Inductors in Series
e Inductors in series act just like one large inductor

e Inductors in series add to the total inductance
¢ "Inductors In series act like resistors in Series"

Ltotal = Z Lj
j=1

e \Warning: this assumes the magnetic fields do not interact
e Thus no mutual inductance

g
Ly Ly L L-p

e Example: 1, 2, and 3 mH inductors in series. What is Lol

e Thus total is

Lw =L =L +L,+L, =107 +2x107 +3x107 =6 mH
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Inductors in Parallel

¢ "Inductors in Parallel act like resistors in Parallel™
e Inverse of the total equals the sum of the inverses

1 &1
=L

L

total

e Again important the magnetic fields do not interact
¢ \Why do Inductors act different than C’s?

e Consider parallel L's

e \/oltage across each inductor is the same.

e Recall the Current is given by:

1
I:EIV(t)dt

e Thus the total current through the inductors is:

., ZI = { jV(t)dt} { }fV(t)dt

e \Where t is the time of measurement




Example Parallel Inductors

Example: two inductors in parallel: Ly =1 mH, L, =2 mH

Thus total is
1 1 1 1 1 3
L., L L 10° 2x10° 2x10°
-3
L, =220 0667 mH
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Practical Inductors

¢ Real inductors are often air coils: just coiled wire

e Advantage: high speed, very easy to make, calculate and tune
e Disadvantage: lower inductance, high resistance (from wire)
e Needs lots of turns of wire

e Typical values uH to mH

e Often bend coil into a torus (donut core with wire wound around)
e Reason magnetic field confined to the torus core

¢ Thus ideally no mutual inductance

e Also field is stronger in core, and thus L larger & smaller size




Ferrite Core Inductors

e Ferrite (iron) core inductors are most common

¢ Advantages:

e Much smaller for given inductance

e Can get very high inductance (henries!) with big ones
e Magnetic field mostly stays within the Ferrite area

¢ Disadvantage:

e Much harder to calculate (depends on iron type)

e Hence must be measured

e Also iron gets hot (heated by induction)




Natural Response of Resistor Capacitor (EC 7))

e Natural Response: behaviour of a circuit to a sudden change
e Consider a Capacitor in series with a resistor R

e At time t=0 a switch connects this to a voltage V,

¢ Recall the capacitor current behaviour

i dv
I(t)=C —
(t) "

e Or rewriting this

t

v(t):éji(t)dt

0

e Then writing the KVL for the circuit
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VO—Egl(t)dt—l(t)R:O

C .
. ¥ ARALY

v, O R




Natural Resistor Capacitor Response: Differential Equations
e Differentiating with respect to time
rIB), Lity—o
dd C

e This is the "Differential Equation" form of the KVL equation
e Using the integration solution method for DE’s
e To solve get into integral form

[2di=—— ot
i(t) RC
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Natural Resistor Capacitor Response: Solutions

e Integrating both sides to solve
: t
In(i(t))=——-+A
(i(t)) C

e \Where A is a constant of integration
¢ Taking the exponential of each side
e Then setting at time t=0 call the current I, then

i(t)=1, exp(—Rt—C)

r=RC

e This is an exponential decay of current
e Thus at as time goes to infinity Capacitors act as opens
e Current goes to zero

e The time constant is
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Natural Resistor Capacitor Response: Initial Conditions

¢ \With the voltage suddenly applied

e Eventually C becomes charge to voltage source level
e At time zero Capacitors act as short circuits

e Thus for t=0 can ignore capacitor, so

e Thus the current equation is

: V, t

i(t)="exp| ——

()=o)
e Initial slope of line of line is

di(t=0)_ 1, _V,

dt r R°C

+« I, : '/\‘e/“o

T-RC t



Natural Resistor Capacitor Response: Voltage

e Final voltage on Capacitor matches the V source
Ve(t—> )=V,
e \/oltage across the capacitor from the KVL

| Vo exp - L JR=v.[1-exp[ - L
vc(t)zvo—l(t)R=Vo—EeXp( RCJR—Vo(l eXp( RC))

e Thus voltage rises to equal the voltage source expodentially

e Same equations for C charge to initial voltage plus R with no V
¢ Only difference is final voltage on Capacitor now zero

¢ Both called "RC circuits"

;V
VO — —_— = - - I +‘10 '——-0
VC




