

MODELLING AND SIMULATION OF A FADING CHANNEL

by

Ali Keyvani

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF APPLIED SCIENCE

in the

School of Engineering Science

 Ali Keyvani 2003

SIMON FRASER UNIVERSITY

December, 2003

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Table of Contents
Table of Contents..2
Table of Tables ...4
Table of Figures..5
Abstract...6
Font Conventions..7
1 Introduction..8
2 A Brief Mathematical Model of Fading ...9
3 Component High-Level Description ...12

3.1 Usage ...12
3.2 Structure ...12

3.2.1 The Tapped Delay Line ...12
3.2.2 The Complex Gain Generator ...13

3.3 Input Parameters ..15
4 Component Implementation...16

4.1 Object-Oriented Static Architecture ..16
4.2 Class description ..18

4.2.1 ComplexGainGen: Complex Gain Generator Base Class......................18
4.2.2 JakesGen: Complex Gain Generation using the Jakes Method...........19
4.2.3 FWNGen: Complex Gain Generation using Filtered White Noise........21
4.2.4 TDL: The Tapped Delay Line ..22

4.3 Design Advantages ..23
4.3.1 Modularity..24
4.3.2 Extendibility ...24

5 Testing...26
5.1 JakesGen ..26

5.1.1 Step One: Mean and Variance ..26
5.1.2 Step Two: Probability Density Function ...26
5.1.3 Step Three: Autocorrelation...31
5.1.4 Step Four: Cross-Correlation Between Real and Imaginary Parts 32

5.2 FWNGen ...33
5.2.1 Step One: Mean and Variance ..33
5.2.2 Step Two: Probability Density Function (PDF)33
5.2.3 Step Three: Autocorrelation...36
5.2.4 Step Four: Cross-Correlation Between Real and Imaginary Parts 37

5.3 TDL: Fading Simulation Example ...38
6 Conclusions ...43
Appendix A: A Quick Intro to Object Orientation ...44
Appendix B: Component User’s Guide ...46

B.1 Using The JakesGen Class ..46
B.2 Using the FWNGen Class...47
B.3 Using the TDL Class...47
B.4 Creating a Set of Uncorrelated Complex Gain Generators...................48

Appendix C: Source Code ..50
C-1. ComplexGainGen\ComplexGainGen.m..50
C-2. ComplexGainGen\Display.m ..50

 2

C-3. ComplexGainGen\generate.m..50
C-4. ComplexGainGen\get.m ...51
C-5. ComplexGainGen\set.m ...51
C-6. FWNGen\FWNGen.m...51
C-7. FWNGen\generate.m..53
C-8. TDL\TDL.m...54
C-9. JakesGen\display.m ...56
C-10. JakesGen\generate.m...56
C-11. JakesGen\get.m..57
C-12. TDL\TDL.m ...57
C-13. TDL\process.m..58
C-14. TDL\get.m ...59
C-15. JakesTest.m..59
C-16. FWNTest...61
C-17. TDLTest ..62

Appendix D: References ...64

 3

Table of Tables
Table 1: Parameters used for testing JakesGen. ..26
Table 2: Measured/Theoritical Mean and Variance...26
Table 3: Parameters used for testing FWNGen. ...33
Table 4: Measured/Theoretical Mean and Variance. ..33
Table 5: Parameters used for testing TDL. ...38
Table 6: Input signal parameters...39

 4

Table of Figures
Figure 2-1: Multipath channel structure. [1]...9
Figure 3.2-1: Power Spectral Density of the Coloring Filter14
Figure 4.1-2: Object-Oriented Static Diagram...17
Figure 5.1-1: PDF of gain samples generated by JakesGen28
Figure 5.1-2: Theoretical Gaussian PDF...28
Figure 5.1-3: Difference between actual and theoretical PDFs...........................29
Figure 5.1-4: Difference between actual and theoretical autocorrelation.31
Figure 5.1-5: Cross-correlation between real and imaginary components.32
Figure 5.2-1: PDF of gain samples generated by FWNGen................................34
Figure 5.2-2: Theoretical Gaussian PDF...34
Figure 5.2-3: Difference between actual and theoretical PDFs.35
Figure 5.2-4: Difference between actual and theoretical autocorrelation.36
Figure 5.2-5: Cross-correlation between real and imaginary components.37
Figure 5.3-1: Power Delay Profile. ..39
Figure 5.3-2: Input signal. ...40
Figure 5.3-3: Output of the Fading Channel Simulator..41
Figure 5.3-4: Output of the Fading Channel Simulator (4 taps.)42

 5

Abstract

The term fading, in the context of mobile communications, refers to the
interference caused by the reception of numerous scattered copies of a given
signal at an antenna. Fading can produce significant random variations of signal
power –in the scale of 10s of dBs over fractions of a wavelength- and hence, can
be extremely destructive to the signal. Therefore, in order to achieve reliable
mobile communications, provisions must be considered to counter the effects of
fading. Indeed, a first step towards this end is to understand these effects
through producing models of and simulating this phenomenon.

This thesis discusses the development of an Object-Oriented MATLAB
component that simulates the effects of fading, based on a somewhat simplified
mathematical model. Clearly the simplified model might not present a very
realistic view of the highly complex and random nature of fading; nevertheless,
this simulation serves as an extremely useful research tool for comparing and
measuring the effectiveness of different communication techniques.

 6

Font Conventions

A number of font conventions have been used to assist in the understanding of
the text and to avoid confusion. These are listed in the following table.

Sample Font Used Comments
Normal text Normal Text!
Special Word A term that has a specific meaning

defined elsewhere in the text. Exception
when italics are used to emphasize
certain words.

Class Name Name of a class (e.g. ComplexGainGen)
memberFunction or memberVariable A member function or a member variable

of a given class (e.g. process)
A = generate(c, 0); MATLAB code

 7

1 Introduction

Designers and engineers of mobile communications systems are faced with three
main challenges, which are introduced by the communication channel: Path
Loss, Shadowing and Fading.

Path Loss refers to the decrease in signal power, which is mainly brought about
by the physical distance between the communications devices. Shadowing takes
on a more local view and refers to the loss of power attributed to large obstacles
such as hills and tall buildings. Finally, Fading, the main topic of this thesis, takes
on a yet more microscopic view and is concerned with the interference caused by
the reception of numerous scattered copies of the signal at the antenna.

The interference caused by fading produces significant random variations of
signal power –in the scale of 10s of dB over fractions of the wavelength- about a
mean power predicted by the Path Loss and Shadowing models. As a result,
fading can be extremely destructive to the signal and hence, in order to achieve
reliable communication, provisions must be considered to counter the effects of
fading. Indeed, a first step towards this end is to understand these effects
through producing models of and simulating fading.

This thesis project is concerned with producing a reusable simulation component
in MATLAB, based on a somewhat simplified model of fading. Clearly the
simplified model might not present a very realistic view of the highly complex and
random nature of fading; nevertheless, this simulation serves as an extremely
useful research tool for comparing and measuring the effectiveness of different
communication techniques. The simulation model will be created in the form of
an easily customizable component that can be effortlessly “plugged-in” to other
MATLAB simulations.

 8

2 A Brief Mathematical Model of Fading

The transmission of a bandpass and narrowband signal to a mobile is modeled
as a multipath channel structure shown in Figure 2-1.

Figure 2-1: Multipath channel structure. [1]

The above figure shows the reception of multiple scattered copies of the signal,
each with gain ai and angle iθ , by a mobile moving with speed v. A simple
mathematical derivation yields the following result for y(t), the complex envelope
of the received signal.

∑ −= −

i
i

tfj
i tseaty iD)()(cos2 τθπ (2.1)

Equation 2.1 shows that scatterer i corresponds to a signal copy that is shifted in

time by iτ and in frequency by)iDf cos(θ , where
λ
vfD = is the Doppler

frequency. We also define the delay spread ()dτ as the largest delay)(iτ .

