Functional Transforms

0 e Ofien transfer impedance circuit to "Frequency Domain"
e Also called the "s" domain
‘@ Mathemtically this is done by Laplace Transform Operator

L{f @)= [ f(¢)exp(-st)dt = F (s)
0

e NOTE: traditionally tranformed function is capitalized
and give as a function of s
e Then can define an inverse tranform operator such that

L7UF ()] =f@)



'Laplace Transforms

e for a step function:

LIf @l = ,[ U—l(l‘ Jexp (—st)dt = _[ lexp (—st)dt = —ls—

e Generally do not integrate
e just look up in transform table

TABLE 15.1

AN ABBREVIATED LiST OF LAPLACE TRANSFORM PAIRS

fO@E>00) " TYPE F(s)
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1
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: w
e~ sin wt (damped sine) GFaf t o
. s+ta
e~ cos wt ' (damped cosine)
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S domain and circuit eiements

° Siniilérly for capacitors

dv(t)
dt

I(s)=L{C } =sCV(s) - CV(0-)

e or in terms of Voltage

|4

e which is what you expect from the impedance relationship
1
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Transfer function: Poles and Zeros

e Recall the Transfer Characteristics:
e Relates the input signal to the output
e can define a Transfer Funcition:

Vout
Y.

in

H =

e which generally will be a complex function of frequency
e Can rewrite the Transfer function in the "s" domain H(s)
e where define

s =jm

e If input is V, output is I then transfer
is admittance

V=1IY H(S)=Y(S)
e If input is I, output is V then transfer
V=IZ H(s)=2Z(s)



Solving Natural Response problems with S domain

e Easily solve natural response with Laplace transforms

e Basic method: using impedances for the Transfer Function
e May be Z or Y or more complex form

e Then make the S domain substitution of

s =jo
e Bring the Numerator and Denominator to polynomials in S
e Actually the Laplace Transform of the circuit
e But with no initial conditions
e General solution: Inverse Transform

e However for many circuits there is a short form.
e To solve we introduce Poles and Zeros concept.

. L iy il
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E Z <jbw = sl




Poles, Zeros of Z an Y

e Recall some frequencies give minimum impedance
e Others give infinite impedance

e In complex math get a new concept:

e zeros, complex frequency where Z(s) = 0

e poles, complex frequency where Z(s) = oo

e then in general get Z of the form

Ag+As +Ays? A s"

By+ Bys + Bys?. B, s™

Z(s)=

e Solve for roots of numerator and denominator separately
e and rewrite this as

' (s - S, 1)(3 - a2)“"(s - San)
Z =
(s) (s =S = Spp)ee(s — Sppy)

e This gives us information about the solution



Poles, Zeros of Z an Y (EC 15.7-15.8)

(s —Sz1)(s = 559).e.(s =S4,
(s —Sp)(s = 8p9).ee(s = Spp,)
e Roots of the numerator (top) generate Zeros
e points where Z = 0
e Roots of denominator (bottom) called Poles

e points where Z becomes infinite.
e since

Z(s)=

_1

Y
e Then poles of Z are the zeros of Y
e The zeros of Z are the poles of Y
e Plotting jw against real

e show poles as x, Zeros as 0

=
pofﬁ' }w
X a+jb

Zero

b

o |

- R

Pofe
X Q 7' b




Laplace Transform Solutions to Transfer Functions

e Consider the transfer function
(s =85 —59)(s —5,)
(5 — 85410 = 549).e(S = Sz, )

T(s)=

e Exact solution using the "Partial Fraction" method
e It can be shown that T(s) can be rewritten in the from:
m K;
T(s)= %

j=1% 7 %4

e where Kj = constants of the fraction
e assumed here that the denominator has a higher s power
e Then use the Inverse Transform relations: most commonly

1
S —a

L—-I

] = exp (—at)

e Hence the general solutions become

T(#)= 3 Liexp(syt)
i=1

e Note: some of these will be complex numbers



Poles, Zeros and Transfer function

e Consider that pole and zero come from transfer function

I=2=vy
Z

e The natural response for current of an applied voltage is

n
I = -Zl Ijexp(sjt)
J =

e where s’s are zeros of Z or poles of Y

e Similarly for Voltages
V=IZ= L
Y
e The natural response for voltage of an applied current is

n
V=3 Vexp(s;t)
Jj=1
e where s’s are poles of Z or zeros of Y



Using Complex Impedance to Natural Response
e The transfer function best be obtained Z or Y

e Thus can solve the behaviour with Z or Y

e Must convert to the transfer function F(s)

e Procedure for S function

(1) Write the Impedance Z or admittance Y of circuit

(2) replace the complex frequency with s
s =j®
(3) Bring s equation to a common denominator

(4) Zeros are in numerator, Poles in Denominator
solve the s equations to find those roots in each

(5) rewrite equation in the form
(s — s —59)(s —5,)

