## Time Average

- For periodic waves time average important
- What is the function averaged over its period

$$f_{av} = \frac{1}{T} \int_{t}^{t+T} f(t)dt$$

• For current

$$I_{av} = \frac{1}{T} \int_{t}^{t+T} i(t)dt$$

• Note that the total charge transferred is

$$Q = I_{av}T$$

• Often need the time average voltage

$$V_{av} = \frac{1}{T} \int_{t}^{t+T} v(t)dt$$

#### Sine wave time average

• Note: for sin/cos waves the time average is zero

$$f_{av} = \frac{1}{T} \int_{t}^{t+T} F_{0} \cos(\omega t + \alpha) dt = 0$$

• However has value for a half cycle

$$f_{av} = \frac{2}{T} \int_{t-T/4}^{t+T/4} F_0 \cos\left[\frac{2\pi t}{T}\right] dt$$

$$= \left[F_0 \frac{2}{T} \left(\frac{T}{2\pi}\right) \sin\left[\left(\frac{2\pi t}{T}\right)\right]_{-T/4}^{t+T/4}\right]$$

$$= \frac{F_0}{\pi} \left[\sin\left(\frac{\pi}{2}\right) - \sin\left(-\frac{\pi}{2}\right)\right]$$

$$= F_0 \frac{2}{\pi} = 0.637F_0$$

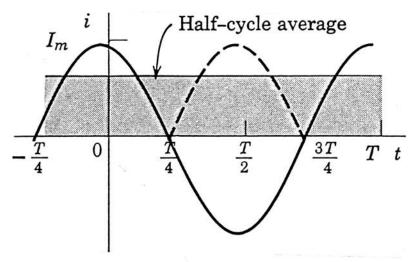


Figure 3.10 The half-cycle average.

### Effective Power in AC signals

- While a sin wave has zero average over cycle
- the power dissipated does not.

$$P = I^2R$$

if the current a sin wave

$$I(t) = I_0 \cos(\omega t)$$

$$P_{av} = \frac{1}{T} \int_{0}^{T} I(t)^{2} R dt = \frac{1}{T} \int_{0}^{T} [I_{0} \cos(\omega t)]^{2} R dt$$
$$= \frac{I_{0}^{2} R}{T} \left[ \frac{t}{2} + \sin(2\omega \frac{t)}{4\omega} \right]_{0}^{T}$$

Since

$$\left[\sin(2\omega\frac{t)}{4\omega}\right]_0^T = \frac{\left[\sin(4\pi) - \sin(0)\right]T}{4\pi} = 0$$

Thus

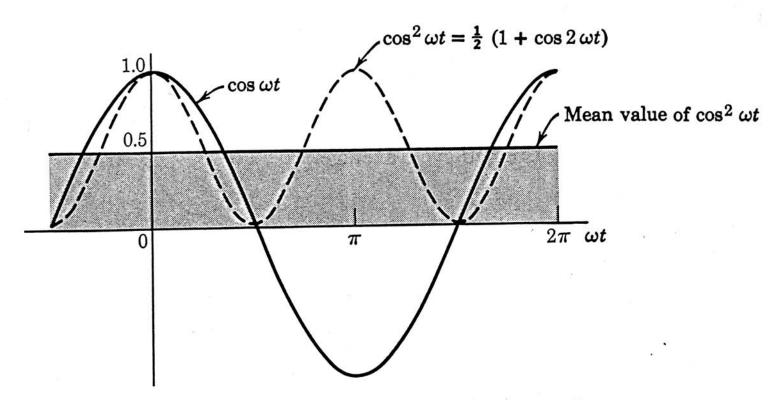
$$P_{av} = \frac{I_0^2 R}{T} \frac{T}{2} = \frac{I_0^2 R}{2}$$

## Effective Current and voltage in AC signals

- For AC signals want the effective I or V
- used for calculating power lost/gained
- Power is dependent on I<sup>2</sup> or V<sup>2</sup>
- Thus want "square root of the time average squared"

$$I_{eff} = \left[\frac{1}{T} \int_{0}^{T} I(t)^{2} dt\right]^{1/2}$$

- called "root mean square" or rms
- RMS value is related to max value by a simple relations
- relationship changes for each type of signal



Calculating the root-mean-square value of a sinusoid.