We can also show the above equation as an integral over a density,

∫ ∫
∞

∞− −

− −=
D

D

f

f

tj ddtsety τνττνγ πν)(),()(2 (2.2)

where τντνγ dd),(is the overall gain caused by all scatterers with a ‘delay τ in

τd and Doppler ν in νd ’ [1]. Consequently, the output corresponding to an input
signal consisting only of the one frequency f is

 (2.3)),(),()(2222 ftGeddeeety ftj
f

f

fjtjftj
D

D

πτππνπ τντνγ == ∫ ∫
∞

∞− −

 9

Here, G(t,f) is the gain experienced by frequency component f at time t –i.e., a
time-dependent frequency response. Therefore, we can also write our
input/output relationship in frequency domain as

 (2.4) ∫
∞

∞−

= dfefSftGty ftj π2)(),()(

while the time-domain equivalent of the above equation is given by

 (2.5) ∫ −=
d

dtstgty
τ

τττ
0

)(),()(

Using definition of G(t,f) given in Equation 2.3 and assuming a WSSUS channel,
we calculate the autocorrelation (for components separated in time by and in
frequency by ∆),

t∆
f

 (2.6) ∫ ∫
∞

∞− −

∆∆=∆∆
D

D

f

f

fjtj
G ddeeSftR τντν τππν

γ
22),(),(

Here,),(τνγS is the ‘delay-Doppler power density’ [1], referring to the gain
experienced at Doppler v and delay τ .

In order to simplify our model we consider a special case with the following two
properties:

1. delay-Doppler power density is separable, i.e. we have ‘two one-
dimensional functions to describe the scattering, rather than one two-
dimensional function.’[1] We then have

g

g

g

g PS
S

σ
τ

σ
ν

τνγ

)(
.

)(
),(= (2.7)

where)(νgS is referred to as the Doppler spectrum, i.e. the power at
Doppler ν , and)(τgP denotes the power delay profile, i.e. the power at
delay τ .

2. Scattering is isotropic, i.e. the power received by the mobile from all

angles,)(θP , is uniform. We then have,

 10

2

2

)(1

1.)(

D

D

g
g

f
f

S
νπ

σ
ν

−
= (2.8)

and, consequently

)2()(0
2 τπστ Dgg fJR = (2.9)

 11

3 Component High-Level Description

3.1 Usage

Viewed as a ‘black-box’, the general usage scheme of the Fading Simulation
Component is shown in the following diagram, where the input/output relationship
is governed by Equation 2.1. The Fading Simulation receives the input signal s(t),
adds simulated fading effects based on the Fading Parameters and outputs the
signal y(t). The input signal s(t) is originated in a Transmitter, while the output
signal y(t) eventually reaches a Receiver.

 s(t) y(t)

Fading
Parameters

Receiver Transmitter Fading Simulation
Component

Figure 3.1: Black-box view of the Simulation Component

The input and output of the component are in the form of arrays of complex
numbers of an arbitrary length, containing the input and output samples
respectively. In addition, the component could be used in real-time, in
conjunction with another MATLAB program.

3.2 Structure

Internally, the Fading Simulation Component consists of a Tapped Delay Line
(TDL) and a number of Complex Gain Generators.

3.2.1 The Tapped Delay Line

The TDL structure is shown in the following diagram. Corresponding to Equation
2.1, the TDL generates multiple time-shifted copies of the input signal, each of
which is weighted by a complex gain (which is, in turn, generated by the complex
gain generator.)

 12

Figure 3.2: Tapped Delay Line [1]

To mimic Equation 2.1, the TDL is, in effect, using discrete ‘delay bins’ of width
ts=1/fs, where the complex gain corresponding to each bin reflects the weighted
sum of the complex gain of all delayed signal copies that are included in that bin.
Also, note that the Nyquist criterion requires fs>2W, where W is the bandwidth of
the signal plus the Doppler frequency (fD).

3.2.2 The Complex Gain Generator

The following three properties must hold for the complex gain generator [1]:

1. Real and imaginary parts of the generated complex gain must be
independent and Gaussian, having the same autocorrelation.

2. Different complex gain generators (corresponding to different taps in
the TDL model) must be independent.

3. The autocorrelation function must be the one given in Equation 2.8.

Two of the most widely used methods for complex gain generation were
implemented. These are Jakes Method and the method of Filtered White Noise.

a) Jakes Method

Here, a slightly modified version of Jake’s Method [1] is used. Basically, Jake’s
Method works by simulating the physical model of isotropic scattering. It
assumes that there are N equispaced scatterers around the mobile, all with the
same gain. However, the phase angle associated with each scatterer is chosen
at random.

The following equation is used by Jake’s Method to generate complex gain
samples:

 13

∑
−

=

+=
1

0

)]cos(2[1)(
s

iDi

N

i

tfj

s

e
N

ty θπφ (3.1)

where, iφ is the random phase and iθ is the arrival angle.

Through careful mathematical derivation, we can prove that Jake’s Method does
in fact hold the three properties given above (In particular, Property 2 is only
satisfied if no two complex gain generators share the same arrival angles, iθ)
Also, using Jake’s Method is advantageous in that it can be run backward and
forward in time with desired spacing, it has low computational load and is fairly
simple [1].

b) Filtered White Noise

Figure 3.2-1: Power Spectral Density of the Coloring Filter

The method of Filtered White Noise achieves the desired power spectrum by
generating white Gaussian noise samples and passing them through a spectrum
shaping filter (the frequency response is plotted in Figure 3.2-1). Two
independent white noise generators are used for the real and imaginary parts
respectively. The filters used have the following frequency response
corresponding to Equation 2.7.

 14

)()(νν gSH = (3.2)

By virtue of its construction, the Filtered White Noise technique also holds the
three properties stated above. Also, using this method is advantages in that it
generates truly Gaussian and stationary samples. On the other hand, it requires
a large FIR or IIR filter (and therefore a high computational load) and cannot be
easily run backward in time.

3.3 Input Parameters

To be able to use the component, the user must specify a number of parameters
to effectively customize the component to his/her needs. The basic parameters
are the following:

� Normalized sample spacing, sD tf .
� Number of Taps in the TDL
� The power delay profile, specified as a vector containing the variance of

each Tap of the TDL (i.e.) 2
giσ

� The LOS components for each tap (if any)

In addition, when using Jake’s Method, Ns, the number of scatterers must be
specified. On the other hand, when using the method of Filtered White Noise, the
truncation length of the filter used and the Kaiser Window parameter, β , must be
supplied as parameters.

 15

4 Component Implementation

As discussed before, the programming language chosen for this project was
MATLAB. This is indeed a sensible choice because MATLAB is often the
preferred language for creating communications simulations. Therefore, being in
MATLAB, the component is available to a wide range of applications.

Another crucial decision made was to use the Object Oriented extensions of
MATLAB and create a modular and object-based program. As a result, this
simulation consists of a number of subcomponents (or classes) that, on the one
hand, form the Fading Simulation Component, and on the other hand, are
independent enough to be used individually.

This section describes the Object Oriented structure of the simulation, including
relevant details regarding each subcomponent (i.e. class) of the internal
structure. While this section focuses on the general function of each
subcomponent, as well as how this function is performed, Appendix B contains
brief instructions on how each subcomponent should be used.

Please note that a basic understanding of general Object Oriented concepts is
required for this section. It is highly recommend that you read Appendix A for an
introduction to Object Orientation, if you are not familiar with such concepts.

4.1 Object-Oriented Static Architecture

The UML static diagram contained in the next page depicts the internal class
structure of the component.

