
Solving the Second Order Systems 
 
• Continuing with the simple RLC circuit 
(4) Make the assumption that solutions are of the exponential form: 
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• where A and s are constants of integration. 
• Then substituting into the differential equation 
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• Dividing out the exponential for the characteristic equation 
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• Also called the Homogeneous equation 
• Thus quadratic equation and has generally two solutions. 
• There are 3 types of solutions 
• Each type produces very different circuit behaviour 
• Note that some solutions involve complex numbers. 

 
 



General solution of the Second Order Systems 
 
• Consider the characteristic equations as a quadratic 
• Recall that for a quadratic equation: 
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• The solution has two roots 
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• Thus for the characteristic equation  
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• or rewriting this 
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• The general solution is: 

LCL
R

L
Rs 1

22

2

−⎟
⎠
⎞

⎜
⎝
⎛±−=  

 
 

 
 



General solution Second Order Systems Cont'd 
 
• Second order equations have two solutions  
• Usually define  
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• The type of solutions depends on the value these solutions 
• The type of solution is set by the Descriminant 
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• Recall 
L
R  is the time constant of the resistor inductor circuit 

• Clearly the descriminate can be either positive, zero, or negative 
 

 
 



3 solutions of the Second Order Systems 
 
• What the Descriminant represents is about energy flows 
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• How fast is energy transferred from the L to the C 
• How fast is energy lost to the resistor 
• There are three cases set by the descriminant 
 
• D > 0 : roots real and unequal 
• In electronics called the overdamped case 
 
• D = 0 : roots real and equal 
• In electronics the critically damped case 
 
• D < 0 : roots complex and unequal 
• In electronics: the underdamped case: very important 
 
 

 
 



Second Order Solutions 
 
• Second order equations are all about the energy flow 
• Consider the spring case 
• The spring and the mass have energy storage 
• The damping pot losses the energy 
• The critical factor is how fast is energy lost 
 
• In Overdamped the energy is lost very fast 
• The block just moves to the rest point 
• Critically Damped the loss rate is smaller 
• Just enough for one movement up and down 
• For Underdamped spring moves up and down 
• Energy is transferred from the mass to the spring and back again 
• Loss rate is smaller than the time for transfer 
 

 
 



Complex Numbers 
 
• Imaginary numbers necessary for second order solutions 
• Imaginary number j 
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• Note: in math imaginary number is called i 
• But i means current in electronics so we use j 
• Complex numbers involve Real and Imaginary parts 
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• May designate this in a vector coordinate form: 
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Complex Numbers Plotted 
 
• In electronics plot on X-Y axis 
• X axis real, Y axis is imaginary 
• A vector represents the imaginary number has length 
• Vector has a magnitude M 
• Vector is at some angle θ to (theta) the real axis 
• Then the real and imaginary parts are 
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• The magnitude  
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• The angle 
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Thus can give the vector in polar coordinates 
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Complex Numbers and Exponentials 
 
• Polar coordinates are connected to complex numbers in exp 
• Consider an exponential of a complex number 
 

( ) ww jIRMW +== θ,
r

 
 
• This is given by the Euler relationship 
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• This relationship is very important for electronics 
• Used in second order circuits all the time. 
 

 
 



Overdamped RLC 
 
• This is a very common case  
• In RLC series circuits this is the large resistor 
• Energy loss in the resistor much greater than energy transfers 
• Two real roots to the characteristic equation 
 

LCL
R

L
Rs 1

22

2

−⎟
⎠
⎞

⎜
⎝
⎛±−=  

 

• The solution is a double exponential decay 
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• As R is increased damping increases 
• Get the overdamped case 
 

 
 



Overdamped RLC Energy Flows 
 
• For the example case L = 5 mH, C = 2 µF, R = 200 Ω 
• Also assume C is charged to 10 V at t = 0 
• Initially energy starts in the Capacitor C 
• Some energy transfers to the Inductor L 
• C looses charge much faster than L gains current 
• So energy starts to rise in L but only to a limited level 
• Then energy is removed from both by the resistor 
 

 



Overdamped RLC Initial Conditions 
 
• For the overdamped case the s’s are real & different 
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• To solve the constants A need the initial conditions 
• For second order need two conditions 
• Thus both initial current & its derivative 
• This varies from circuit to circuit 
• In the case of a charged C switched into the circuit 
• Since L acts as an open initially then i(0) = 0, thus 
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• Again since the inductor acts open at time zero & i(0)=0 
• Thus voltage drop across the resistor is zero 
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Overdamped RLC Full Solution 
 
• Now using substituting A equation into the exp equation 
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• To solve the constants A with the derivative initial condition 
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• Now applying the initial condition derivative 
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• Now solving the equations 
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Overdamped RLC Circuit Example 
 
