Review of Current, Voltage \& Resistance: Lesson 2 Electrons and Charges (EC 1)

- Electricity is concerned with the flow of charged particles
- Basic particle: the Electron: negatively charged
- Electron charge: $\mathrm{q}=-\mathrm{e}=1.602 \times 10^{-19} \mathrm{C}$ (Coulombs)
- Mass of an electron $\mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}$
- Like charges repel each other
- Unlike charges attract
- Electrons attracted by Positive, repelled by Negative charges

Electric Fields

- Electric Field (\vec{E}): The Force applied to a unit charge
- E is a vector quantity: has a direction and magnitude
- Units are N/C (Newtons per Coulomb)
- Positive charges move in the same direction as the E field
- Negative charges move: opposite direction to the E field
- The force on a charge is:

$$
\vec{F}=q \vec{E}
$$

Where $\mathrm{q}=$ the charge

(c)

Fig. 25-8. The mapping of an electric field with the aid of lines of force.

Charges and Current (EC 1)

- Electricity: the flow of charges within a confined volume
- Consider a wire with lots of free electrons
- An applied Electric field produces a flow of the electrons
- Electrons flow in the opposite direction of the E field
- Current (I): the rate of positive charge particle flow
- Units of Current: Amperes
- 1 Ampere $=1$ Coulomb of charge passing a given point per second

$$
I=\frac{\Delta q}{\Delta t}=\frac{d q}{d t}
$$

where

$$
\mathrm{q}=\text { charge in coulombs }
$$

$\mathrm{t}=$ time in seconds

point

Current in a Wire

- Often current is calculated using the charge density
- Then the current is:

$$
I=n q A \mu
$$

Where

$\mathrm{n}=$ Charge density: charged particles per unit volume $\left(\mathrm{cm}^{3}\right)$
μ : Velocity of the charges ($\mathrm{cm} / \mathrm{sec}$.)
A: Area of the wire (sq.cm)

- For copper $n \sim 10^{22} \mathrm{~cm}^{-3}$

$$
\mu \sim 9 \times 10^{-4} \mathrm{~cm} / \mathrm{s}
$$

- Takes 18.5 minutes for electrons to cross 1 cm in copper!
- Electron velocity is slow but signal travels near speed of light
- Reason: all the electrons move at same time
- Since q = -e (negative charge)
- Hence current direction is OPPOSITE the flow of electrons

Positive \& Negative Charge Currents

- Metals have only electron flow
- In Transistors/diodes (semiconductors)
both positive and negative charges flow
- For both charge flow

$$
I=\left(n_{e} e v_{e}+n_{p} e v_{p}\right) \mathrm{A}
$$

Where
$\mathrm{n}_{\mathrm{e}}=$ electron density $\left(\mathrm{cm}^{-3}\right)$
$\mathrm{n}_{\mathrm{p}}=$ positive charge density $\left(\mathrm{cm}^{-3}\right)$
$\mathrm{v}_{\mathrm{e}}=$ electron velocity (cm / s)
$\mathrm{v}_{\mathrm{p}}=$ positive charge velocity (cm / s)
$\mathrm{A}=$ area of conductor $\left(\mathrm{cm}^{2}\right)$

- NOTE: negative electron charge is cancelled by negative direction of current.
- The differential form is:

$$
\frac{d I}{d x}=e\left(\frac{d n_{e}}{d t}+\frac{d n_{p}}{d t}\right) A
$$

Voltage

- Voltage: potential of an electric system to do work
- Voltage: is a "scalar" measured between two points
- Voltage: Work done moving a unit charge between 2 points

$$
V_{A B}=\frac{\text { Work moving e from A to } B}{q}=\frac{d W}{d q}
$$

where
$\mathrm{W}=$ Work moving q from A to B in Joules
$\mathrm{q}=$ charge in coulombs

- Work done on charge q accelerated through voltage V:

$$
W=q V
$$

Voltage and Electric Fields

- Electric fields are often given in Volts per metre (V/m)
- Derived from:

$$
W=F d=q E d=V q
$$

where
F = force in Newtons
d = distance in metres
$\mathrm{E}=$ Electric field (V/m)
Thus:

$$
\vec{E}=\frac{V}{\vec{d}}
$$

Voltage Sources

- Voltage source has a positive \& negative terminal
- Creates Electric Field in material between terminals
- Ideal Voltage source creates a specific, pure voltage
- Ideal source creates that voltage at all times

- Battery is a nearly a pure source (but not quite)
- Has finite internal resistance
- Hence batteries get hot when shorted

- Polarity: identification of which terminal is positive
- Long bar is positive terminal

Circuits \& Current Directions

- Circuit: when the terminals of a voltage source are connected through some conducting element.
- Open circuit: when no current flows

Infinite resistance path

- Short circuit: terminals directly connected to each other
- Perfect short circuit sets voltage to zero across it Zero resistance between paths
- Cannot have a perfect short on an ideal voltage source!

