5.  ComplexGainGen\set.m 
 
% 
% Complex Gain Generator base class 
% 
 
% 
% This function allows public members to be changed 
% 
function c = set( c, prop_name, val ) 
 
switch prop_name  
    case 'blockSize' 
        c.blockSize = val; 
    case 'fDts' 
        c.fDts = val; 
    otherwise 
        error([prop_name,' is not a valid property.']) 
end 
 
C-6.  FWNGen\FWNGen.m 
 
% 
% The Filterred White Gaussian Noise Complex Gain Generator 
% 
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% 
% Constructor, performs initilization. 
% The function has the following arguments: 
%   blockSize: number of samples processed at one time, also determines the window size 
used when 
%              truncating the impulse response of the coloring filter 
%   fDts: normalized sample spacing 
%   beta: the beta parameter for the Kaiser window 
% 
function c = FWNGen( varargin ) 
 
switch nargin 
case 3 
     
    % get arguments 
    % 
    blockSize = varargin{1}; 
    fDts = varargin{2}; 
    beta = varargin{3};  
     
    % 
    % Initialize 
    % 
     
    fprintf( 'generating time domain coloring filter...\n' ); 
    fprintf( '0%%-------50%%-------100%%\n' ); 
     
    % get the truncated time domain coloring filter  
    for i=[1:blockSize] 
        timeFilter( 1, i ) = quad( @coloringfilter, 0, pi/2, [], [], (i-(blockSize-1)/2)*fDts ); 
         
        % print progress indicator 
        if mod((i/blockSize), .05) == 0  
            fprintf( '>' ); 
        end; 
    end; 
     
    fprintf( '\n' ); 
     
    % apply the Kaiser window 
    timeFilter = timeFilter .* rot90(kaiser( blockSize, beta )); 
     
    % normalize to unit sum of squares 
    sumSquared = sqrt( sum( abs(timeFilter).^2 ) ); 
    dummy = timeFilter / sumSquared; 
    timeFilter = dummy; 
     
    % Get the FIR filter in frequency domain 
    % Need to pad with zeros to make a block twice the size 
    c.filter = fft( [ timeFilter zeros( 1, blockSize ) ] ); 
     
    % initialize postCursor (used in the overlap-and-add method) 
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    % to zero, so that it can be used the first time generate  
    % is called. 
    c.postCursor = zeros( 1, blockSize ); 
     
    % create base class 
    gainGen = ComplexGainGen( blockSize, fDts ); 
     
    % create this class 
    c = class( c, 'FWNGen', gainGen );         
     
case 1 
     
    % 
    % Create an object using the same properties as the object 
    % passed in 
    % 
     
    % source object 
    source = varargin{1}; 
     
    % get base class properties 
    blockSize = get( source, 'blockSize' ); 
    fDts = get( source, 'fDts' ); 
     
    % copy the filter 
    c.filter = source.filter; 
    c.postCursor = zeros( 1, blockSize ); 
     
    % create base class 
    gainGen = ComplexGainGen( blockSize, fDts ); 
     
    % create this class 
    c = class( c, 'FWNGen', gainGen );      
     
otherwise 
    error( 'Wrong number of input arguments' ); 
     
end 
 
C-7.  FWNGen\generate.m 
 
% 
%  Filtered White Gaussian Noise Generator class 
% 
 
% 
% function 'generate': this function returns a vector of blockSize elements that 
% contains complex gain samples. 
% 
 
% 
% We're overriding the parent class's 'generate' function, providing a suitable  
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% implementation. 
% 
% NOTE: the blockNum paramter is ignored here because the Filterred WGN generator  
% can only generate sequentially. 
% 
 
function y = generate( c, blockNum ) 
 
fprintf( 'generating block %d...\n', blockNum ); 
 
% get the block size 
blockSize = get( c, 'blockSize' ); 
 
% generate gaussian samples, pad with zeros and take fft 
noiseSpectrum = fft( [randn( 1, blockSize ) + j*randn(1, blockSize), zeros(1, blockSize) ] ); 
 
% filter the white gaussian noise samples 
gainSamples = ifft( noiseSpectrum .* abs(c.filter))./sqrt(2); 
 
 
% add the first half to the previous postcursor and return the result 
y = gainSamples(1:blockSize) + c.postCursor; 
 
% save the second half as the postcursor for the next time 
c.postCursor = gainSamples(blockSize:blockSize+1); 
 