 16

+g
et

(in
 p

 :
P

ro
pe

rty
) :

 V
al

ue
+s

et
(in

 p
 :

P
ro

pe
rty

, i
n

v
: V

al
ue

)
+C

om
pl

ex
G

ai
nG

en
(in

 b
lo

ck
S

iz
e,

 in
 fD

ts
, i

n
K

fa
ct

or
, i

n
ra

nd
om

S
ee

d)
+d

is
pl

ay
()

+i
sC

or
re

la
te

d(
)

-fD
ts

-b
lo

ck
S

iz
e

-r
an

do
m

S
ee

d
: S

ee
d

-K
fa

ct
or

C
om
pl
ex
G
ai
nG
en

+F
W

N
G

en
(in

 b
lo

ck
Si

ze
, i

n
fD

ts
, i

n
K

fa
ct

or
, i

n
ra

nd
om

S
ee

d,
 in

 b
et

a)
-b

et
a

FW
N

G
en

+J
ak

es
G

en
(in

 b
lo

ck
Si

ze
, i

n
fD

ts
, i

n
K

fa
ct

or
, i

n
ra

nd
om

Se
ed

, i
n

nu
m

Sc
at

, i
n

w
ss

Th
re

sh
ol

d)

-n
um

Sc
at

-p
ha

se
[n

um
Sc

at
]

-d
op

pl
er

Sh
ift

[n
um

S
ca

t]

Ja
ke

sG
en

+g
et

(in
 p

 :
Pr

op
er

ty
)

+s
et

(in
 p

 :
P

ro
pe

rty
, i

n
v

: V
al

ue
)

-n
um

Ta
ps

-b
lo

ck
S

iz
e

-p
ow

er
D

el
ay

P
ro

fil
e

-c
on

vo
lu

tio
nB

uf
fe

r

TD
L

1
n

Figure 4.1-1: Object-Oriented Static Diagram

 17

As shown in Figure 4.1-1, the structure consists of four classes: ComplexGainGen,
JakesGen, FWNGen and TDL. ComplexGainGen is an abstract base class from which
JakesGen and FWNGen are derived. On the other hand, the class TDL forms an
association with ComplexGainGen.

4.2 Class description

This section describes the functionality of each of the four classes listed above.
Where appropriate, references are made to Section 3, to better explain the
purpose of each class. Also, references are made to Section 2 to indicate the
mathematical basis on which each class is built.

4.2.1 ComplexGainGen: Complex Gain Generator Base Class

ComplexGainGen is an abstract class defining the common interface shared by all
types of Complex Gain Generator classes. This common interface is simply
based on the following facts about any Complex Gain Generator, regardless of
class:

1. It needs to know the sampling frequency, fs. This is normalized by the
Doppler frequency fD forming fD/fs or fDts. Thus, fDts is a member
variable.

2. It (obviously!) generates complex gain samples -hence the generate

member function. This function returns an array of complex gain
samples.

It is important to note that generate is in fact an abstract function. In
other words, the interface of ComplexGainGen merely suggests that a
Complex Gain Generator should be able to generate an array of
complex gain samples. This only specifies what needs to be done; how
this is done is not specified and is left for the derived classes to
implement. Obviously, different types of complex gain generators (i.e.
derived classes) have different ways of implementing this function.

3. It needs to know the size of the array of complex gain samples

returned by generate –hence the blockSize member variable.

4. It needs to know the seed to be used when generating random
numbers. The complex gain generation is a random process and
therefore, requires the use of a random number generator (which
generates “random” numbers based on a given Seed.) In order to
reproduce the same samples generated by a Complex Gain Generator
‘A’, all we need to do is to set the Seed value of Complex Gain

 18

Generator ‘B’ to be the same as that of ‘A’. Therefore, randomSeed is
a member variable.

5. It needs to know the Ricean K-factor1 used to add an LOS component

to the generated gains –hence the Kfactor member variable.

6. It should provide means of displaying a brief textual representation of
its internal state -hence the display member function.

7. It should provide means of changing and acquiring the values of its

member variables -hence the get and set member functions.

8. It should be able to determine if it is correlated to another Complex
Gain Generator of the same type –hence the isCorrelated member
function2.

4.2.2 JakesGen: Complex Gain Generation using the Jakes Method

JakesGen is derived from ComplexGainGen and implements the Jakes Method of
Complex Gain Generation (this is described in Section 3.2.2.) As stated before,
JakesGen is a self-contained module, which can be used independently to
generate complex gain samples.

The main function of the JakeGen class is to provide an implementation for the
generate member function derived form ComplexGainGen, by employing Equation
3.1. To this end, JakesGen requires the number of scatterers () along with the
initial phase (

sN

iφ) and the arrival angle (iθ) of each scaterrer. These values are
initialized in the constructor:

The constructor, stores the initial phase angles as an array of uniformly
distributed random angles in the phase[]3 member variable. Since the scatterers
are assumed to be equispaced around the mobile (see Section 3.2.2), all we
need is the arrival angle of only one of the scatterers (which is selected at
random); the rest of the arrival angles can be generated accordingly. The
dopplerShift[] member variable is used to store the Doppler Shifts corresponding
to each of the arrival angles.

1 The K-factor is defined as the ratio of power in the LOS component to the power in the scattered
component of the complex gain [1].
2 A general-purpose function called ‘createUncorGenerators’ has been provided that uses the
isCorrelated member function to create an array of uncorrelated Complex Gain Generators of
desired size.
3 The square brackets in phase[] are used to signify the fact that this member is an array of
values.

 19

It is important to note that the constructor uses the following two criteria to ensure
that the generated process is stationary [1]:

1) Ns (numScat, the number of scatterers) should be odd

2) No arrival angle should be equal to
2
π±

In order to make sure that the second criteria holds the constructor goes through
the following steps:

1. 0θ = random angle

2. iθ = 0θ + i
numScat

.2π for 1..1 −= numScati

3. Is any of the iθ “close” to
2
π± , if yes go to 1, otherwise go to 4

4. Done

Please note that, in step 3, “closeness” is determined using a user specified
threshold value (wssThreshold.)

JakesGen also provides an implementation for the isCorrelated member function.
This implementation is based on the fact that, as mention in Section 3.2.2, when
using the Jakes Method, two Complex Gain Generators are uncorrelated if they
do not share the same arrival angles (iθ). Since the arrival angles are
equispaced and are generated using a random initial angle, for two Complex
Gain Generators to be uncorrelated it suffices to check that their initial arrival
angles are not too close (again “closeness” is determined using a threshold
parameter passed to isCorrelated).

 20

4.2.3 FWNGen: Complex Gain Generation using Filtered White Noise

FWNGen is derived from ComplexGainGen and implements the Method of Filtered
White Noise (this is described in section 3.2.2.) As stated before, FWNGen is a
self-contained module, which can be used independently to generate complex
gain samples.

The main function of the FWNGen class is to provide an implementation for the
generate member function derived from ComplexGainGen. As discussed in Section
3.2.2, this implementation directly filters White Gaussian Noise samples to
achieve the desired power spectral density (Equation 2.7.) This is done through
the Overlap-Add Filter Method [2] as described in the following flowchart:

START

wgNoise = White Gaussian
Noise Samples

wgNoiseSpectrum
= fft(wgNoise)

Pad wgNoise with
zeros at the end

length(wgNoise) =
blockSize

length(wgNoise) =
2*blockSize

temp =
wgNoiseSpectrum * filter

Output = temp(1..blockSize)
+ postCursor

postCursor = temp
(blockSize+1..blockSize*2)

Apply coloring filter to noise
(filter is a member variable

initialized in the constructor)

Add post cursor produced
from last invocation

(postCursor is a member
variable)

save the post cursor for
the next invocation

END

Figure 4.2-1: Overlap-Add Filter Method Flowchart

 21

The coloring filter used in generate is created by the constructor and stored in
the filter member variable. It is important to note that the length of this filter (i.e.,
the truncation length) is equal to the blockSize member variable (i.e., the length
of the complex gain blocks returned by generate.) Figure 4.2-3 shows a flowchart
that describes how the filter is created by the constructor.

START

timeFilter = time domain
filter

filter = fft(timeFilter)

pad timeFilter with
zeros

length(timeFilter) =
blockSize

length(timeFilter) =
2*blockSize

initialize postCursor to
zero

(filter is a member variable
used in ‘generate’)

reset post cursor to zero

END

apply Kaiser
Window to
timeFilter

Figure 4.2-2: Creating the coloring filter for FWNGen

4.2.4 TDL: The Tapped Delay Line

As discussed in Section 3.2.1, the main function of the TDL class is to apply the
effects of fading to an input signal, according to the time varying linear transfer
function of Equation 2.3; this is done in the process member function. The
function receives as an argument, an array of complex samples representing the
signal, simulates the effects of fading on this signal and returns the results.

