Solving the Second Order Systems

e Continuing with the simple RLC circuit
(4) Make the assumption that solutions are of the exponential form:

i(t)= Aexp(st)

e where A and s are constants of integration.
e Then substituting into the differential equation
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Ld—2|+Rﬂ+

Lico
a " dt | C

2
L d°A e><2p(st) L pUA exp(st) +£Aexp(st): 0
dt dt C

Ls® A exp(st)+ RsA exp(st) + é exp(st)=0

¢ Dividing out the exponential for the characteristic equation
Ls? +Rs+~ =0
C

¢ Also called the Homogeneous equation

e Thus quadratic equation and has generally two solutions.
e There are 3 types of solutions

e Each type produces very different circuit behaviour

e Note that some solutions involve complex numbers.




General solution of the Second Order Systems
e Consider the characteristic equations as a quadratic
¢ Recall that for a quadratic equation:
ax’ +bx+c=0

e The solution has two roots

~b++/b?-4ac
2a

e Thus for the characteristic equation

X =

Ls? + Rs+~ =0
C
e Or rewriting this

LC
Thus

a=1 b=

e The general solution is:




General solution Second Order Systems Cont'd

e Second order equations have two solutions
e Usually define
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e The type of solutions depends on the value these solutions
e The type of solution is set by the Descriminant

o-[(2)-2]

R . . . . .
e Recall E IS the time constant of the resistor inductor circuit

e Clearly the descriminate can be either positive, zero, or negative
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3 solutions of the Second Order Systems
¢ \What the Descriminant represents is about energy flows
2
D = (B) _ 1
2L LC

e How fast is energy transferred from the L to the C
e How fast is energy lost to the resistor
e There are three cases set by the descriminant

e D >0 : roots real and unequal
e In electronics called the overdamped case

e D =0 : roots real and equal
e In electronics the critically damped case

e D <0 : roots complex and unequal
e In electronics: the underdamped case: very important

- L=5mH




Second Order Solutions

e Second order equations are all about the energy flow
e Consider the spring case

e The spring and the mass have energy storage

e The damping pot losses the energy

e The critical factor is how fast is energy lost

¢ In Overdamped the energy is lost very fast

e The block just moves to the rest point

e Critically Damped the loss rate is smaller

e Just enough for one movement up and down

e For Underdamped spring moves up and down

e Energy is transferred from the mass to the spring and back again
e Loss rate is smaller than the time for transfer
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Complex Numbers

e Imaginary numbers necessary for second order solutions
e Imaginary number j

=1

e Note: in math imaginary number is called i
e But I means current in electronics so we use j
e Complex numbers involve Real and Imaginary parts

W =R, + jl,
e May designate this in a vector coordinate form:
W =(R,. )
e Example:
W =1+ j2=(2)
Re(W)=1 Im(W) =2




Complex Numbers Plotted

e In electronics plot on X-Y axis

e X axis real, Y axis is imaginary

e A vector represents the imaginary number has length
¢ \Vector has a magnitude M

e \Vector is at some angle 6 to (theta) the real axis

e Then the real and imaginary parts are

Real(W)=R, =M cos(d)
Imaginary(W )= 1, = M sin(8)
W =M [cos(@)+ j sin(8)]

Mag(W )=W| = [(RZ +12)

0= arctan(l—wj
Ry

Thus can give the vector in polar coordinates
W =(M,0)=ML0

e The magnitude

e The angle

Z=VR + Xi
X, A=Zcos 0
rctan " X, = Zsind

(a) (&)

Fig. 25-8 Magnitude and angle of a complex number. (a) Rectangular form.
(b) Polar form.



Complex Numbers and Exponentials

e Polar coordinates are connected to complex numbers in exp
e Consider an exponential of a complex number

W =(M,0)=R,+ jl,
e This is given by the Euler relationship
exp(j@) = [cos(@)+ j sin(0)]
W =M exp(j@)=M|cos(@)+ j sin(8)]

e This relationship is very important for electronics
e Used in second order circuits all the time.




Overdamped RLC

e This is a very common case

e In RLC series circuits this is the large resistor

e Energy loss in the resistor much greater than energy transfers
e Two real roots to the characteristic equation

R (Rjz 1
S=———* || — | -
2L 2L) LC

e The solution is a double exponential decay
i(t)= A exp(st)+ A, exp(s;t)

¢ As R is increased damping increases
e Get the overdamped case

- L=5mH




Overdamped RLC Energy Flows

e For the example case L=5mH, C=2 uF, R =200 Q
e Also assume C ischargedto 10 Vatt=0

e Initially energy starts in the Capacitor C

e Some energy transfers to the Inductor L

¢ C looses charge much faster than L gains current

¢ SO energy starts to rise in L but only to a limited level
e Then energy is removed from both by the resistor