C-8.  TDL\TDL.m 
 
% 
% The Jakes Complex Gain Generator 
% 
 
% 
% Constructor, performs initilization. 
% The function has the following arguments, in the order they apear here: 
%   blockSize: number of samples processed at on time 
%   fDts: normalized sample spacing 
%   numScat: number of equispaced scatterers to be simulated 
%   wssThreshold: how close to +-pi/2 can the generated angles be without making 
%                 the process non-WSS 
%    
function c = JakesGen( varargin ) 
 
switch nargin 
case 4 
     
    % get arguments 
    % 
    blockSize = varargin{1}; 
    fDts = varargin{2}; 
    c.numScat = varargin{3};  
    c.wssThreshold = varargin{4};  
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case 1 
    % 
    % Create an object using the same properties as the object 
    % passed in 
    % 
     
    % source object 
    source = varargin{1}; 
     
    % get base class properties 
    blockSize = get( source, 'blockSize' ); 
    fDts = get( source, 'fDts' ); 
    c.numScat = source.numScat; 
    c.wssThreshold = source.wssThreshold; 
     
otherwise 
    error( 'Wrong number of input arguments' ); 
end 
 
    % 
    % Initialize 
    % 
     
    % random phases 
    for j = [1:c.numScat] 
        c.phase(j) = rand(1) * 2 * pi; 
    end; 
     
    % doppler shifts 
    nonWSS = 1; 
    while nonWSS 
         
        % assume WSS 
        nonWSS = 0; 
 
        % the angle of the first scatterer 
        theta0 = rand(1) * 2 * pi / c.numScat; 
         
        % generate the other numScat scatterers (equispaced) 
        for j = [0:c.numScat - 1] 
            theta = theta0 + j * 2 * pi / c.numScat; 
             
            % check WSS-ness 
            if (abs(theta - pi/2) < c.wssThreshold) | (abs(theta + pi/2) < c.wssThreshold) 
                nonWSS = 1; 
                break; 
            end; 
             
            % calc doppler shift from angle 
            c.dopplerShift( j + 1 ) = -2 * pi * cos( theta ); 
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        end; 
         
    end; 
 
    % create base class 
    gainGen = ComplexGainGen( blockSize, fDts ); 
     
    % create this class 
    c = class( c, 'JakesGen', gainGen ); 
 
C-9.  JakesGen\display.m 
 
% 
%  Jakes Complex Gain Generator class 
% 
 
% display the contents of the object 
 
function display( c ) 
 
% display parent first 
display( c.complexgaingen ); 
 
fprintf( '# of Scatterers: %d\n', c.numScat ); 
 
C-10.  JakesGen\generate.m 
 
% 
%  Jakes Complex Gain Generator class 
% 
 
% 
% function 'generate': this function returns a vector of blockSize elements that 
% contains complex gain samples. 
% 
 
% 
% We're overriding the parent class's 'generate' function, providing a suitable  
% implementation. 
% 
 
function y = generate( c, blockNum ) 
 
    % get block size from parent 
    blockSize = get( c, 'blockSize' );     
    % ...and the normalized sample spacing 
    fDts = get(c, 'fDts'); 
     
    % This is the time axis (sampling instants)     
    u = [blockNum*blockSize*fDts:fDts:( (blockNum+1)*blockSize - 1 ) * fDts];  
     
    % init to zero 
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    y = zeros( 1, blockSize ); 
 
    % generate gain samples 
    for j = [ 1 : c.numScat ] 
        y = y + exp( i * ( c.phase( j ) + u * c.dopplerShift( j ) ) ); 
    end; 
     
    y = y / sqrt( c.numScat ); 
 
C-11.  JakesGen\get.m         
% 
%  Jakes Complex Gain Generator class 
% 
 
% This function allows public members to be accessed 
function val = get( c, prop_name ) 
 
switch prop_name  
     
    % access number of scatterers 
    case 'numScat' 
        val = c.numScat; 
             
    % access to parent class members 
    otherwise 
        val = get( c.complexgaingen, prop_name ); 
end 
 
C-12.  TDL\TDL.m 
 
 
% 
% class TDL: Tapped Delay Line 
% 
 
% 
% Constructor 
%       powerDelayProfile: array containing points seperated by 
%       ts in the power delay profile. Each is the variance of the 
%       corresponding tap in the tap delay line. 
% 
%       sampleGenerator: is a sample object of the desired type 
%       of complex gain generator. The needed generators will 
%       created using the same properties as this one. 
% 
 
function c = TDL( powerDelayProfile, sampleGenerator ) 
     