In order to perform this function, the TDL class maintains the following information
as member variables:

- Power Delay Profile: This information is supplied by the user as an
argument to the constructor. The Power Delay Profile is an array of
variances, one for each tap of the TDL, defining the power of the
complex gain in each “delay bin”.

 22

- Convolution Buffer: This array is used to hold the results of the
convolution resulting from a call to process. Obviously, the results of
the convolution are retained in this buffer between successive calls to
the process member function, ensuring continuity of the process.

- Array of Complex Gain Generators: This array holds multiple

instances of Complex Gain Generators (either JakesGen or FWNGen),
one for each tap of the TDL. The association relationship in Figure
4.1-1 represents this array.

The following flowchart describes how the process function works.

START

buffer[0] = input[i]

Output[i] = sum(Gains[] *
buffer[])

ENDShift all samples in
buffer[] to right

last input
sample?

Gains[] = generate
new complex

gains for each tap

Gains[] = (Gains[] + K-factors) *
PowerDelayProfile[]

i = i + 1;

i = 0

call
ComplesGainGen.generate

4.3 Design Adv

The Object-Orien
advantages. This
are gained from th

Figure 4.2-3: Flowchart of the process member function of
the TDL class
antages

ted design outlined in Section 4.1 brings about numerous
 section briefly discusses some of the important benefits that
is design.

23

4.3.1 Modularity

One of the most important aspects of Object Oriented systems is Modularity. An
effort has been made to construct loosely coupled and independent modules,
which can be used individually as well as together as a system. For instance,
although the JakesGen class is used in conjunction with the TDL for the purpose of
Fading Simulation, it can very well be used on its own for the purpose of
Complex Gain Generation.

4.3.2 Extendibility

A very important aspect of this system is the fact that it can be effortlessly
extended. This is brought about by the use of polymorphism in the construction
of the Complex Gain Generator classes.

As discussed in section 4.2.1, ComplexGainGen has an interface for which no
implementation is provided. By relying on this common interface, the TDL class
decouples itself from the specific type of generator used. As long as a Complex
Gain Generator conforms to this interface, the TDL will be able to use it. This
notion is depicted in figure 4.3-1.

Server
Type 1

Server
Type 2

Server
Type 3

Client

Figure 4.3-1: Polymorphism

The important result of this property is that in the future, other techniques of
generating complex gains can be implemented as new ComplexGainGen derived

 24

classes and be used in conjunction with TDL –all that, with absolutely no change
being required in the implementation of TDL.

 25

5 Testing

After (and during) implementation, extensive testing was done on each
subcomponent of the simulation to ensure that the operation of each was as
expected. To this end, various properties were measured and compared with
their theoretical counterparts. The MATLAB test code used is attached in
Appendix C.

Each of the following subsections deals with the testing done on one of the
classes.

5.1 JakesGen

The following table lists the parameters used for the various test performed on
the complex gain samples generated by the JakesGen class.

Table 1: Parameters used for testing JakesGen.

Parameter Value
Number of Scatterers 25
Block Size 10,000
Number of Blocks Generated 100
Normalized Sampling Frequency (fDts) 0.001

The testing was carried out in four steps (please note that the code used for
these tests can be found in Appendix C)

5.1.1 Step One: Mean and Variance

The following table shows the measured as well as theoretical values for the
Mean and Variance of the generated gain samples.

Table 2: Measured/Theoritical Mean and Variance4.

Parameter Measured Theoretical
Mean 8.7113e-004 -9.4914e-004i 0
Variance 0.995 1

5.1.2 Step Two: Probability Density Function

Clearly, the real and imaginary parts of the generated gain samples should follow
a Gaussian PDF. Figure 5.1-1 shows the PDF of the real part of the generated

4 These statistics were calculated over 100 blocks of 10,000 samples each or 1,000,000 samples
in total.

 26

gains whereas Figure Figure 5.1-2 shows the theoretical Gaussian PDF
(variance = ½ and mean = 0).

 27

Figure 5.1-1: PDF of gain samples generated by JakesGen

Figure 5.1-2: Theoretical Gaussian PDF

 28

Each of the above graphs is plotted using a corresponding vector of sample
frequencies. As another measure of the similarity between the theoretical and
measured results, the difference between these two vectors is plotted in Figure
5.1-3.

Figure 5.1-3: Difference between actual and theoretical PDFs

Alternatively, we perform the Chi-squared goodness-of-fit test to compare the
actual PDF and the theoretical Normal PDF. To this end, we use the following
formula to calculate the statistic: 2χ

 (5.1) ∑
=

−=
k

i
iii EOE

1

2 /)(χ

where k is the number of bins, is the expected frequency in bin i andO is the
observed frequency in bin i. We then use the formula

iE i

 (5.2))(1 2
1 χ−−= kCP

where denotes the CDF of the distribution with k-1 degrees of freedom,
to obtain the P-value.

1−kC
2χ

 29

In this case we achieve a P-value of 0.1076 which is large enough for us to
conclude that the PDF of our gain samples is in fact Gaussian.

 30

5.1.3 Step Three: Autocorrelation

In this step we compare the measured autocorrelation to the theoretical one
given in Equation 2.8. Figure 5.1-4 shows a plot of the difference between the
real part of the measured and theoretical autocorrelation vectors (please note
that, in order to be able to zoom in sufficiently, only the middle 20,000 samples
are shown.)

Figure 5.1-4: Difference between actual and theoretical autocorrelation.

The mean and variance the difference vector plotted above were measured to be
0.000157 and 0.005998 respectively. These statistics indicate that the measured
and theoretical autocorrelation functions are indeed close.

 31

5.1.4 Step Four: Cross-Correlation Between Real and Imaginary Parts

As discussed in Section 3.2.2, the real and imaginary components of the
generated gain samples should be completely uncorrelated. The plot of the cross
correlation function between the real and imaginary parts of the generated gain,
shown in Figure 5.1-5, indicates the two are in fact uncorrelated.

Figure 5.1-5: Cross-correlation between real and imaginary components.

The mean and variance the cross-correlation vector plotted above were
measured to be -4.1342e-007 and 0.001627 respectively, which also indicate
that the real and imaginary components are uncorrelated.

 32

5.2 FWNGen

The following table lists the parameters used for the various test performed on
the complex gain samples generated by the FWNGen class.

Table 3: Parameters used for testing FWNGen.

Parameter Value
Block Size 10,000
Number of Blocks Generated 100
Normalized Sampling Frequency (fDts) 0.01
Beta (used for Kaiser Windowing) 5

The testing procedure used was almost identical to the one used for the JakesGen
class, and was also carried out in four steps (please refer to Appendix C for the
test code.)

5.2.1 Step One: Mean and Variance

The following table shows the measured as well as theoretical values for the
Mean and Variance of the generated gain samples.

Table 4: Measured/Theoretical Mean and Variance.

Parameter Measured Theoretical
Mean -0.0037 - 0.0068i 0
Variance 0.9637 1

5.2.2 Step Two: Probability Density Function (PDF)

Clearly, the real and imaginary parts of the generated gain should follow a
Gaussian PDF. Figure 5.2-1 shows the PDF of the real part of the generated gain
samples whereas Figure 5.2-2 shows the theoretical Gaussian PDF (variance =
½ and mean = 0). Please note that the PDF of the gain samples generated by
FWNGen is somewhat more Gaussian than its counterpart, generated by JakesGen
(see Figure Figure 5.1-1.)

 33

Figure 5.2-1: PDF of gain samples generated by FWNGen.

Figure 5.2-2: Theoretical Gaussian PDF.