• For the example case L = 5 mH, C = 2 µF, R = 200 Ω 
• Solving for the roots first what are the discriminate values 
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• Thus gives  
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Critical Damped RLC 
 
• If we decrease the damping (resistance) energy loss decreases 
• Change the exponential decay until discriminant=0 
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• This is the point called critical damping 
• Difficult to achieve: only small change in R moves from this point 
• Small temperature change will cause that to occur 
• Energy transfer from C to L is now smaller than loss in R 
 

 
 



Critical Damped RLC Solutions 
 
• The characteristic equation has two identical solutions 
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• This is a special case, with special solution 
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Why this solution? 
Given in the study differential equations in math 
 

 
 



Critical Damped RLC Two Solutions 
 
• The critically damped equation has two solutiosn 
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• Solution has two possible behaviours depending on A values 
• The characteristic equation has two identical solutions 
• Get only one oscillation (transaction) 
• Or get slow approach to final value 
• Difference depends on initial conditions only 
• If starts with i(t=0) = 0, slow approach to rest value 
• If start with i(t=0) ≠ 0, get one oscillation then rest value 
• Thus same circuit will have different solutions 
• Depending on the initial current conditions & energy storage 
 

 
 



Critical Damped RLC Example i(0)=0 
 
• Keeping L & C the same 
• If R is increased 100 ohm get critical damping 
•  Here L = 5 mH, C = 2 µF, R = 100 Ω 
• Also assume C is charged to 10 V at t = 0 
• Also assume C is charged to 10 V at t = 0 but i(t)=0 
• This is the no oscillation case 
 

 
 



Critical Damped RLC, i(t=0) = 0 Energy Plot 
 
• Energy is transferred from Capacitor to Inductor 
• Inductor energy is later and higher than overdamped case 
• Then both energies decline 
 

 



Critical Damped RLC i(0)=0 Solution 
 
• We define the Damping Decay Constant α 
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• The damping constant gives how fast energy is decaying 
• The basic Critical Damping equation is  
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• Solving for A constants from the initial conditions 
• Since current is at t=0 is zero then 
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• Again since the inductor acts open at time zero 
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• Now applying this to the equation 
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• Thus at time t=0 then 
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Critical Damped RLC, i(t=0) = 0 Voltage Plot 
 
• Capacitor voltage starts at 10 V and declines 
• Inductor voltage starts at 10 V then reverses & declines 
• Resistor voltage starts at zero, rises to peak above Vc then declines 
 

 



Critical Damped RLC, i(t=0) = 0 Current Plot 
 
• Current rises to peak due to A2t term  
• Then current declines near exponential with α 
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Critical Damped RLC, i(t=0) ≠ 0 
 
• Now consider the case when i(t=0) is non zero 
• The practical case is when capacitor is uncharged 
• But inductor has current flowing in it 
• The equation has both constants nonzero 
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• Again the example have L = 5 mH, C = 2 µF, R = 100 Ω 
• Now assume L initially carries 100 mA at t = 0, thus 
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• Since C acts as a short at time t=0 thus VC(t=0) = 0 
• Then the only voltage drop is across the resistance 
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Critical Damped RLC, i(t=0) ≠ 0 Equation 
 
• Now for the derivative of the equation  
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• For the initial conditions 
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• Relating this to the resistance 
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• Thus the critically damped i(t=0)≠0 current equation is  
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• Thus the current will reverse direction at t=0.1 msec. 
 

 
 



Critical Damped RLC, i(t=0) ≠ 0 Current Plot 
 
• Current reaches zero at t=0.1 msec 
• Reverses, reaches peak at t=0.2 msec then declines 
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Critical Damped RLC, i(t=0) ≠ 0 Energy Plot 
 
• Inductor energy falls to minimum at t=0.1 msec 
• Energy is transferred from L to C and back to L 
 

 



Critical Damped RLC, i(t=0) ≠ 0 Energy Plot Expanded 
 
• Capacitor energy reaches max when EL is minimum 
• Then Inductor energy rises again  
• Both energies decay  
 

 



Critical Damped RLC, i(t=0) ≠ 0 Voltage Plot 
 
• Inductor voltage starts at 10 V and declines 
• Resistor voltage starts at -10 V and rises to zero 
 

 



Critical Damped RLC, i(t=0) ≠ 0 Voltage Plot Expanded 
 
• Resistor voltage reaches zero at t=0.1 msec 
• Capacitor voltage reaches max also at t=0.1 msec 
• Inductor voltage falls to zero at t=0.2 msec then goes negative 
• Reason VL depends on direction of Current derivative 
• Resistor voltage changes to positive, reaches peak then declines 
 

 


