Parallel RLC Second Order Systems

- Consider a parallel RLC
- Switch at $\mathrm{t}=0$ applies a current source
- For parallel will use KCL
- Proceeding just as for series but now in voltage
(1) Using KCL to write the equations:

$$
C \frac{d i}{d t}+\frac{v}{R}+\frac{1}{L} \int_{0}^{t} v d t=I_{0}
$$

(2) Want full differential equation

- Differentiating with respect to time

$$
C \frac{d^{2} v}{d t^{2}}+\frac{1}{R} \frac{d v}{d t}+\frac{1}{L} v=0
$$

(3) This is the differential equation of second order

- Second order equations involve 2nd order derivatives

Solving the Second Order Systems Parallel RLC

- Continuing with the simple parallel RLC circuit as with the series (4) Make the assumption that solutions are of the exponential form:

$$
i(t)=A \exp (s t)
$$

- Where A and s are constants of integration.
- Then substituting into the differential equation

$$
\begin{gathered}
C \frac{d^{2} v}{d t^{2}}+\frac{1}{R} \frac{d v}{d t}+\frac{1}{L} v=0 \\
C s^{2} A \exp (s t)+\frac{1}{R} s A \exp (s t)+\frac{A}{L} \exp (s t)=0
\end{gathered}
$$

- Dividing out the exponential for the characteristic equation

$$
s^{2}+\frac{1}{R C} s+\frac{1}{L C}=0
$$

- Giving the Homogeneous equation
- Get the 3 same types of solutions but now in voltage
- Just parameters are going to be different

General Solution Parallel RLC

- Solving the homogeneous quadratic as before

$$
s^{2}+\frac{1}{R C} s+\frac{1}{L C}=0
$$

- The general solution is:

$$
s=-\frac{1}{2 R C} \pm \sqrt{\left(\frac{1}{2 R C}\right)^{2}-\frac{1}{L C}}
$$

- Note the difference from the series RLC

$$
S_{\text {series }}=-\frac{R}{2 L} \pm \sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}}
$$

- Note the difference is in the damping term first term
- Again type of solution is set by the Descriminant

$$
D=\left[\left(\frac{1}{2 R C}\right)^{2}-\frac{1}{L C}\right]
$$

- Recall RC is the time constant of the resistor capacitor circuit

3 solutions of the Parallel RLC

- What the Descriminant represents is about energy flows

$$
D=\left[\left(\frac{1}{2 R C}\right)^{2}-\frac{1}{L C}\right]
$$

- Again how fast is energy transferred from the L to the C
- How fast is energy lost to the resistor
- Get the same three cases \& general equations set by D
- $\mathrm{D}>0$: roots real and unequal: overdamped case
$\bullet \mathrm{D}=0$: roots real and equal: critically damped case
- $\mathrm{D}<0$: roots complex and unequal: underdamped case
- Now the damping term changes

$$
\alpha_{\text {parallel }}=\frac{1}{2 R C}
$$

- For the series RLC it was

$$
\alpha_{\text {series }}=\frac{R}{2 L}
$$

- Recall $\tau=$ RC for the resistor capacitor circuit
- While $\tau=\frac{R}{L}$ for the resistor inductor circuit
- The natural frequency (underdamped) stays the same

$$
\omega_{n}=\frac{1}{\sqrt{L C}}
$$

The difference is in the solutions created by the initial conditions

Forced Response \& RL, RC and RLC Combination

- Natural Response: energy stored then decays
- Forced Response: voltage/current applied
- Forcing function can be anything
- Typical types are steps or sine functions
- Step response: called complete response in book
- Step involves both natural and forced response
- Forced response (Book): after steady state reached
- forced response: when forcing function applied.
- Forcing function: any applied V or I
- Most important case simple AC response

Forced Response

- How does a circuit act to a driving V or I which changes with time
- Assume this is long after the function is applied
- Problem easiest for RC \& RL
- General problem difficult with RLC type
- Procedure: write the KVL or KCL laws
- Equate it to the forcing function $\mathrm{F}(\mathrm{t})$

$$
F(t)=\sum_{j=1}^{n} v_{j}
$$

- Then create and solve Differential Equation

General solution difficult
Two simple Cases important:
(1) Steady V or I applied, or sudden changes at long intervals

