- Inductors and Capacitors react differently to a Voltage step
- Just after the step Capacitors act as a short if uncharged

$$
I_{C}(t)=C \frac{d V}{d t}
$$

- If charged Capacitor acts as an voltage source
- As time goes to infinity change in voltage goes to zero
- Then C act as an open (become fully charge or discharged)
- Thus can find initial and final conditions of circuit
- Use KVL with on circuit with these two models of the C’s

Inductor Initial and Final Response to a "Step Function"

- Inductors react differently to a voltage step
- Just after the step inductors act as opens
- Reason: opposes sudden change in current

$$
v_{L}(t)=L \frac{d i}{d t}
$$

- As time goes to infinityInductors act as shorts
- Thus no more current change in final state
- Thus can find initial and final conditions of circuit
- Use KVL with on circuit with these two models of the L's

$$
\begin{aligned}
& t=0 \\
& t \rightarrow \infty
\end{aligned}
$$

L

General Solution Method of First Order Circuits

- General first order solution to a sudden change
(1) Use Kirchoff's laws for circuit equation
(2) Manipulate to get I or V in terms of derivates in time
(3) Generate the "Differential Equation Form"
- May need to differentiate to obtain
(4) Solve the Differential equation: 2 methods:
(4a) Integration method: get in integral form
- Integrate to get solution: eg RC circuit
(4b) Solution substitution method: assume a solution
- For step change assume exponential (or exp to constant)
- Solve for time constant
(5) Use initial or final conditions for constants of integration

Resistor Inductor Circuits

- Consider an inductor in series with a resistor.
- Called an LR circuit
- At time zero switch is opened
(1) Writing down KVL

Recall that the voltage across the inductor is

$$
v_{L}(t)=L \frac{d i}{d t}
$$

- Thus

$$
V_{0}-L \frac{d i(t)}{d t}-i(t) R=0
$$

(2) Thus no differentiating is needed for RL circuits to get the DE
(3) Then the differential equation is

$$
V_{0}=L \frac{d i(t)}{d t}-i(t) R
$$

Resistor Inductor Circuit with Initial Current

- Starts with inductor in series with a resistor and a voltage source
- At time zero switch shorts out voltage source
(1) Writing down KVL
- Recalling

$$
v_{L}(t)=L \frac{d i}{d t}
$$

- There is no voltage source after short switch is closed
- Inductor now acts as a voltage source supplying current to R thus

$$
0=L \frac{d i(t)}{d t}-i(t) R
$$

- Current declines as resistor consumes energy from inductor
(2) Thus no differentiating in KVL for RL circuits
(3) Thus using $\mathrm{KVL} \mathrm{V}_{\mathrm{L}}$ must equal V_{R}

$$
0=L \frac{d i(t)}{d t}-i(t) R
$$

Solving Resistor Inductor Circuits

4(b) To solve assume an exponential type decay of the current

$$
i(t)=I_{0} \exp (s t)
$$

Where $\mathrm{I}_{0}=$ the initial current at $\mathrm{t}=0+$
$\mathrm{s}=$ inverse of the time constant of the exp

- Then substituting into the differential equation

$$
\begin{gathered}
0=L \frac{d i(t)}{d t}-i(t) R=L \frac{d}{d t} I_{0} \exp (s t)-I_{0} R \exp (s t) \\
0=L s I_{0} \exp (s t)-I_{0} R \exp (s t)
\end{gathered}
$$

- Then divide out the exponential and I_{0} terms
- This results in the "Characteristic Equation"

$$
0=L s+R
$$

- The time constant becomes for RL circuits

$$
\tau=-\frac{1}{s}=\frac{L}{R}
$$

(5) Solving for the initial conditions: at time $t=0$

- At $\mathrm{t}=0$ - inductor acts as a short (assuming V applied for long time) - From KVL initial current in L must be set by V_{0} and R

$$
i(t=0)=I_{0}=\frac{V_{0}}{R}
$$

- Thus have both initial current and known exponential decay

Example Inductor Decay up to Current

- Consider a 10 V source is suddenly placed in series with RL
- $\mathrm{L}=5 \mathrm{H}$ inductor and $\mathrm{R}=100 \Omega$ resistor
(3) Writing the KVL then
- Because I is increasing both L and R oppose current change

$$
V_{0}=L \frac{d i(t)}{d t}+i(t) R
$$

- Assuming an exponential type solution then assume:

$$
i(t)=I_{0}[1-\exp (s t)]
$$

- Why - know that must go to a steady state current
- But be zero at time zero.
- Substituting this in gives

$$
V_{0}=-L \frac{d i(t)}{d t}-i(t) R=L \frac{d}{d t} I_{0} \exp (s t)+I_{0} R[1-\exp (s t)]
$$

$$
V_{0}=-L s I_{0} \exp (s t)+I_{0} R[1-\exp (s t)]
$$

Example Inductor Decay up to Current Con'd

- When time goes to infinity the inductor acts as a short.

$$
i(t \rightarrow \infty)=\frac{V_{0}}{R}=\frac{10}{100}=10 \mathrm{~mA}
$$

- Thus the exponential must decay to zero as $\mathrm{t} \rightarrow \infty$

$$
\begin{gathered}
0=L s+R \\
s=-\frac{L}{R}
\end{gathered}
$$

- The time constant is

$$
\begin{aligned}
& \tau=\frac{1}{s}=\frac{L}{R}=\frac{5}{100}=50 \mathrm{~m} \mathrm{sec} \\
& i(t)=10\left[1-\exp \left(-\frac{t}{0.05}\right)\right]
\end{aligned}
$$

$$
t \rightarrow
$$

Signal Processing Circuits: Signal Waveforms (EC 10.1)

- Time response analysis of circuit
- response to a time varying input signal
- Several common types of input signals
- Direct current (DC), or continuous: unvarying in time
- Step function: sudden change in DC level: only once
- Exponential decays or increase: only for some time
- Periodic signals: repeat with some period in time
- Pulsed: repeatitive change in DC values
- Sinusoidal: general Alternating Current signal
- Sawtooth (ramp): linear increase in time to max, then drop.

Figure 3.1 Common signal waveforms.

Differentiating Circuits (EC7)

- A capacitor followed by a resistor
- If the RC time constant is short relative to period of any signal
- The capacitor dominates, changes the current to:

$$
i(t) \approx C \frac{d V_{i n}}{d t}
$$

- This occurs independent of the waveform
- Thus the voltage across the resistor becomes

$$
V_{o u t}=V_{R}=i(t) R
$$

- Thus get the derivative of the signal

Integrating Circuits

- Resistor followed by as capacitor
- If the RC time constant is long relative to period
- The resistor dominates the voltage drop and

$$
i(t)=\frac{V_{i n}}{R}
$$

- The voltage across the capacitor becomes

$$
V_{\text {out }}=V_{c}=\frac{1}{R C} \int V_{\text {in }} d t
$$

- This occurs independent of the waveform
- Thus get the integral of the signal