## RMS Current and voltage in AC signals

• Since for sin waves:

$$I_{mean} = \frac{1}{T} \int_{0}^{T} [I_{\text{max}} \cos(\omega t)]^{2} dt = \frac{I_{\text{max}}^{2}}{2}$$
$$I_{rms} = \left[\frac{I_{\text{max}}^{2}}{2}\right]^{1/2} = \frac{I_{\text{max}}}{\sqrt{2}} = 0.707 I_{\text{max}}$$

• The same relationship holds for voltage

$$V_{rms} = 0.707 V_{max}$$

• Thus the average power is obtained using rms values

$$P_{av} = I_{rms}^2 R = \frac{V_{rms}^2}{R} = I_{rms} V_{rms}$$

- warning: the IV relationship sometimes is wrong:
- depends on the phase relationship (discussed later)
- Standard line AC voltage is given as 120 V<sub>rms</sub> thus

$$V_{\text{max}} = \frac{120}{0.707} = 170 \ V$$

#### RMS non Sine waves

- The relationship changes with the wave shape
- For a sawtooth wave the factor is 0.693

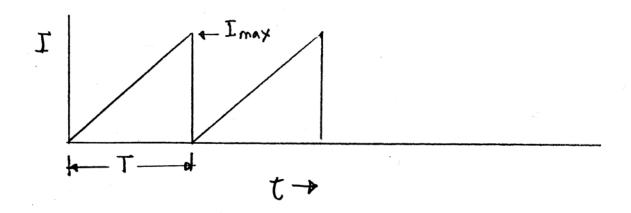
$$I(t) = \frac{I_{\text{max}}}{T}t$$

Thus

$$I_{rms} = \left[\frac{1}{T} \int_{0}^{T} \left(\frac{I_{\text{max}}}{T}t\right)^{2} dt\right]^{\frac{1}{2}}$$

$$= \left[\left(\frac{I_{\text{max}}^{2}t^{3}}{3T^{3}}\right)^{T}\right]^{\frac{1}{2}} = \frac{I_{\text{max}}}{\sqrt{3}}$$

- other waves different
- Older type meters used moving coils
- that measured RMS for a sin wave only
- Newer meters do the rms electronically



#### Impedance, Phasors, and Resistors

- Impedance: the resistance to sine AC current flow
- Define impedance (Z) the same way as resistance:

$$Z = \frac{V}{I}$$

- However now use phasors and complex numbers
- Consider a Resistor attached to an AC source

$$V_1 = V_0 \exp(j\omega t) = V_0[\cos(\omega t) + j \sin(\omega t)]$$

Thus

$$V_R = V_1 = V_0 \exp(j \omega t)$$
$$V_R = V_0 / 0$$

• The current

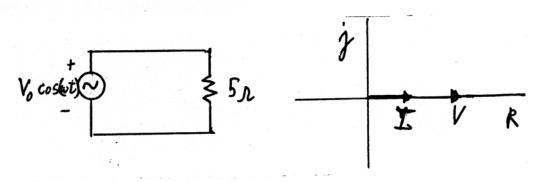
$$\overrightarrow{I}_R = \frac{V_R}{R} = \frac{V_0}{R} \exp(j\omega t)$$

$$\overrightarrow{I}_R = \frac{V_0}{R} \underline{/0}$$

• Thus the Impedance of a resistor is only its R

$$Z_R = \frac{V}{I} = R$$

• Thus the impedance is real here.



#### Voltage and Current from Impedance

• The Impedance acts just like the resistance

$$V = IZ$$
 Power =  $I^2Z = \frac{V^2}{Z}$ 

- However, the multiplication/divisions are complex
- Eg. If a pure 10 V sin wave is applied to a R=5 ohms
- A sin is a cos wave at a -90 degree phase angle

$$V_1 = 10 \exp(j[\omega t - \frac{\pi}{2}]) = 10 / \underline{-90^o}$$

• And the current is

$$I_R = \frac{10}{5} \exp(-j[\omega t - \frac{\pi}{2}]) = 2 / \underline{-90^o}$$

- i.e. a pure real impedance does not change the phasor
- using phasors called working in the "Frequency Domain"

#### Impedance and Inductors

• Recall for an inductor

$$V_L = L \frac{di}{dt}$$

• Thus for the phasor applied sinewave

$$I_1 = V_0 \exp(j \omega t)$$

The resulting voltage across the inductor is

$$V_L = L \frac{di}{dt} = V_0 j \omega L \exp(j \omega t)$$

Since

$$j = \exp(j\frac{\pi}{2}) = 1 / \underline{90^o}$$

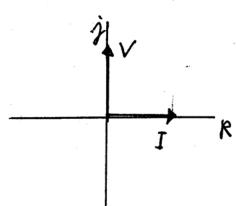
- voltage across an inductor leads the current by 90°
- Get the same effect by defining the complex impedance

$$Z_L = \frac{V_L}{I_L} = j \omega L \text{ ohms}$$

• A purely imaginary impedance is called an Reactance X

$$X_L = Z_L = j \omega L = \omega L / \underline{90^o}$$

• the unites of impedance are still ohms



## Complex Impedance and V, I calculations

• if we want to find the Voltage using impedance

$$V = IZ_L = jI \omega L$$

- thus the voltage is a purely imaginary phasor Another way using the vector form
- Recall the Multiplication of complex numbers in Polar  $R_1 \exp(-j\theta_1) R_2 \exp(-j\theta_2) = R_1 R_2 \exp(-j[\theta_1 + \theta_2])$
- Thus just multiply the magnitudes and add the angles

$$\overrightarrow{C}_3 = \overrightarrow{C}_1 \times \overrightarrow{C}_2 = C_1 / \underline{\theta_1} C_2 / \underline{\theta_2}$$