- Just need to know how the C or L respond
- In long time C become open, L a short
- Solved as in RL and RC case
- Must have time between changes >> time constants
(2) Sinewave AC over long time
- Solved using the complex Impedance

Complete Response

- Complete response: what happens to a sudden change
- Apply a forcing function to the circuit (eg RC, RL, RLC)
- Complete response is a combination two responses
(1) First solve natural response equations
- use either differential equations
- Get the roots of the exp equations
- Or use complex impedance (coming up)
(2) Then find the long term forced response
(3) Add the two equations

$$
V_{\text {complete }}=V_{\text {natural }}+V_{\text {forced }}
$$

(4) Solve for the initial conditions

Example Complete Response of RL to a step

- Consider an RL circuit with a switched voltage
- This is called a voltage step
(1) From previous results the natural response is:

$$
I(t)_{n a t}=A \exp \left[-\frac{R t}{L}\right]
$$

(2) In the long term the L acts as an short

$$
I(t \rightarrow \infty)_{\mathrm{for}}=\frac{V_{i n}}{R}
$$

(3) Combine the equations

$$
I(t)=\frac{V_{i n}}{R}+A \exp \left[-\frac{R t}{L}\right]
$$

Complete Response of RL Con'd

(4) Solve for instal conditions

At $\mathrm{t}=0+$ no current must flow

$$
\begin{gathered}
0=I(0)=\frac{V_{\text {in }}}{R}+A \exp \left[-\frac{R 0}{L}\right] \\
A=-\frac{V_{\text {in }}}{R}
\end{gathered}
$$

- thus the complete response equation is

$$
I(t)=\frac{V_{i n}}{R}\left(1-\exp \left[-\frac{R t}{L}\right]\right)
$$

Complete Response In General

- General solution difficult
- Two simple Cases important:
(1) Steady V or I applied
- just need to know how the C or L respond
- in long time C become open, L a short
- solved as in RL and RC case
(2) Sinewave AC over long time
- solved using the complex Impedance (EC 10)

Complete Response of Second Order Circuits

- 2 nd order complete response proceedure same as 1 st
- but getting coefficients more complex
(1) First solve natural response equations
- use either differential equations
- or impedance method (next section)
(2) Then find the long term forced response
- for sudden DC changes get steady state results
(3) Add the two equations

$$
I_{\text {complete }}=I_{\text {natural }}+I_{\text {forced }}
$$

(4) Solve for the inital conditions.

- must use intial conditions
- For current need both

$$
I(t=0+) \quad \frac{d I(t=0+)}{d t}
$$

- similar requirements for Voltage

Complete Response of series RLC to a Voltage step

- Consider an RLC circuit with a switched voltage
- Find the voltage across the capacitor
(1) From previous results for the natural response:
- in terms of the solution s of this impedance then

$$
I(t)_{n a t}=A_{1} \exp \left(s_{1} t\right)+A_{2} \exp \left(s_{2} t\right)
$$

- where s' are the roots of the homogeneous equation
(2) In long term, L acts as an short, C open

$$
I(t \rightarrow \infty)_{\mathrm{for}}=0
$$

(3) Combine the equations

$$
I(t)_{n a t}=A_{1} \exp \left(s_{1} t\right)+A_{2} \exp \left(s_{2} t\right)
$$

Complete Response of RLC series Con'd

(4) Solve for inital conditions

At $\mathrm{t}=0+$ no current must flow, L open

$$
\begin{gathered}
0=I(0)=A_{1} \exp \left(s_{1} 0\right)+A_{2} \exp \left(s_{2} 0\right) \\
A_{1}=-A_{2}
\end{gathered}
$$

- Also need the derivative at $t=0+$
- noting that L is open an C uncharged then

$$
V_{i n}=L \frac{d i}{d t}
$$

- thus:

$$
\begin{gathered}
\frac{V_{i n}}{L}=A\left[s_{1} \exp \left(s_{1} 0\right)-s_{2} \exp \left(s_{2} 0\right)\right] \\
A=\frac{V_{i n}}{L\left(s_{1}-s_{2}\right)}
\end{gathered}
$$

- the exact form depends on the type of roots.