T —
(s) (s =550 = 8550)-.(5 = Sgp,)




Example Series RLC Poles/Zeros __ _ __

e For the simple RLC circuit the Z is

1
Z=R+joL + —
d joC

e For the simple RLC circuit driven by a voltage
vV

Z

e converting the Z to a s function

1
Z(s)=R +sL + —
(s) > sC

e now bring to a common denominator

Lsz+£s+_l_]

L LC

Z(s)=

e This has 2 zeros in denominator, 1 pole from numerator
2 112
R _||R 1
Szeros = "7 T |37l T 7~
2L 2L LC

® plot poles and zeros on graph z . '%—c

2(s) * ¢ L 473k




Example Series RLC Poles/Zeros

e for the example case L = 5 mH, C = 2 uF, R = 10 ohms

2, R L 000552+ 20 5 4 1
Lls L LC] 0.005" " 0.005x2¢10°8
Zs) = s - s

e this is the same quadratic equation as before
e solving for the zeros of the quadratic as before

R 10 4
2L_2xO.005_10

o =

e the damped frequency is:
®? =02 - o’ =108 - 10% = 9.9x 10’
® = 9.95x10°
e Then the solutions are
S1=-0+jo S)=—0—jO

e Using these Zeros combined natural response is
i(t) = Aexp([-a + jolt) + Aexp([—o — jw]¢t)
Zerg ~ ) z( b’)
1w
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Figure 10-4.1 Magnitude function representation on the complex plane.



Poles/Zeros locations and response type
e The location of the poles determines the response type

e for stable systems all responses on left hand side
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Figure 10-4.2 Impulse response characteristics.



Transfer Functions and Frequency Response

e Consider simple RC circuit
e Looking across C the voltage divider is

1
Z .
Yo =7 fz Vi = ;mcl
C TR R+——
joC
Thus the Transfer function is
Vo _ 1
V,  1+j@RC
e in substituting for s in the Transfer function
1
T = — =j
)= T srC it
R
V{/ Tt vo




Transfer Functions and Frequency Response |

e For high frequencies
Vo 1

JORC

0r — 90°

e Thus output decreases by 10 per 10 increase in ®

e At the cutoff or "Break Point" frequency
Real = Imaginary

on =

0™ RC
4 1
| 2| = = —45°
7 5 0, = —4

e Plot Transfer function on log log plot
e Called Bode Plot
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Bode Plots and Frequency Response ' °

e Measure the rate of fall off in terms power loss
e Unite used is the Decibel (dB)

P
dB =10 logw[ ;’“‘]

in

e since

2
p_ V2
VA

e the standard dB formula is

VO

e Any circuit with transfer function like

1
T(s) = ———
) =TT RC

e output drops at 20 dB per decade (10x) frequency
e also express this as 6 dB per octave

e one Octave is a doubling of the frequency

e at the breakpoint output is down by

dB =20 loglo{%] = -3dB

e thus know Bode plot just from Transfer function




Bode Plot of RC with R output

e Now consider RC with output across R

Yo i g o R _ _j@RC
Vo 2Z0+2Zp 1  1+jwRC
R +—
joC
SRC
T(s)= ———
)= T4 sRC

e Note the critical point responses

1
— |
® < - T@s) > oRC 67 — +90°

cooz-él-é- IT(s)I-—)%2 0 — +45°

1
OJ»—RT |T(S)|-~)1 GT'-)OO




Bode Plot of RC with R output |
e Getting Bode Plot from Transfer Function

(1) Terms on Numerator of T(s) generate rising slope
e slope is +20 db per decade above the critical freq.
e starts at the critical frequency ®

e Tends to shift phase +90 degrees

(1) Terms on Denominator of T(s) generate falling slope
e slope is -20 db per decade above the critical freq.
e starts at the critical frequency @,

e Tends to shift phase -90 degrees

e for this example
SRC

T(s)= —2C
) =T sRC
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Transfer Functions and Bode Plots |

e Consider the following T(s)

s[l + i]
10
T(s)=150
RY Ay
[l * T&f] [l * Eﬂ"]

e Denominator 1st term produces Bode initial slope +20 db
e 2nd Denominator term adds another +20 db at 10 rad/s

e 1st Numerator reduces slope by -20 dB at 10% rad/s
e 2nd Numerator reduces slope by -20 dB at 107 rad/s




Figure 9.6
Magnitude Bode plot
of the system
function of Eq. (9.43).

Figure 9.7

Angle Bode plot of
the system function
of Eq. (9.43).
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Transfer Functions and Frequency Response

e When terms act at same frequency slope increased
e Example of a steeper slope

T(s) = 100

A) A
] o messb] ] o =2
104 104

e get slope of +40 dB per decade for > 10* rad/s
e Break point is -6 dB down from flat
e Phase shift is -180 degrees
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