Transfer Characteristics

e Often define circuits by their ""Transfer Characteristics"
e Apply an input voltage to one side of a circuit

e Output voltage measured across some part of the circuit

e Transfer characteristics: Plots the output against input

e Thus that state what the output will be for any input
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Op Amp Integrator

e Recall resistor followed by a capacitor RC integrator
e If the RC time constant is long relative to period

e The resistor dominates the voltage drop and

¢ The voltage across the capacitor becomes the integral
e Consider an inverting op amp circuit

e But replace R with a capacitor C¢

e Since summing point SP = a virtual ground.
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e As with the regular inverting op amp

e For the following capacitor then the current is
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Op Amp Integrator Cont'd

e Since there can be no current through the op amp
. =1,
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e Thus the voltage across the output capacitor is
1

V: = V., dt
f RSCfI in
e Since
Vour =V
e Thus the op amp output voltage is
1
=————|V, dt
out RSCfJ in

e Where t = R,C; = time constant of RC circuit

e However the op amp supplies the current

¢ And the summing point is a ground

e Thus RC need not be longer than the input period.
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Op Amp Integrator Single Pulse Input

e Consider an op amp integrator circuit for a single square pulse
e 4V for 10 ms duration

e \What is the response?

e Assuming C is initially uncharged then

r=R,C; =5000x107° =5 msec
e During the pulse; t <10 msec
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o After the pulse t =10 msec for all times
e Because only period when input current flows is important

V,, =[-800tp% = -8V

e Op amp will maintain this
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Op Amp Integrator For a Single Pulse

¢ Result: slope to a constant value of 8 V
e Falling edge of pulse does not matter
e Only the period of voltage input
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Op Amp Integrator for a Stream of Pulses
e For a stream of pulses period T
e \When period T < RC get a triangle wave output
e Negative voltage gives positive rising edge
e Slope of out wave is

out —

e Input of positive voltage starts decreasing voltage portion
e Called a sawtooth wave or triangular wave output




Op Amp Capacitive Differentiator

e Can change the op amp circuit to a Differentiator

e Exchange the resistor and capacitor

e Have the capacitor on the input, resistor as feedback

¢ \Want RC time constant short relative to period of any signal
e For the feedback side

e Recall that for a capacitor
dt

e Since the summing point SP is a ground this equation is exact
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Op Amp Capacitive Differentiator Output

e Again for inverting op amp circuits

Iszlf Vf :_Vout

e Thus the output becomes
Vout — _Rf Iin — _Rsz dVin
dt

e Where t = R;C; is the time constant of the RC circuit.
¢ Note the response time of op amp limits the operation
eEven if RC is very small
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Op Amp Capacitive Differentiator & Stream of Pulses

e Thus for a string of pulses (square wave)

e Get a sudden change called an impulse

e Direction opposite to that of falling/rising edge

¢ Followed by an exponential decay

e Decay is as capacitor charges/discharges

e Decay time set by the RC time constant

e Other waveforms integrated eg sin wave gives cos wave
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Second Order Systems (EC 8)

e Second Order circuits involve two energy storage systems
e Create second order Differential Equations

e Transfer of energy from one storage to another and back again
e In circuits Resistors, Inductors and Capacitors

e Called RLC circuits

e L stores energy in Magnetic field from the current

e C stores energy in Electric field from stored charge

e As L discharges energy from B field it is stored in C

¢ As C discharges charge it is stored in L

e Resistor is always loosing energy

e Eg. series Voltage source, Resistor, Inductor and Capacitor
¢ Also parallel RLC (equations different)
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Damped Spring DE (EC 8)

e Math often uses the damped spring with weight for 2" order DE
2

m d dy

dt dt

Where  m=mass of weight
c=damping constant
k=spring constant
y=vertical displacement
e Energy is stored in momentum of weight
e Energy also in position of spring
e Energy lost in damping pot

2y+c +ky =0
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Solution of Second Order Systems

e General solution to Second Order circuits
e Proceeds similar to First Order Circuits

(1) Use Kirchhoff's laws for circuit equation
(2) Manipulate to get | or V in terms of derivatives in time

(3) Generate the "Differential Equation form"
e also called "Homogeneous equation form"

(4) Solve the Differential Equation:

e Solution substitution method: assume a solution

e For step change assume exponential type solution.

e Second order equations generally have two solutions
e Response is combination of both solutions

(5) Use initial or final conditions for constants of integration
e Conditions may include derivatives at those times
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Solution of Series RLC Second Order Systems

e Consider a series RLC with voltage source suddenly applied
e For series RLC used KVL
e Note for parallel will use KCL

(1) Using KVL to write the equations:

V, = Lﬂ+iR+1jidt
dt Cs

(2) Want full differential equation
e Differentiating with respect to time
0= Lﬂ + di R+ ii
dt® dt C

(3) This is the differential equation of second order
e Second order equations involve 2nd order derivatives
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Comparison of RLC and Damped Spring DE (EC 8)

e Looking at the damped spring with weight 2" order DE
2

m d dy

dt dt

Where  m=mass of weight

c=damping constant

k=spring constant

y=vertical displacement
e Energy is stored in momentum of weight and spring
e For the RLC series the DE is

). .
L ai +R a + 1 =0
dt> dt C

e Current i is related to the displacement y
e L is equivalent to the momentum energy stored m
¢ 1/C is equivalent to the spring constant k
¢ R is equivalent to the damping loss c

2y+c +ky=0
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