Complete Response of RLC series Con'd

- if roots are complex then

$$
s_{1}=-\alpha+j \omega \quad s_{2}=-\alpha-j \omega
$$

- and the coefficient is

$$
A=\frac{V_{i n}}{L\left(s_{1}-s_{2}\right)}=\frac{V_{i n}}{j L 2 \omega}
$$

- since

$$
\begin{gathered}
\sin (\omega t)=\frac{1}{2 j}[\exp (j \omega t)-\exp (-j \omega t)] \\
I(t)_{n a t}=\frac{V_{\text {in }}}{L \omega} \exp (-\alpha t) \sin (\omega t)
\end{gathered}
$$

- How to solve complete responce for AC sources
- Need the complex impedance methods

Sinusoidal waves

- Most circuits involve periodic signals
- Most common are made of sinusoidal waves

$$
a(t)=A_{0} \cos (\omega t+\alpha)
$$

Where

$$
a(t)=\text { signal at time } t
$$

$A_{0}=\max$ signal or amplitude
$\omega=$ (omega) radial frequency, radians/sec.
$\mathrm{t}=$ time in sec.
$\alpha=$ phase shift angle in radians (also $\phi:$ phi)

- radial frequency related to the regular frequency f by

$$
\omega=2 \pi f
$$

- The period of the wave is

$$
T=\frac{1}{f}=\frac{2 \pi}{\omega}
$$

Sin waves

- can relate a cos wave to a sin wave via

$$
a(t)=A_{0} \cos (\omega t+\alpha)=A_{0} \sin \left(\omega t+\alpha+\frac{\pi}{2}\right)
$$

- sine wave: phase shifted by 90 degrees from cos

In each graph x is in radians.

$5.23 y=\cos x$

Projection of Cos wave

- Useful to regard wave as a rotating vector
- rotating vector is called a phasor
- Period of rotation

$$
\text { period }=\frac{2 \pi}{\omega}
$$

- instanteous value $=$ projection on x axis of vector

Figure 3.8 Projections of a rotating line.

- Call electrical signals of this type "Alternating Current"

Example of sinusoidal wave

- Example: a 60 Hz wave has its maximum at 2.08 msec .
- find the wave formula
- first find the radial frequency

$$
\omega=2 \pi f=2 \pi 60=377 \mathrm{rads} / \mathrm{sec}
$$

- to find the phase displacement:
- note for cos wave max occurs at

$$
(\omega t+\alpha)=0
$$

Thus

$$
\begin{aligned}
\alpha & =-\omega t=377 \times 2.08 \times 10^{-3}=-0.784 \mathrm{rads}=-\frac{\pi}{4} \\
& =-0.784 \times \frac{360}{2 \pi}=-45 \mathrm{deg}
\end{aligned}
$$

Periodic Waveforms

- Any shape of wave is periodic if it has a function

$$
f(t)=f(t+n T)
$$

where

$$
\begin{aligned}
& \mathrm{t}=\text { time in sec } \\
& \mathrm{T}=\text { period }=1 / \mathrm{f} \\
& \mathrm{n}=\text { any integer }
\end{aligned}
$$

- NOTE: it can be shown that any periodic wave: can be made up of a series of sinusoidal waves

Complete Response

- Combines both natural and forced response
- Complete response: what happens to a sudden change
- e.g. Suddenly close a switch
- response is:

$$
V_{\text {complete }}=V_{\text {natural }}+V_{\text {forced }}
$$

Initial Underdamped Second Order Systems Con'd

- for the example case $\mathrm{L}=5 \mathrm{mH}, \mathrm{C}=2 \mu \mathrm{~F}, \mathrm{R}=10$ ohms
- Exposed to a square wave: 0 to 1 V changes.
- as solved in the RCL underdamped example

$$
\begin{aligned}
i(t) & =A_{1} \exp (-\alpha t) 2 j \sin (\omega t) \\
A_{1}=\frac{V_{c}}{2 j \omega L} & =\frac{1}{2 j x 9.95 \times 10^{3} \times 0.005}=\frac{20}{2 j} m A
\end{aligned}
$$