 
% save number of taps  
c.numTaps = length( powerDelayProfile ); 
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% block size 
c.blockSize = get( sampleGenerator, 'blockSize' ); 
 
% save the power delay profile 
c.powerDelayProfile = powerDelayProfile; 
 
% get the handle of the constructor of the generator 
consFunc = str2func(class( sampleGenerator )); 
 
% create an array of generators 
for i=[1:c.numTaps] 
    c.taps( i ).gen = feval( consFunc, sampleGenerator ); 
    c.taps( i ).buffer =  generate( c.taps( i ).gen, 0 ); 
    
end; 
 
% initialize the buffer pointer 
c.gainBufferIndex = 1; 
 
% the number of the next block  
c.blockNum = 1; 
 
% the buffer used for convolution 
c.buffer = zeros( 1, c.numTaps );  
 
c = class( c, 'TDL' ); 
 
C-13.  TDL\process.m 
 
 
% 
% class TDL: Tapped Delay Line 
% 
 
% 
% process, simulates the effects of fading on the input vector  
% containing signal samples. 
% 
 
function [c, y] = process( c, s ) 
 
% length of input vector 
iLength = length( s ); 
 
for i = [1:iLength] 
     
    % shift everything to right 
    c.buffer = circshift( c.buffer, [0, 1] ); 
     
    % put new value in 
    c.buffer(1) =  s(i); 
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    % get new gain values 
    [c g] = getNewGainValues( c ); 
     
    % multiply out the numbers     
    y(i) = sum( c.buffer .* g ); 
     
end; 
 
C-14.  TDL\get.m 
% 
%  Tapped Delay Line class 
% 
 
% This function allows public members to be accessed 
function val = get( c, prop_name ) 
 
switch prop_name  
     
    % access number of taps 
    case 'numTaps' 
        val = c.numTaps; 
             
      
    otherwise 
        error([prop_name,' is not a valid property.']) 
end 
 
C-15.  JakesTest.m 
 
% generator parameters 
Ns=25;              % odd 
blockSize=10000; 
blockCount = 100; 
fDts=0.001; 
beta = 5; 
threshold=.0001; 
 
% create complex gain generator 
gainGen = JakesGen( blockSize, fDts, Ns, threshold ); 
 
 
% 
% Compare pdf with that of a Gaussian rv 
% 
 
 
% bins for histogram (pdf) 
x = -2.9:0.1:2.9; 
 
y = []; 
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% generate block 
for i=1:blockCount 
    y = [y generate( gainGen, i )]; 
end; 
 
blockSize = blockSize * blockCount; 
 
% draw pdf, making variance equal to one 
figure; 
pdfActual = hist(real(y)/sqrt(var(real(y))),x);  
hist(real(y)/sqrt(var(real(y))),x);  
title( 'Actual distribution' ); 
 
% draw pdf of unit variance gaussian rv for comparison 
figure; 
pdfGaussian = hist(randn(1,blockSize),x); 
hist(randn(1,blockSize),x); 
title( 'Theoritical Gaussian rv' ); 
 
% plot the difference between the actual and the theoritical pdfs 
figure; 
plot( x, abs( pdfActual - pdfGaussian)/blockSize ); 
title( 'gaussian/actual difference' ); 
 
 
% 
% Compare the autocorrelation with theoritical -i.e.  
% zeroth order bessel function of the first kind. 
% 
 
% x axis for autocorrelatiohn 
ax = -(blockSize-1)*fDts:fDts:(blockSize-1)*fDts; 
 
% autocorrelation (normalized) 
autocor = xcorr( y )/blockSize; 
 
% bessel function 
j0 = besselj(0, ax*2*pi); 
 
% difference between actual and theoritical 
diff = (real(j0 - autocor)); 
 
% plot the 400 samples in the middle 
figure; 
plot(ax(blockSize-10000:blockSize+10000),diff(blockSize-10000:blockSize+10000)); 
title( 'Error between J0 and autocorrelation' ); 
 
fprintf( 'The difference between Theoritical/Measured Corrleations: %f\n', mean(diff) ); 
fprintf( '\nMean: %15f', mean(diff) ); 
fprintf( '\nVariance: %15f\n', var(diff) ); 
 
% 
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% Make sure the real and imaginary parts are uncorrelated 
% 
crosscor = xcorr( real(y), imag(y) )/blockSize; 
 
figure; 
plot(ax(blockSize-10000:blockSize+10000),crosscor(blockSize-10000:blockSize+10000)); 
title( 'crosscorrelation between real and imaginary parts' ); 
 
fprintf( '\nThe crosscorrelation between real and imaginary components:' ); 
fprintf( '\nMean: %15f', mean(crosscor) ); 
fprintf( '\nVariance: %15f\n', var(crosscor) ); 
 