 34

Each of the above graphs is plotted using a corresponding vector of sample
frequencies. As another measure of the similarity between the theoretical and
measured results, the difference between these two vectors (of relative
frequencies) is plotted in Figure 5.2-3.

Figure 5.2-3: Difference between actual and theoretical PDFs.

Alternatively, we perform the Chi-squared goodness-of-fit test to compare the
actual PDF and the theoretical Normal PDF. Using the same process described
in Section 5.1.2, we calculate a P-value of 0.1455 which is large enough for us to
conclude that the PDF of our gain samples is in fact Gaussian.

 35

5.2.3 Step Three: Autocorrelation

In this step we compare the measured autocorrelation to the theoretical one
given in Equation 2.8. Figure 5.2-3 shows a plot of the difference between the
real part of the measured and theoretical autocorrelation vectors (please note
that, in order to be able to zoom in sufficiently, only the middle 2,000 samples are
shown.)

Figure 5.2-4: Difference between actual and theoretical autocorrelation.

The mean and variance the difference vector plotted above were measured to be
-0.000014 and 0.000056 respectively. These statistics indicate that the measured
and theoretical autocorrelation functions are indeed close.

 36

5.2.4 Step Four: Cross-Correlation Between Real and Imaginary Parts

As discussed in section 3.2.2, the real and imaginary components of the
generated gain samples should be completely uncorrelated. The plot of the cross
correlation function between the real and imaginary parts of the generated gain,
shown in Figure 5.2-5, indicates the two are in fact uncorrelated.

Figure 5.2-5: Cross-correlation between real and imaginary components.

The mean and variance the cross-correlation vector plotted above were
measured to be 0.000012 and 0.000006 respectively, which also indicate that the
real and imaginary components are uncorrelated.

 37

5.3 TDL: Fading Simulation Example

Subsequent to performing unit testing on each of the Complex Gain Generators,
we can put the whole system together for testing, which constitutes an actual
Fading Simulation example. This is done by putting a known signal through the
TDL and observing the results5.

The following table lists the parameters used to setup the system for testing.

Table 5: Parameters used for testing TDL.

Parameter Value
Sampling Frequency (fs) 320 KHz
fD 1Hz
Number of Taps 8
Delay Spread 250us
Generator Block Size 1000
Number of Scatterers (JakesGen only) 25
Beta (FWNGen only) 10

In addition to the parameters above, we need to specify a Power Delay Profile.
That is, we need to state what the complex gain power is at each tap of the TDL.
Therefore, in this case, we use a linearly decaying Power Delay Profile that
matches the specifications above (see Figure 5.3-1.), and also whose total power
equals 1.

5 The test scenario used here is taken from [1].

 38

Figure 5.3-1: Power Delay Profile.

Now that we have defined the parameters of the system we should define our
input signal. To generate a sample input signal, we phase modulate a complex
carrier using a cosine:

 (5.1))..2cos(.mod.2.)(tfIndexj mets ππ=

The parameters used for the input signal are given in the Table 6 and the signal
is plotted in Figure 5.3-1.

Table 6: Input signal parameters

Parameter Value
Modulation Index 0.4
Modulation Frequency 10Khz
Delay Spread 250us
Number of input samples 100

 39

Figure 5.3-2: Input signal.

 40

Finally, we simply pass the signal through the TDL and plot the results (see
Figure 5.3-36).

Figure 5.3-3: Output of the Fading Channel Simulator.

In addition, for the sake of comparison we generate another plot using a smaller
delay spread (125us), and consequently less taps in the TDL (4 taps to be exact.)
As expected, when using a smaller delay spread, the effects of fading are
somewhat less destructive to the signal.

6 Note that the plot contains a “spike” going from the center of the graph towards the bottom right.
This is caused by the transient component of the output of the convolution and shows the initial
contents of the convolution buffer. In fact, this result is even expected in real physical systems.

 41

Figure 5.3-4: Output of the Fading Channel Simulator (4 taps.)

A simple plot of the spectrum of the input signal reveals that the bandwidth is
approximately 50Khz while the delay spread (dτ) is sµ250 (sd µτ 125= in the case
of four taps). Consequently, the product of these two quantities (bandwidth times
delay spread) is large, which shows that the channel is a very frequency
selective one. The effects of this frequency selectivity are evident from both
Figure 5.3-3 and Figure 5.3-4: in both cases the signal is significantly damaged.

On the other hand, our observation interval of 312.5us (100 samples at 320Khz)
is quite short compared to our Doppler frequency of 1Hz (the product of the two
quantities is very small). Therefore, we are faced with slow fading, the
consequence of which is the fact that damages to the time structure of the signal
(e.g. its periodicity) are small (refer to Figure 5.3-3 and Figure 5.3-4).

 42

6 Conclusions

The research and development carried out for the purpose of this thesis was
focused on creating a Fading Channel Simulator in MATLAB. This simulation
models a simplified view of the Fading phenomenon encountered in
communications systems. By being embedded in other MATLAB programs, the
simulation can prove to be very useful for measuring the performance of various
communication techniques.

The work mainly consisted of creating a Tapped Delay Line structure to
implement a time varying linear filter and also implementing two different
techniques of Complex Gain Generation: The Jake’s Method and The Method of
Filtered White Noise. To this end, an Object Oriented architecture was designed,
consisting of a number of autonomous classes, which can be used together in a
system, or otherwise independently. Various advantages of this design such as
Modularity and Extendibility were explored.

Furthermore, extensive testing was carried out at the unit and also at the system
level. These tests ensured that each component as well as the whole system
performed as expected.

The end result of this project is a MATLAB class library. In order to improve the
performance of the various functions included, in the future, some or all of the
functions could be ported to a more low level programming language such as C.
Furthermore, additional Complex Gain Generator classes can be implemented to
support other types of Complex Gain Generation.

 43

Appendix A: A Quick Intro to Object Orientation

An Object-Oriented program consists of Objects and Classes. Classes are
specifications about a given type of data (hence, they are also referred to as
Abstract Data Types.) A class is a “package” or “bundle” consisting of a number
of functions and data variables; these are referred to as member functions and
member variables respectively.

An Object is an instance of a class. Any number of objects can be created from a
given class, each having its own member variables while sharing the same
member functions. As an analogy, if we consider the 2.0 MHz Intel Pentium 4
Processor a class, then the one I have in my computer is an instance and
therefore an object of this class.

The following figure shows an example of simple class diagram using UML
(Unified Modeling Language.) The diagram illustrates a number of important
Object-Oriented concepts, which are discussed below.

+Draw()
+Move()
+GeometricShape()

-Color
GeometricShape

+Circle()

Circle

+Rectangle()

Rectangle

+Triangle()

Triangle

+Point()

Point

1 n

A 1: A simple class diagram.

In the diagram, each class is represented by a box, which is divided into three
sections: the top section contains the class name, the middle section lists the
member variables while the bottom section lists the member functions. Notice
that every class has a member function with the same name as the class; these
are called the constructors. A constructor is used to create and initialize an
instance (object) of a class.

The Circle is in fact, a special type of Geometric Shape –i.e. it has all the
properties of a Geometric Shape as well as its own properties. Therefore, there is
an inheritance relationship between GeometricShape and Circle, and as a result, the
class Circle inherits all the member variables and member functions of
GeometricShape -this indeed makes sense because a Circle too can have a color

 44

and Circle too can have a move and a draw member function. The same idea
holds for the Rectangle and Triangle classes.

Another very important point to consider is that it does not make sense for the
class GeometricShape to provide an implementation for the Draw member function,
it is only there to define the interface. Derived classes like Circle or Rectangle
provide their own specific implementation for the Draw member function inherited
from GeometricShape. Now, if we had a list containing a number of Circle, Rectangle
and Triangle objects, we could draw them without knowing of which exact type
they are, by simply calling the Draw member function of each. This concept is
referred to as polymorphism: the same function takes different meanings in
different classes.