The 2 j term is eliminates that from the \sin function

$$
i(t)=20 \exp \left(-10^{3} t\right) \sin \left(9.95 \times 10^{3} t\right) m A
$$

Complex numbers

- Imaginary number j

$$
j=\sqrt{-1}
$$

- Note: in math imaginary number is called i - complex numbers involve real and imaginary parts

$$
\vec{W}=\operatorname{Real}(W)+j \operatorname{Imaginary}(W)
$$

Example:

$$
\vec{W}=1+j 2
$$

$$
\operatorname{Real}(W)=R_{W}=1 \quad \operatorname{Imaginary}(W)=I_{W}=2
$$

- often put as

$$
\vec{W}=R_{W}+j I_{W}
$$

Complex Numbers Plotted

- In electronics plot on X-Y axis
- X axis real, Y axis is imaginary
- A vector represents the imaginary number has length
- Vector has a magnitude M
- Vector is at some angle theta to the real axis
- Then the real and imaginary parts are

$$
\begin{gathered}
\operatorname{Real}(W)=R_{W}=M \cos (\theta) \\
\operatorname{Imaginary}(W)=I_{W}=M \sin (\theta) \\
\vec{W}=M[\cos (\theta)+j \sin (\theta)]
\end{gathered}
$$

- The magnitude

$$
\text { Magnitude }(W)=\left(R_{W}^{2}+I_{W}^{2}\right)^{1 / 2}
$$

- And the angle is

$$
\theta=\arctan \left(\frac{I_{W}}{R_{W}}\right)
$$

Complex Numbers and Exponentials

- What do complex numbers mean inside an exponential?
- Euler's Formula defines

$$
\exp (j \theta)=\cos (\theta)+j \sin (\theta)
$$

- thus

$$
\begin{aligned}
& \cos (\theta)=\frac{1}{2}[\exp (j \theta)+\exp (-j \theta)] \\
& \sin (\theta)=\frac{1}{2 j}[\exp (j \theta)-\exp (-j \theta)]
\end{aligned}
$$

- Thus can represent a complex number as:

$$
\vec{W}=M \exp (j \theta)
$$

- called the exponential or polar form.
- can be shown as

$$
\vec{W}=M / \underline{\theta}
$$

Polar Coordinate System

- Rectangular (Cartesian or X-Y) Coordinates:
- Coordinates in terms of X and Y projection
- Polar Coordinates: specify in radius R, \& angle θ
- Translation from Polar to Rectangular

$$
\begin{aligned}
& x=R \cos \theta \\
& y=R \sin \theta
\end{aligned}
$$

- Translation form Rectangular to Polar

$$
\begin{aligned}
|R| & =\left[x^{2}+y^{2}\right]^{0.5} \\
\theta & =\arctan \left[\frac{y}{x}\right]
\end{aligned}
$$

- Many Calculators have Rectangular to Polar conversion
- Use those for fastest complex operations
- Some also have special complex operations

(a)

$R=Z \cos \theta$ $X_{L}=Z \sin \theta$
(b)

Fig. 25-8 Magnitude and angle of a complex number. (a) Rectangular form. (b) Polar form.