- Current \vec{I} is a vector quantity: has magnitude \& direction
- Current shown coming out of positive terminal
- Original error (from 1700's):
assumed current flow was positive charges
- Thus actual electron (neg charge) flow is into positive terminals

Power

- Power loss: energy dissipated in a device per unit time

$$
P=\frac{d W}{d t}=\frac{d W}{d q} \frac{d q}{d t}=V I
$$

Since:

$$
V=\frac{d W}{d q} \quad \text { and } \quad I=\frac{d q}{d t}
$$

- Units of power = Watts (W) = Joules/sec
- Total work done is

$$
W=\int P(t) d t=\int V(t) I(t) d t
$$

$$
I \leftrightarrow
$$

Basic Circuit Elements

- Basic Circuit Element: has two lines entering it
- Terminals: places were circuit current/voltage applied
- Simple elements 2 terminal devices
- Complicated elements have 3 or more terminals: eg. Transistor - Devices may be either: a load element or source element

- Load element: consumes power
- When voltage applied, get current flow
- When current applied, get voltage across it
- Current flows into positive terminal or out negative

Active (source) element: Power source: supplies energy

$$
P=-V I
$$

- Power is negative: ie supplied
- Current flows out of the positive terminal
- or current flows into the negative terminal

Unit Prefixes

- Standard Systems International (SI) prefixes
- Note: while SI units are meters usually use cm in electronics

Table 1-3 Standard Decimal Prefixes
Multiplier Prefix Abbreviation. Pronunciation

10^{12}	tera	T	těr ${ }^{\prime}$ à
10^{9}	giga	G	ji' ${ }^{\prime}$ gȧ
10^{6}	mega	M	měg' ${ }^{\text {a }}$
10^{3}	kilo	k	kil' ${ }^{\text {o }}$
10^{2}	hecto	h	hěk' tò
10^{1}	deka	da	děk' ${ }^{\text {a }}$
10^{-1}	deci	d	děs' ${ }_{\text {i }}$
10^{-2}	centi	c	sěn' tí
10^{-3}	milli	m	mil' ${ }^{\text {i }}$
10^{-6}	micro	μ	mī ${ }^{\prime}$ krō
10^{-9}	nano	n	năn' o
10^{-12}	pico	p	pe' ${ }^{\prime}$ cò
10^{-15}	femto	f	fĕm' tò
10^{-18}	atto	a	ăt' to

Constant Voltage and Current Sources \& Nodes (EC2)

- There are two types of Ideal power source:
- Constant Current \& Constant Voltage
- Constant Voltage always produces that voltage output When off acts like a short circuit

- Constant Current always produces that current output - When off acts like an open circuit $R \rightarrow \infty$

Turning off Current \& Voltage Sources

- Voltage source is turned off when output is 0 V
- This means it acts like a perfect short circuit
- Hence turn off voltage source: replaced by a short

- Current source is turned off when output $=0 \mathrm{~A}$
- This means it acts like a perfect open circuit
- Hence turn off current: replaced by an open

Ideal Dependent Current \& Voltage Sources

- Dependent Sources:

V or I is a function of values across others devices

- Dependent voltage source follows a relationship
- Voltage dependent voltage source

$$
v_{s}=\mu v_{x}
$$

where: μ = dimensionless multiplier

- MOS transistor behaves like this

- Current dependent voltage source

$$
v_{s}=\rho i_{x}
$$

where: $\rho=$ multiplier: units Volt/Amp

- Eg. Dependent voltage source with $\mathrm{V}=2$ times R_{1} voltage

Ideal Dependent Current Sources

- Dependent current source follows the relationships
- Voltage dependent current source

$$
i_{s}=\alpha v_{x}
$$

where: $\alpha=$ multiplier: units Amp/Volt

- Current dependent current source

$$
i_{s}=\beta i_{x}
$$

where: β = dimensionless multiplier

- Bipolar transistor acts like this

- Eg. Dependent current source with $\mathrm{I}=4$ times R_{1} current

Conductors, Insulators \& Resistors (EC 2)