The last relationship to consider in Figure A1 is the 1-n aggregation between the
GeometricShape and the Point classes. This association indicates that a given
instance of GeometricShape can own and use more than one instance of the class
Point. This is modeling the fact that any given Geometric Shape (like a rectangle
for example) consists of a number of points that are connected to each other.

 45

Appendix B: Component User’s Guide

This section briefly discusses how the Fading Simulation Component should be
used through a number of examples7.

B.1 Using The JakesGen Class

The following MATLAB code excerpt, illustrates how a JakesGen object is created:

% generator parameters
Ns=25; % Number of scatterers, odd
blockSize=10000; % the block size
fDts=0.001; % normalized sampling period
wssThreshold=.0001; % threshold value used to determine if WSS criteria is satisfied
randomSeed=1; % seed value used to init random number generators (optional)
Kfactor=0; % Ricean K-factor

% create complex gain generator
gainGen = JakesGen(blockSize, fDts, Kfactor, randomSeed, Ns, wssThreshold);

The following line of MATLAB code shows how JakesGen can be used to
generate a block of 10,000 (the block size) complex gain samples into an output
vector:

[gainGen, y] = generate(gainGen, 0);

Please note that the first argument passed to generate indicates which Complex
Gain Generator object is used, while the second argument is a sequence
number. Each generated block is identified with a sequence number (i.e. the
blocks follow each other sequentially.) Using the sequence number the complex
gain generation can be run forwards or backwards in time.

Furthermore, note that gainGen appears as a return value as well as an
argument. This allows generate to update the state of the gain generator.

7 The classes discussed here contain implementations of a number of algorithms provided in the
book ‘Mobile Channel Characteristics’ by James K. Cavers, Kluwer Academic Publishers Inc. In
particular, Appendix B of the book contains information about the Jakes Method, while Appendix
K provides a description of the Filtered White Noise Method.

 46

B.2 Using the FWNGen Class

The following MATLAB code excerpt, illustrates how the FWNGen object is
created:

% generator parameters
blockSize=10,000; % block size
fDts=0.01; % normalized sampling period
beta = 5; % beta value used for the Kaiser Window
randomSeed=1; % seed value used to init random number generators (optional)
Kfactor=0; % Ricean K-factor

% create complex gain generator
gainGen = FWNGen(blockSize, fDts, Kfactor, randomSeed, beta);

The following lines of MATLAB code shows how FWNGen can be used to generate
a block of 10,000 (the block size) complex gain samples into an output vector:

[gainGen, y] = generate(gainGen, 0);

Please note that the first argument passed to generate indicates which Complex
Gain Generator object is used, while the second argument is ignored. Also, note
that gainGen appears as a return value as well as a parameter to allow generate
to update the state of the gain generator.

B.3 Using the TDL Class

The following MATLAB code excerpt, illustrates how a TDL object is created:

% create complex gain generator
gainGen = JakesGen(blockSize, fDts, Kfactor, randomSeed, Ns, wssThreshold);

% create the power delay profile, 4 taps
Ps = [0.5 0.25 1.5 0.1];

% the K-facors
Kfactors = [0 1 1 0];

% threshold value used to check whether two Jakes Generators are correlated
corThreshold = 0.01;

% create the TDL
myTDL = TDL(Ps, Kfactors, gainGen, corThreshold);

As can be seen from the above code excerpt, to initialize the TDL it is necessary
to create a “sample” gain generator object and pass it as the second parameter
the constructor of TDL. The constructor will then “clone” a copy of this parameter
for each tap. This is how the type and specifications of the Complex Gain
Generator used in the TDL is determined.

 47

In order to create a TDL consisting of FWNGen Complex Gain Generators instead,
the first line of the above code excerpt should be replaced by the following line:

gainGen = FWNGen(blockSize, fDts, Kfactor, randomSeed, beta);

The following lines of MATLAB code illustrate how a given input signal is
processed through the TDL:

% input signal
s = exp(j * 2*pi*modIndex*cos(2*pi*fm*t));

% process the input
[myTDL, y] = process(myTDL, s);

After the completion of this code sequence the vector y will contain the results.
Please note that, since the process member function changes the state of the
TDL, in addition to the processed vector y, the function returns the new TDL –this
is why myTDL is also on the left hand side of the assignment operator.

B.4 Creating a Set of Uncorrelated Complex Gain Generators

In order to create a set of uncorrelated Complex Gain Generators, we need to
make sure that each new Complex Gain Generator we put into the set is
uncorrelated to all other generators in the set. This is performed by calling the
isCorrelated member function of the ComplexGainGen on the newly created
generator and all other generators in the set.

The process outlined above has been gathered in a general-purpose function
called createUncorGenerators. The following code excerpt shows how this function
is used:

% create complex gain generator
gainGen = JakesGen(blockSize, fDts, Kfactor, randomSeed, Ns, wssThreshold);

% threshold value
threshold = 0.01;

% create array of generaros
v = createUncorGenerators(10, gainGen, threshold)

Much like creating a TDL outlined in B.3, a sample generator is created first.
Then, this sample generator is passed, along with the number of generators to
be created, to the createUncorGenerators function where the required number of
generators is created by “cloning” the sample generator.

The third parameter passed to createUncorGenerators is a threshold value used to
determine if two generators are indeed correlated. For example, in the case of

 48

JakesGen, the parameter is used to determine if the initial arrival angles of two
generators are “too close”.

 49

Appendix C: Source Code

C-1. ComplexGainGen\ComplexGainGen.m

%
% Complex Gain Generator base class
%

%
% Constructor.
%
function c = ComplexGainGen(blockSize, fDts)

%
% arguments are,
% blockSize: determines the number of samples processed at one time.
% fDts: (fD * ts) normalized sample spacing
%
 c.blockSize = blockSize;
 c.fDts = fDts;

 c = class(c, 'ComplexGainGen');

C-2. ComplexGainGen\Display.m

%
% Complex Gain Generator base class
%

% display the contents of the object

function display(c)

fprintf('BlockSize: %d\n', c.blockSize);
fprintf('Normalized sample spacing (fD * ts): %d\n', c.fDts);

C-3. ComplexGainGen\generate.m

%
% Complex Gain Generator base class
%

%
% function 'generate': this function returns a vector of blockSize elements that
% contains complex gain samples.
%

% The baseclass provides no implentation. Derived classes should implement this

 50

% function
%
function y = generate(c, blockNum)

C-4. ComplexGainGen\get.m

%
% Complex Gain Generator base class
%

%
% This function allows public members to be accessed
%
function val = get(c, prop_name)

switch prop_name
 case 'blockSize'
 val = c.blockSize;
 case 'fDts'
 val = c.fDts;

 otherwise
 error([prop_name,' is not a valid property.'])
end

C-5. ComplexGainGen\set.m

%
% Complex Gain Generator base class
%

%
% This function allows public members to be changed
%
function c = set(c, prop_name, val)

switch prop_name
 case 'blockSize'
 c.blockSize = val;
 case 'fDts'
 c.fDts = val;
 otherwise
 error([prop_name,' is not a valid property.'])
end

C-6. FWNGen\FWNGen.m

%
% The Filterred White Gaussian Noise Complex Gain Generator
%

 51

%
% Constructor, performs initilization.
% The function has the following arguments:
% blockSize: number of samples processed at one time, also determines the window size
used when
% truncating the impulse response of the coloring filter
% fDts: normalized sample spacing
% beta: the beta parameter for the Kaiser window
%
function c = FWNGen(varargin)

switch nargin
case 3

 % get arguments
 %
 blockSize = varargin{1};
 fDts = varargin{2};
 beta = varargin{3};

 %
 % Initialize
 %

 fprintf('generating time domain coloring filter...\n');
 fprintf('0%%-------50%%-------100%%\n');

 % get the truncated time domain coloring filter
 for i=[1:blockSize]
 timeFilter(1, i) = quad(@coloringfilter, 0, pi/2, [], [], (i-(blockSize-1)/2)*fDts);

 % print progress indicator
 if mod((i/blockSize), .05) == 0
 fprintf('>');
 end;
 end;

 fprintf('\n');