* Simple RLC circuit, overdamping, C charged initially

Date/Time run: 02/24/92 11:15:05 Temperature: 27.0
I e e e e B e S PP XSO DS S G EEE —+
" ' Ener :
: gy .
‘ ' :
sou+ i
] 1
: |
| z
60u + +
] 1
g E ;
! C ;
| ;
40u+ +
: |
| i ;
; |
I I
20u+ +
I EL oL

: .‘H_\_‘__‘___‘_ (=]
OU _________________ T T - T o t
0 Oms 0 Sms 1. 0Oms 1.Sms 2 Oms

o 2e-0%v(1)®v(1)/2 = 0. 005=1 (L1)=i(L1)/2
Time



Overdamped RLC Initial Conditions

e For the overdamped case the s’s are real & different
i(t)=A exp(st)+ A, exp(s,t)

e To solve the constants A need the initial conditions
e For second order need two conditions

e Thus both initial current & its derivative

e This varies from circuit to circuit

e In the case of a charged C switched into the circuit
e Since L acts as an open initially then i(0) = 0, thus

(0)-A+A
e Thus

A =-A
¢ Again since the inductor acts open at time zero & 1(0)=0
e Thus voltage drop across the resistor is zero

_v (o) %i0)
V.(0)=V (0)= L?

di(0) V.(0)

C

dt L

R=:200n
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Overdamped RLC Full Solution

e Now using substituting A equation into the exp equation
i(t)= A exp(st)— A exp(s;t)

e To solve the constants A with the derivative initial condition

ditt) _ Als, exp(st)-s, exp(s,t)]

dt
e Now applying the initial condition derivative
di(t=0 V. (0
HE=0)_ Als, exp(0) 5, exp(0)] = Als —5,]= -
e Now solving the equations
_ V.(0)
AThsl
(0= 0 exp(si) - exp(s, ]
[Sl _ Sz]L 1 2
R=:200n
MWW\,

C — L 5mH




Overdamped RLC Circuit Example

e For the example case L=5mH, C=2 uF, R =200 Q
e Solving for the roots first what are the discriminate values

(Rj: 200 :2><1O“seC‘1:l 7 =50 usec
2L ) 2x0.005 T

. 1 — =10° sec™
LC  0.005x(2x10°°)

D :K R jz i}:[(leo“)z ~10°]=3x10° sec*

2L) LC

e Thus gives

R RY 1 200
S, =——+. || = | ———=——— +/3x10° =—2.68x10° sec
T \/2L LC 2x0005 ' :

R RY 1 200
S, =——— || = | ——— =——"— —/3x10° =-3.73x10" sec™
T \/2L LC 2x0005 ' §
e Thus

p= Vel _ 0 _577x107 A

[s,—s,]L  [1.87x10° +5.87 x10* 0.005

i(t)=5.77 x10~?|exp(— 2.68 x 103) - exp(— 3.73x 10* )| A

R=:200n

MWW,
C —— L5mH




Critical Damped RLC

o If we decrease the damping (resistance) energy loss decreases
e Change the exponential decay until discriminant=0

o) -ie)

(5)2 1
2L LC
e This is the point called critical damping
e Difficult to achieve: only small change in R moves from this point

e Small temperature change will cause that to occur
e Energy transfer from C to L is now smaller than loss in R

R 100n
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Critical Damped RLC Solutions

e The characteristic equation has two identical solutions

e This is a special case, with special solution

i(t)=[A + Axt] exp(— %)

Why this solution?
Given in the study differential equations in math

R loon
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Critical Damped RLC Two Solutions

e The critically damped equation has two solutiosn
: Rt
It)=|A + At|exp| ——
0=+ Atlexs -

e Solution has two possible behaviours depending on A values
¢ The characteristic equation has two identical solutions

e Get only one oscillation (transaction)

e Or get slow approach to final value

e Difference depends on initial conditions only

o If starts with i(t=0) = 0, slow approach to rest value

e If start with i(t=0) = 0, get one oscillation then rest value

e Thus same circuit will have different solutions

e Depending on the initial current conditions & energy storage

R 100n
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Critical Damped RLC Example i(0)=0

e Keeping L & C the same

e If R is increased 100 ohm get critical damping

e HereL=5mH,C=2 pyF, R=100 Q

e Also assume C ischargedto 10 Vatt=0

e Also assume C is charged to 10 V at t = 0 but i(t)=0
e This is the no oscillation case
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Critical Damped RLC, i(t=0) = 0 Energy Plot

e Energy is transferred from Capacitor to Inductor
e Inductor energy is later and higher than overdamped case
e Then both energies decline

# Simple RLC circuit, critical damping, C charged initially
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Critical Damped RLC i(0)=0 Solution