C-16.  FWNTest 
 
% generator parameters 
blockSize=1000; 
blockCount = 100; 
fDts=0.01; 
beta = 5; 
 
% create complex gain generator 
gainGen = FWNGen( blockSize, fDts, beta ); 
 
 
% 
% Compare pdf with that of a Gaussian rv 
% 
 
 
% bins for histogram (pdf) 
x = -2.9:0.1:2.9; 
 
y = []; 
 
% generate block 
for i=1:blockCount 
    y = [y generate( gainGen, i )]; 
end; 
 
blockSize = blockSize * blockCount; 
 
% draw pdf, making variance equal to one 
figure; 
pdfActual = hist(real(y)/sqrt(var(real(y))),x);  
hist(real(y)/sqrt(var(real(y))),x);  
title( 'Actual distribution' ); 
 
% draw pdf of unit variance gaussian rv for comparison 
figure; 
pdfGaussian = hist(randn(1,blockSize),x); 
hist(randn(1,blockSize),x); 
title( 'Theoritical Gaussian rv' ); 
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% plot the difference between the actual and the theoritical pdfs 
figure; 
plot( x, abs( pdfActual - pdfGaussian)/blockSize ); 
title( 'gaussian/actual difference' ); 
 
 
 
% 
% Compare the autocorrelation with theoritical -i.e.  
% zeroth order bessel function of the first kind. 
% 
 
% x axis for autocorrelatiohn 
ax = -(blockSize-1)*fDts:fDts:(blockSize-1)*fDts; 
 
% autocorrelation (normalized) 
autocor = xcorr( y )/blockSize; 
 
% bessel function 
j0 = besselj(0, ax*2*pi); 
 
% difference between actual and theoritical 
diff = (real(j0 - autocor)); 
 
% plot the 400 samples in the middle 
figure; 
plot(ax(blockSize-1000:blockSize+1000),diff(blockSize-1000:blockSize+1000)); 
title( 'Error between J0 and autocorrelation' ); 
 
fprintf( 'The difference between Theoritical/Measured Corrleations:'); 
fprintf( '\nMean: %15f', mean(diff) ); 
fprintf( '\nVariance: %15f\n', var(diff) ); 
 
% 
% Make sure the real and imaginary parts are uncorrelated 
% 
crosscor = xcorr( real(y), imag(y) )/blockSize; 
 
figure; 
plot(ax(blockSize-1000:blockSize+1000),crosscor(blockSize-1000:blockSize+1000)); 
title( 'crosscorrelation between real and imaginary parts' ); 
 
fprintf( '\nThe crosscorrelation between real and imaginary components:' ); 
fprintf( '\nMean: %15f', mean(crosscor) ); 
fprintf( '\nVariance: %15f\n', var(crosscor) ); 
 
C-17.  TDLTest 
clear all; 
 
% generator parameters 
beta=10; 

 62



 
threshold=.0001; 
Ns=25;              % odd 
blockSize=1000; 
 
modIndex = .4; 
fD = 1; 
fm = 10000; 
 
fs = 32 * fm; 
ts=1/fs; 
 
numSamples = 100; 
numTaps = 4; 
td = ts * numTaps; 
 
fDts = fD / fs; 
 
% time axis 
t = [0:ts:ts*(numSamples-1)]; 
tPowerDelay = [0:ts:(numTaps-1)*ts]; 
 
% input signal 
s = exp( j * 2*pi*modIndex*cos(2*pi*fm*t) ); 
 
figure; 
plot(s); 
title( 'Input signal s(t)' ); 
 
% Standard deviations taken from the Power Delay Profile 
Ps=sqrt( ts*(-2*tPowerDelay-ts+2*td)/td^2 );  
 
% Plot the Power Delay Profile 
stem(t(1:length(Ps)), Ps.^2); 
title( 'Power Delay Profile' ); 
xlabel( 'time (s)' ); 
ylabel( 'Power' ); 
 
% create complex gain generator 
gainGen = JakesGen( blockSize, fDts, Ns, threshold ); 
%gainGen = FWNGen( blockSize, fDts, beta ); 
 
myTDL = TDL( Ps, gainGen ); 
 
[myTDL, y] = process( myTDL, s ); 
 
figure; 
plot( y ); 
title( 'Output signal y(t)' ); 
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