 % apply the Kaiser window
 timeFilter = timeFilter .* rot90(kaiser(blockSize, beta));

 % normalize to unit sum of squares
 sumSquared = sqrt(sum(abs(timeFilter).^2));
 dummy = timeFilter / sumSquared;
 timeFilter = dummy;

 % Get the FIR filter in frequency domain
 % Need to pad with zeros to make a block twice the size
 c.filter = fft([timeFilter zeros(1, blockSize)]);

 % initialize postCursor (used in the overlap-and-add method)

 52

 % to zero, so that it can be used the first time generate
 % is called.
 c.postCursor = zeros(1, blockSize);

 % create base class
 gainGen = ComplexGainGen(blockSize, fDts);

 % create this class
 c = class(c, 'FWNGen', gainGen);

case 1

 %
 % Create an object using the same properties as the object
 % passed in
 %

 % source object
 source = varargin{1};

 % get base class properties
 blockSize = get(source, 'blockSize');
 fDts = get(source, 'fDts');

 % copy the filter
 c.filter = source.filter;
 c.postCursor = zeros(1, blockSize);

 % create base class
 gainGen = ComplexGainGen(blockSize, fDts);

 % create this class
 c = class(c, 'FWNGen', gainGen);

otherwise
 error('Wrong number of input arguments');

end

C-7. FWNGen\generate.m

%
% Filtered White Gaussian Noise Generator class
%

%
% function 'generate': this function returns a vector of blockSize elements that
% contains complex gain samples.
%

%
% We're overriding the parent class's 'generate' function, providing a suitable

 53

% implementation.
%
% NOTE: the blockNum paramter is ignored here because the Filterred WGN generator
% can only generate sequentially.
%

function y = generate(c, blockNum)

fprintf('generating block %d...\n', blockNum);

% get the block size
blockSize = get(c, 'blockSize');

% generate gaussian samples, pad with zeros and take fft
noiseSpectrum = fft([randn(1, blockSize) + j*randn(1, blockSize), zeros(1, blockSize)]);

% filter the white gaussian noise samples
gainSamples = ifft(noiseSpectrum .* abs(c.filter))./sqrt(2);

% add the first half to the previous postcursor and return the result
y = gainSamples(1:blockSize) + c.postCursor;

% save the second half as the postcursor for the next time
c.postCursor = gainSamples(blockSize:blockSize+1);

C-8. TDL\TDL.m

%
% The Jakes Complex Gain Generator
%

%
% Constructor, performs initilization.
% The function has the following arguments, in the order they apear here:
% blockSize: number of samples processed at on time
% fDts: normalized sample spacing
% numScat: number of equispaced scatterers to be simulated
% wssThreshold: how close to +-pi/2 can the generated angles be without making
% the process non-WSS
%
function c = JakesGen(varargin)

switch nargin
case 4

 % get arguments
 %
 blockSize = varargin{1};
 fDts = varargin{2};
 c.numScat = varargin{3};
 c.wssThreshold = varargin{4};

 54

case 1
 %
 % Create an object using the same properties as the object
 % passed in
 %

 % source object
 source = varargin{1};

 % get base class properties
 blockSize = get(source, 'blockSize');
 fDts = get(source, 'fDts');
 c.numScat = source.numScat;
 c.wssThreshold = source.wssThreshold;

otherwise
 error('Wrong number of input arguments');
end

 %
 % Initialize
 %

 % random phases
 for j = [1:c.numScat]
 c.phase(j) = rand(1) * 2 * pi;
 end;

 % doppler shifts
 nonWSS = 1;
 while nonWSS

 % assume WSS
 nonWSS = 0;

 % the angle of the first scatterer
 theta0 = rand(1) * 2 * pi / c.numScat;

 % generate the other numScat scatterers (equispaced)
 for j = [0:c.numScat - 1]
 theta = theta0 + j * 2 * pi / c.numScat;

 % check WSS-ness
 if (abs(theta - pi/2) < c.wssThreshold) | (abs(theta + pi/2) < c.wssThreshold)
 nonWSS = 1;
 break;
 end;

 % calc doppler shift from angle
 c.dopplerShift(j + 1) = -2 * pi * cos(theta);

 55

 end;

 end;

 % create base class
 gainGen = ComplexGainGen(blockSize, fDts);

 % create this class
 c = class(c, 'JakesGen', gainGen);

C-9. JakesGen\display.m

%
% Jakes Complex Gain Generator class
%

% display the contents of the object

function display(c)

% display parent first
display(c.complexgaingen);

fprintf('# of Scatterers: %d\n', c.numScat);

C-10. JakesGen\generate.m

%
% Jakes Complex Gain Generator class
%

%
% function 'generate': this function returns a vector of blockSize elements that
% contains complex gain samples.
%

%
% We're overriding the parent class's 'generate' function, providing a suitable
% implementation.
%

function y = generate(c, blockNum)

 % get block size from parent
 blockSize = get(c, 'blockSize');
 % ...and the normalized sample spacing
 fDts = get(c, 'fDts');

 % This is the time axis (sampling instants)
 u = [blockNum*blockSize*fDts:fDts:((blockNum+1)*blockSize - 1) * fDts];

 % init to zero

 56

 y = zeros(1, blockSize);

 % generate gain samples
 for j = [1 : c.numScat]
 y = y + exp(i * (c.phase(j) + u * c.dopplerShift(j)));
 end;

 y = y / sqrt(c.numScat);

C-11. JakesGen\get.m
%
% Jakes Complex Gain Generator class
%

% This function allows public members to be accessed
function val = get(c, prop_name)

switch prop_name

 % access number of scatterers
 case 'numScat'
 val = c.numScat;

 % access to parent class members
 otherwise
 val = get(c.complexgaingen, prop_name);
end

C-12. TDL\TDL.m

%
% class TDL: Tapped Delay Line
%

%
% Constructor
% powerDelayProfile: array containing points seperated by
% ts in the power delay profile. Each is the variance of the
% corresponding tap in the tap delay line.
%
% sampleGenerator: is a sample object of the desired type
% of complex gain generator. The needed generators will
% created using the same properties as this one.
%

function c = TDL(powerDelayProfile, sampleGenerator)

% save number of taps
c.numTaps = length(powerDelayProfile);

 57

% block size
c.blockSize = get(sampleGenerator, 'blockSize');

% save the power delay profile
c.powerDelayProfile = powerDelayProfile;

% get the handle of the constructor of the generator
consFunc = str2func(class(sampleGenerator));

% create an array of generators
for i=[1:c.numTaps]
 c.taps(i).gen = feval(consFunc, sampleGenerator);
 c.taps(i).buffer = generate(c.taps(i).gen, 0);

end;

% initialize the buffer pointer
c.gainBufferIndex = 1;

% the number of the next block
c.blockNum = 1;

% the buffer used for convolution
c.buffer = zeros(1, c.numTaps);

c = class(c, 'TDL');

C-13. TDL\process.m

%
% class TDL: Tapped Delay Line
%

%
% process, simulates the effects of fading on the input vector
% containing signal samples.
%

function [c, y] = process(c, s)

% length of input vector
iLength = length(s);

for i = [1:iLength]

 % shift everything to right
 c.buffer = circshift(c.buffer, [0, 1]);

 % put new value in
 c.buffer(1) = s(i);

 58

 % get new gain values
 [c g] = getNewGainValues(c);

 % multiply out the numbers
 y(i) = sum(c.buffer .* g);

end;

C-14. TDL\get.m
%
% Tapped Delay Line class
%

% This function allows public members to be accessed
function val = get(c, prop_name)

switch prop_name

 % access number of taps
 case 'numTaps'
 val = c.numTaps;

 otherwise
 error([prop_name,' is not a valid property.'])
end

C-15. JakesTest.m

% generator parameters
Ns=25; % odd
blockSize=10000;
blockCount = 100;
fDts=0.001;
beta = 5;
threshold=.0001;

% create complex gain generator
gainGen = JakesGen(blockSize, fDts, Ns, threshold);