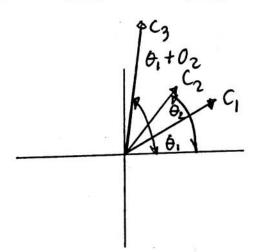
$$C_3 = C_1 C_2$$

$$\theta_3 = \theta_1 + \theta_2$$

$$\overrightarrow{C}_3 = C_1 C_2 / \theta_1 + \theta_2$$

• Thus for the inductance

$$V = I / 0 \omega L / 90^o = \omega LI / 90^o$$



### **Example Impedance of an Inductor**

- Example: what is the impedance of a L = 5 mH
- and Voltage from a current source of
- (a) 10 mA, 60 Hz and (b) 10 mA, 1000 Hz
- The inductive reactance is

$$Z_L = j \omega L$$

• (a) thus at 60 Hz

$$\omega = 2\pi f = 377$$

$$Z_L = j377x \cdot 0.005 = j1885 = 1.89 / 90^{\circ} \text{ ohms}$$

• For the voltage is:

$$I = 10 / 0 \text{ mA}$$
 
$$V_L = IZ_L = 0.01 / 0 1.89 / 90^o = 18.8 / 90^o \text{ mV}$$



#### 6

## Example Impedance of an Inductor con'd

• (b) at 1000 Hz

$$Z_L = j 2\pi f L = j 6283x 0.005 = 31.4 \text{ ohms}$$

• thus the voltage is

$$V_L = IZ_L = 0.01 / 0 31.4 / 90^o = 31.4 / 90^o V$$

- Note the large increase in the reactance and reactive voltage
- Also note the large voltage
- thus as frequency increase takes much larger power supply to drive L to same I

# Power and Inductors (EC 10 )

• Power is given by

$$P = I^2 Z = j I^2 \omega L$$

- Thus power is purely imaginary
- Only real power is important
- Thus inductors take larger power supplies to drive
- But consume no real power

## **Impedance and Capacitors**

• Recall for an capacitor

$$V_C = \frac{1}{C} \int idt$$

• Thus for the phasor applied sinewave

$$I_1 = I_0 \exp(j \omega t)$$

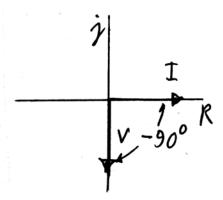
The resulting voltage across the capacitor is

$$V_C = \frac{1}{C} \int idt = I_0 \frac{1}{i \omega C} \exp(i \omega t)$$

Since

$$\frac{1}{i} = -j = \exp(-j\frac{\pi}{2}) = 1 / \underline{-90^o}$$

• voltage across an capacitor lags the current by 90°



#### Impedance and Capacitors Con'd

• Get the same effect by defining the complex impedance

$$Z_C = \frac{V_C}{I_C} = \frac{1}{j\,\omega C} \ ohms$$

• Thus the reactance is

$$X_C = Z_C = \frac{1}{j\omega C} = \frac{1}{\omega C} / \underline{-90^o}$$

- thus the capacitive reactance declines with frequency
- Capacitors act as high frequency shorts!
- Z becomes infinite at DC, thus blocks DC

## **Example Impedance of an Capacitor**

- Example: what is the impedance of a  $C = 2 \mu F$
- and Voltage from a current source of
- (a) 10 mA, 60 Hz and (b) 10 mA, 1000 Hz
- The capacitive reactance is

$$Z_C = \frac{1}{j\omega C}$$

• (a) thus at 60 Hz

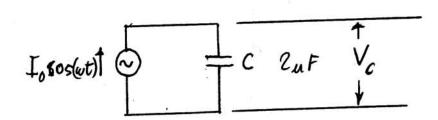
$$\omega = 2\pi f = 377$$

$$Z_C = \frac{1}{j377x2x10^{-6}} = -j1326 = 1326 / \underline{-90^o} \text{ ohms}$$

• For the voltage is:

$$I = 10 / 0 mA$$

$$V_C = IZ_C = 0.01 / 0 1326 / -90^o = 13.26 / -90^o V$$



### Example Impedance of an Capacitor con'd

• (b) at 1000 Hz

$$Z_C = \frac{1}{j6283 \ x \ 2x \, 10^{-6}} = -j79.6 = 79.6 / \underline{-90^o} \ ohms$$

- thus the capacitive reactance declines with frequency
- the voltage is

$$V_C = IZ_C = 0.01 / 0.079.6 / -90^o = 0.79 / -90^o V$$

- Note: large decrease in reactance and reactive voltage
- Also note the large voltage
- thus as frequency increase takes much lower power supply to drive C to same I