Complex Arithmetic

- Complex numbers behave like vectors.
- Adding or subtracting:
complex and real added (subtracted) separately

$$
\begin{aligned}
& (a+j b)+(c+j d)=(a+c)+j(b+d) \\
& (a+j b)-(c+j d)=(a-c)+j(b-d)
\end{aligned}
$$

- Multiplication of complex numbers easiest with Polar

$$
R_{1} \exp \left(-j \theta_{1}\right) R_{2} \exp \left(-j \theta_{2}\right)=R_{1} R_{2} \exp \left(-j\left[\theta_{1}+\theta_{2}\right]\right)
$$

- Division using the real and imaginary parts

$$
(a+j b)(c+j d)=(a c-d b)+j(a d+b c)
$$

- Division of complex numbers much easier with Polar

$$
\frac{R_{1} \exp \left(-j \theta_{1}\right)}{R_{2} \exp \left(-j \theta_{2}\right)}=\frac{R_{1}}{R_{2}} \exp \left(-j\left[\theta_{1}-\theta_{2}\right]\right)
$$

- Division using the real and imaginary parts
- for this bring the divisor to a real number

$$
\begin{aligned}
\frac{(a+j b)}{(c+j d)} & =\frac{(a+j b)}{(c+j d)} \frac{(c-j d)}{(c-j d)} \\
& =\frac{(a c+b d)+j(b c-a d)}{c^{2}+d^{2}}
\end{aligned}
$$

Example Complex Arithmetic

- Addition

$$
\begin{gathered}
A=3+5 j \quad \text { and } \quad B=5+10 j \\
A+B=(3+5)+(5+10) j=8+15 j
\end{gathered}
$$

In polar form

$$
\begin{gathered}
\theta=\arctan \left[\frac{10}{8}\right]=61.9^{\circ} \\
|A+B|=\left[8^{2}+15^{2}\right]^{0.5}=17 \\
A+B=17 / 61.9^{\circ}
\end{gathered}
$$

- Multiplication and Division

$$
\begin{gathered}
C=3+4 j=5 / \underline{53.1^{o}} \\
D=24+7 j=25 / \underline{16.3^{o}} \\
C \times D=5 \times 25 / \underline{53.1^{o}+16.3^{o}}=125 / \underline{69.4^{o}}=44+117 j \\
\frac{C}{D}=\frac{25}{5} / \underline{16.3^{o}-53.1^{o}}=5 / \underline{-36.8^{o}}=4-3 j
\end{gathered}
$$

Rotating vectors or Phasors

- What if we have an exponential dependent on time

$$
\vec{W}=M \exp [j(\omega t+\theta)]
$$

where $t=$ the time

- Consider this to vector, length \mathbf{M}
- it is rotating about the complex axis
- its angular velocity of rotation is $\omega \mathrm{t}$

$$
\exp (j[\omega t+\theta])=\cos (\omega t+\theta)+j \sin (\omega t+\theta)
$$

- This is the representation of a sine wave of frequency
- the real portion is the measured value of the wave t

$$
\operatorname{Real}[\exp (j[\omega t+\theta])]=\cos (\omega t+\theta)
$$

- the phase factor is θ
- the imaginary portion:
where the phasor is at a given instance

$$
\operatorname{Imaginary}[\exp (j[\omega t+\theta])]=j \sin (\omega t+\theta)
$$

Example Phasor formula

- What is the complex phasor representation for 60 Hz sine wave 12 V peak with a 45 degree phase delay and what is its value at $t=2.08 \mathrm{msec}$
- for the phase delay

$$
\theta=\frac{\pi}{4}
$$

- the angular frequency is:

$$
\omega=2 \pi f=2 \pi 60=377
$$

- thus the phasor representation is

$$
V(t)=12 \exp \left[j\left[377 t+\frac{\pi}{4}\right]\right]
$$

Example Phasor formula Con'd

- at $\mathrm{t}=2.08 \mathrm{msec}$ value is

$$
V(t=2.08)=12 \exp \left(j\left[377 \times 2.08+\frac{\pi}{4}\right]\right)=12 \exp \left[j\left[\frac{\pi}{4}+\frac{\pi}{4}\right]\right)
$$

- the real value is:

$$
\operatorname{Real}[V(t=2.08)]=12 \cos \left(\frac{\pi}{2}\right)=0
$$

- the imaginary value (out of phase portion of wave)

$$
\operatorname{Imaginary}[V(t=2.08)]=12 \sin \left(\frac{\pi}{2}\right)=12
$$

- thus as expected this is the zero point of the wave