¢ \We define the Damping Decay Constant o

R 100

“ T 2L 2x0.005
e The damping constant gives how fast energy is decaying
¢ The basic Critical Damping equation is

i(t)=[A + At] exp(— %)

e Solving for A constants from the initial conditions
e Since current is at t=0 is zero then

(t=0)=0=[A + A0)exp( - 7] A

2L
. Rt
Iit)=Atexp ——
0= Ao |

e Again since the inductor acts open at time zero
di(0) V,(0)

—=10% sec™

dt L
e Now applying this to the equation

di(t =0) ( Rtj{ Rt} ( RO){ RO}
———=Aexpl — || 1-— [=Aexpl — || 1-— | =
dt A NPT T A T oL |~
e Thus at time t=0 then
v.(0) 10

& L 0.005

i(t):[Azt]exp(

_ %j = 2000 t exp(-10°t) A



Critical Damped RLC, i(t=0) = 0 Voltage Plot

e Capacitor voltage starts at 10 V and declines
e Inductor voltage starts at 10 V then reverses & declines
e Resistor voltage starts at zero, rises to peak above V. then declines

% Simple RLC circuit, critical damping, C charged initially
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Critical Damped RLC, i(t=0) = 0 Current Plot

e Current rises to peak due to A,t term
e Then current declines near exponential with o,

i(t)=[Adt] exp( Rtj - 2000 t exp(-10%t) A

¥ Simple RLC circuit, critical damping, C charged initially
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Critical Damped RLC, i(t=0) 0

e Now consider the case when i(t=0) is non zero

e The practical case is when capacitor is uncharged
e But inductor has current flowing in it

¢ The equation has both constants nonzero

i(t)=[A + At] exp(— %)

e Again the example have L=5mH, C=2 uF, R =100 Q
e Now assume L initially carries 100 mA at t = 0, thus

i(t=0)=1,=A =100 mA

e Since C acts as a short at time t=0 thus V¢(t=0) =0
e Then the only voltage drop is across the resistance

|0R+Ldi(t:0)=o
di(t=0) IR
d L
‘ R 1000
N, |
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Critical Damped RLC, i(t=0) # 0 Equation

e Now for the derivative of the equation

%(tt) = {Az +[A + Azt](— Z_RLJ} exp[— %j

e For the initial conditions

e R

e Relating this to the resistance
di(t =0) A _Rlo _ IR

d 2 2L L

RI, 100x0.1
A2 = = —

oL 2x0.005

e Thus the critically damped i(t=0)=0 current equation is

i(t)=[A + Ajt] exp(— %) =[0.1-1000 t] exp(— 1o4t) A

=-1000 A

e Thus the current will reverse direction at t=0.1 msec.
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Critical Damped RLC, i(t=0) # 0 Current Plot

e Current reaches zero at t=0.1 msec
e Reverses, reaches peak at t=0.2 msec then declines

i(t)=[A, + At] exp( j ~[0.1-1000 t]exp(- 10%t) A

_Rt
2L

¥ Simple RLC circuit, critical damping, initial L current
Date/Time run: 02/27/92 02:18:07 Temperature: 27.0




Critical Damped RLC, i(t=0) # 0 Energy Plot

e Inductor energy falls to minimum at t=0.1 msec
e Energy is transferred from L to C and back to L

* Simple RLC circuit, critical damping, initial L current
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Critical Damped RLC, i(t=0) # 0 Energy Plot Expanded

e Capacitor energy reaches max when E, is minimum
e Then Inductor energy rises again
¢ Both energies decay

¥ Simple RLC circuit, critical damping, initial L current

Date/Time run: 02/24/92 11:19:21 Temperature: 27.0
4 Outq--=---- SRR e 3 R b S —+
I I

/) !

I I

| b |

I I

I I
3.0u+t - E; : +
I I

LI C :

1 ’ |

I 1

1 |

1 1

i |

2 Ou+t +
1 o 1

1 1
1.0uts +
o :

I o . :

\ . 1
BVAN ,

0 0u+--"-==--=---=--== Ot f } }
0.0ms 0.5ms 1.0ms 1 Sms 2.0ms

o 2e-6#yv(1)%v(1)/2 = 0 00S=i(L1)=i(L1)/2
Time



Critical Damped RLC, i(t=0) # 0 Voltage Plot

e Inductor voltage starts at 10 V and declines
e Resistor voltage starts at -10 V and rises to zero

¥ Simple RLC circuit, critical damping, initial L current
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Critical Damped RLC, i(t=0) # 0 Voltage Plot Expanded

e Resistor voltage reaches zero at t=0.1 msec

e Capacitor voltage reaches max also at t=0.1 msec

e Inductor voltage falls to zero at t=0.2 msec then goes negative
e Reason V| depends on direction of Current derivative

e Resistor voltage changes to positive, reaches peak then declines

¥ Simple RLC circuit, critical damping, initial L current
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