
Transfer Characteristics 
 
• Often define circuits by their "Transfer Characteristics" 
• Apply an input voltage to one side of a circuit 
• Output voltage measured across some part of the circuit 
• Transfer characteristics: Plots the output against input 
• Thus that state what the output will be for any input 
 

 
 



Op Amp Integrator 
 
• Recall resistor followed by a capacitor RC integrator 
• If the RC time constant is long relative to period 
• The resistor dominates the voltage drop and 
• The voltage across the capacitor becomes the integral 
• Consider an inverting op amp circuit 
• But replace Rf with a capacitor Cf 
• Since summing point SP = a virtual ground. 
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• As with the regular inverting op amp 
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• For the following capacitor then the current is  
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Op Amp Integrator Cont'd 
 
• Since there can be no current through the op amp 
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• Thus the voltage across the output capacitor is  
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• Since 
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• Thus the op amp output voltage is 
 

∫−= dtV
CR

V in
fs

out
1  

 

• Where τ = RsCf = time constant of RC circuit 
• However the op amp supplies the current  
• And the summing point is a ground 
• Thus RC need not be longer than the input period. 
 

 
 



Op Amp Integrator Single Pulse Input 
 
• Consider an op amp integrator circuit for a single square pulse 
• 4 V for 10 ms duration 
• What is the response? 
• Assuming C is initially uncharged then 
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• During the pulse; t <10 msec  
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• After the pulse t =10 msec for all times 
• Because only period when input current flows is important 
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• Op amp will maintain this  
 

 
 



Op Amp Integrator For a Single Pulse 
 
• Result: slope to a constant value of 8 V 
• Falling edge of pulse does not matter 
• Only the period of voltage input 
 

 



Op Amp Integrator for a Stream of Pulses 
• For a stream of pulses period T 
• When period T < RC  get a triangle wave output 
• Negative voltage gives positive rising edge 
• Slope of out wave is  
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• Input of positive voltage starts decreasing voltage portion 
• Called a sawtooth wave or triangular wave output 
 

 
 



Op Amp Capacitive Differentiator 
 
• Can change the op amp circuit to a Differentiator  
• Exchange the resistor and capacitor 
• Have the capacitor on the input, resistor as feedback  
• Want RC time constant short relative to period of any signal 
• For the feedback side 
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• Recall that for a capacitor 
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• Since the summing point SP is a ground this equation is exact 
 

 
 



Op Amp Capacitive Differentiator Output 
 
• Again for inverting op amp circuits 
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• Thus the output becomes 
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• Where τ = RfCs is the time constant of the RC circuit. 
• Note the response time of op amp limits the operation 
• Even if RC is very small 
 

 
 



Op Amp Capacitive Differentiator & Stream of Pulses 
 
• Thus for a string of pulses (square wave) 
• Get a sudden change called an impulse 
• Direction opposite to that of falling/rising edge 
• Followed by an exponential decay 
• Decay is as capacitor charges/discharges 
• Decay time set by the RC time constant 
• Other waveforms integrated eg sin wave gives cos wave 

 

 



Second Order Systems (EC 8) 
 
• Second Order circuits involve two energy storage systems 
• Create second order Differential Equations 
• Transfer of energy from one storage to another and back again 
• In circuits Resistors, Inductors and Capacitors 
• Called RLC circuits 
• L stores energy in Magnetic field from the current 
• C stores energy in Electric field from stored charge 
• As L discharges energy from B field it is stored in C 
• As C discharges charge it is stored in L 
• Resistor is always loosing energy 
• Eg. series Voltage source, Resistor, Inductor and Capacitor 
• Also parallel RLC (equations different) 

 

 
 



Damped Spring DE (EC 8) 
 
• Math often uses the damped spring with weight for 2nd order DE  
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Where  m=mass of weight 
c=damping constant 
k=spring constant 
y=vertical displacement 

• Energy is stored in momentum of weight  
• Energy also in position of spring 
• Energy lost in damping pot 
 
 

 

 
 
 



Solution of Second Order Systems 
 
• General solution to Second Order circuits  
• Proceeds similar to First Order Circuits 
 
(1) Use Kirchhoff's laws for circuit equation 
 
(2) Manipulate to get I or V in terms of derivatives in time 
 
(3) Generate the "Differential Equation form" 
• also called "Homogeneous equation form" 
 
(4) Solve the Differential Equation: 
• Solution substitution method: assume a solution 
• For step change assume exponential type solution. 
• Second order equations generally have two solutions 
• Response is combination of both solutions 
 
(5) Use initial or final conditions for constants of integration 
• Conditions may include derivatives at those times 
 

 
 



Solution of Series RLC Second Order Systems 
 
• Consider a series RLC with voltage source suddenly applied 
• For series RLC used KVL 
• Note for parallel will use KCL 
 
(1) Using KVL to write the equations: 
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(2) Want full differential equation 
• Differentiating with respect to time 
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(3) This is the differential equation of second order 
• Second order equations involve 2nd order derivatives 
 

 
 



Comparison of RLC and Damped Spring DE (EC 8) 
 
• Looking at the damped spring with weight 2nd order DE  
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Where  m=mass of weight 
c=damping constant 
k=spring constant 
y=vertical displacement 

• Energy is stored in momentum of weight and spring 
• For the RLC series the DE is  
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• Current i is related to the displacement y 
• L is equivalent to the momentum energy stored m 
• 1/C is equivalent to the spring constant k 
• R is equivalent to the damping loss c 
 
 

 

 

 

 