%
% Compare pdf with that of a Gaussian rv
%

% bins for histogram (pdf)
x = -2.9:0.1:2.9;

y = [];

 59

% generate block
for i=1:blockCount
 y = [y generate(gainGen, i)];
end;

blockSize = blockSize * blockCount;

% draw pdf, making variance equal to one
figure;
pdfActual = hist(real(y)/sqrt(var(real(y))),x);
hist(real(y)/sqrt(var(real(y))),x);
title('Actual distribution');

% draw pdf of unit variance gaussian rv for comparison
figure;
pdfGaussian = hist(randn(1,blockSize),x);
hist(randn(1,blockSize),x);
title('Theoritical Gaussian rv');

% plot the difference between the actual and the theoritical pdfs
figure;
plot(x, abs(pdfActual - pdfGaussian)/blockSize);
title('gaussian/actual difference');

%
% Compare the autocorrelation with theoritical -i.e.
% zeroth order bessel function of the first kind.
%

% x axis for autocorrelatiohn
ax = -(blockSize-1)*fDts:fDts:(blockSize-1)*fDts;

% autocorrelation (normalized)
autocor = xcorr(y)/blockSize;

% bessel function
j0 = besselj(0, ax*2*pi);

% difference between actual and theoritical
diff = (real(j0 - autocor));

% plot the 400 samples in the middle
figure;
plot(ax(blockSize-10000:blockSize+10000),diff(blockSize-10000:blockSize+10000));
title('Error between J0 and autocorrelation');

fprintf('The difference between Theoritical/Measured Corrleations: %f\n', mean(diff));
fprintf('\nMean: %15f', mean(diff));
fprintf('\nVariance: %15f\n', var(diff));

%

 60

% Make sure the real and imaginary parts are uncorrelated
%
crosscor = xcorr(real(y), imag(y))/blockSize;

figure;
plot(ax(blockSize-10000:blockSize+10000),crosscor(blockSize-10000:blockSize+10000));
title('crosscorrelation between real and imaginary parts');

fprintf('\nThe crosscorrelation between real and imaginary components:');
fprintf('\nMean: %15f', mean(crosscor));
fprintf('\nVariance: %15f\n', var(crosscor));

C-16. FWNTest

% generator parameters
blockSize=1000;
blockCount = 100;
fDts=0.01;
beta = 5;

% create complex gain generator
gainGen = FWNGen(blockSize, fDts, beta);

%
% Compare pdf with that of a Gaussian rv
%

% bins for histogram (pdf)
x = -2.9:0.1:2.9;

y = [];

% generate block
for i=1:blockCount
 y = [y generate(gainGen, i)];
end;

blockSize = blockSize * blockCount;

% draw pdf, making variance equal to one
figure;
pdfActual = hist(real(y)/sqrt(var(real(y))),x);
hist(real(y)/sqrt(var(real(y))),x);
title('Actual distribution');

% draw pdf of unit variance gaussian rv for comparison
figure;
pdfGaussian = hist(randn(1,blockSize),x);
hist(randn(1,blockSize),x);
title('Theoritical Gaussian rv');

 61

% plot the difference between the actual and the theoritical pdfs
figure;
plot(x, abs(pdfActual - pdfGaussian)/blockSize);
title('gaussian/actual difference');

%
% Compare the autocorrelation with theoritical -i.e.
% zeroth order bessel function of the first kind.
%

% x axis for autocorrelatiohn
ax = -(blockSize-1)*fDts:fDts:(blockSize-1)*fDts;

% autocorrelation (normalized)
autocor = xcorr(y)/blockSize;

% bessel function
j0 = besselj(0, ax*2*pi);

% difference between actual and theoritical
diff = (real(j0 - autocor));

% plot the 400 samples in the middle
figure;
plot(ax(blockSize-1000:blockSize+1000),diff(blockSize-1000:blockSize+1000));
title('Error between J0 and autocorrelation');

fprintf('The difference between Theoritical/Measured Corrleations:');
fprintf('\nMean: %15f', mean(diff));
fprintf('\nVariance: %15f\n', var(diff));

%
% Make sure the real and imaginary parts are uncorrelated
%
crosscor = xcorr(real(y), imag(y))/blockSize;

figure;
plot(ax(blockSize-1000:blockSize+1000),crosscor(blockSize-1000:blockSize+1000));
title('crosscorrelation between real and imaginary parts');

fprintf('\nThe crosscorrelation between real and imaginary components:');
fprintf('\nMean: %15f', mean(crosscor));
fprintf('\nVariance: %15f\n', var(crosscor));

C-17. TDLTest
clear all;

% generator parameters
beta=10;

 62

threshold=.0001;
Ns=25; % odd
blockSize=1000;

modIndex = .4;
fD = 1;
fm = 10000;

fs = 32 * fm;
ts=1/fs;

numSamples = 100;
numTaps = 4;
td = ts * numTaps;

fDts = fD / fs;

% time axis
t = [0:ts:ts*(numSamples-1)];
tPowerDelay = [0:ts:(numTaps-1)*ts];

% input signal
s = exp(j * 2*pi*modIndex*cos(2*pi*fm*t));

figure;
plot(s);
title('Input signal s(t)');

% Standard deviations taken from the Power Delay Profile
Ps=sqrt(ts*(-2*tPowerDelay-ts+2*td)/td^2);

% Plot the Power Delay Profile
stem(t(1:length(Ps)), Ps.^2);
title('Power Delay Profile');
xlabel('time (s)');
ylabel('Power');

% create complex gain generator
gainGen = JakesGen(blockSize, fDts, Ns, threshold);
%gainGen = FWNGen(blockSize, fDts, beta);

myTDL = TDL(Ps, gainGen);

[myTDL, y] = process(myTDL, s);

figure;
plot(y);
title('Output signal y(t)');

 63

Appendix D: References

1. Cavers, James K., September 2000, Mobile Channel Characteristics,
Kluwer Academic Publishers

2. Oppenheim, Allan V. and Schafer, Ronald W., 1989, Discrete-Time Signal
Processing, Prentice Hall Signal Processing Series

3. Bruegge, Bernd and Dutoit, Alan H, 2000, Object-Oriented Software
Engineering, Prentice Hall

4. Harry Lass and Peter Gottlieb, 1971, Probability and Statistics, Addison
Wesley Publishing Company, Inc.

 64

	Table of Contents
	Table of TablesTable 1: Parameters used for testing JakesGen.26Table 2: Measured/Theoritical Mean and Variance.26Table 3: Parameters used for testing FWNGen.33Table 4: Measured/Theoretical Mean and Variance.33Table 5: Parameters used for testing TDL.38Ta
	Table of Figures
	Abstract
	Font Conventions
	Introduction
	A Brief Mathematical Model of Fading
	Component High-Level Description
	Usage
	Structure
	The Tapped Delay Line
	The Complex Gain Generator

	Input Parameters

	Component Implementation
	Object-Oriented Static Architecture
	Class description
	ComplexGainGen: Complex Gain Generator Base Class
	JakesGen: Complex Gain Generation using the Jakes Method
	FWNGen: Complex Gain Generation using Filtered White Noise
	TDL: The Tapped Delay Line

	Design Advantages
	Modularity
	Extendibility

	Testing
	JakesGen
	Step One: Mean and Variance
	Step Two: Probability Density Function
	Step Three: Autocorrelation
	Step Four: Cross-Correlation Between Real and Imaginary Parts

	FWNGen
	Step One: Mean and Variance
	Step Two: Probability Density Function (PDF)
	Step Three: Autocorrelation
	Step Four: Cross-Correlation Between Real and Imaginary Parts

	TDL: Fading Simulation Example

	Conclusions
	Appendix A: A Quick Intro to Object Orientation
	Appendix B: Component User’s Guide
	B.1Using The JakesGen Class
	B.2Using the FWNGen Class
	B.3Using the TDL Class
	B.4Creating a Set of Uncorrelated Complex Gain Generators

	Appendix C: Source Code
	Appendix D: References