- Conductor has surplus of free charges, usually electrons
- Current flows: when an Electric field applied across a conductors
- Insulators have few free charges
- Typically $10^{10}-10^{20}$ higher resistance than conductors
- Almost no current flows when voltage applied
- But hard to get no current at all

$$
-V+
$$

Insulators \& Resistors

- Recall that the current is given by

$$
I=n q A \mu
$$

Where
$\mathrm{n}=$ number of charges
$\mathrm{q}=$ charge on the particle (electron)
$\mathrm{A}=$ area of the conductor
$\mu=$ velocity of the charges

- Materials vary widely in the number of free charges
- Free charges are those not tied to atoms
- Metals have many free electrons $\sim 10^{22} \mathrm{~cm}^{-3}$
- Velocity of the charges is limited by the atoms
\bullet Electrons "hit" an atom and are slowed down.
- Then reaccelerated by the electric field
- Collision with the atom cause a loss of energy
- Appears as heating of conductor
- Loss of energy creates a Resistance to current flow

Resistors (EC2)

- Resistors: cause energy loss from resistance to current flow
\bullet Resistors are made up of materials that are poor conductors
- Ohm's law

$$
R=\frac{d V}{d I}
$$

where:
$\mathrm{R}=$ resistance in ohms Ω
$\mathrm{I}=$ current in Amperes A
$\mathrm{V}=$ voltage in volts V
or for simple resistors:

$$
V=I R \quad \text { or } \quad R=\frac{V}{I} \quad \text { or } \quad I=\frac{V}{R}
$$

- Thus resistors give a voltage drop across the device from current

Power and Resistors

- Recall Power loss: energy dissipated in a device per unit time

$$
P=\frac{d W}{d t}=\frac{d W}{d q} \frac{d q}{d t}=V I
$$

- Recall Ohm's law

$$
V=I R \quad \text { or } \quad R=\frac{V}{I} \quad \text { or } \quad I=\frac{V}{R}
$$

- Thus power in loss in resistors is

$$
P=V I=I^{2} R=\frac{V^{2}}{R}
$$

- NOTE: power alters as V, I or R changes instantaneously
- Example: a 1 Kohm resistor carries 20 mA of current. What is the power loss:

$$
P=I^{2} R=(0.02)^{2}(1000)=0.4 \mathrm{~W}=400 \mathrm{~mW}
$$

$$
1 k \Omega
$$

$$
-W^{2}=
$$

$$
\vec{I}=20 \mathrm{~mA}
$$

Resistors and Resistivity

- Basic unit for resistive materials is their resistivity
- Resistivity rho $=\rho$ is related to resistance by

$$
R=\frac{\rho L}{A}
$$

where

$$
\rho=\text { resistivity in ohm -cm }=\Omega \mathrm{cm}
$$

$\mathrm{L}=$ length of wire (cm)
$\mathrm{A}=$ cross-sectional area in cm^{2}

- Typical values for copper is $2 \times 10^{-6} \mathrm{ohm}-\mathrm{cm}=2 \mu \Omega \mathrm{~cm}$
- Typical insulators 10^{7} to 10^{22} ohm -cm
- Example a copper wire is 40 cm long by 1 sq mm cross section: what is the resistance?

$$
R=\frac{\rho L}{A}=\frac{2 \times 10^{-6}(40)}{(0.1)^{2}}=0.008 \Omega
$$

Conductivity \& Conductance

- For conductors often use the conductivity
- symbol sigma = σ

$$
\sigma=\frac{1}{\rho}
$$

- Units are (ohm-cm) ${ }^{-1}$
- Conductance (G) is the inverse of resistance $G=\frac{1}{R}$
- units are mhos (ohms spelled backwards) or Siemens

I-V Characteristics of Resistors

- I-V curves characterize the operation of any electrical device.
- Also called V-I curves.
- Obtained by plotting current in device against the applied voltage between two terminals on the device
- In practice obtained using "curve tracers" or parametric analyzers

Practical Resistors

- Resistor is the most widely used component
- Cost >\$0.01 to >\$1
- Provides way to control V or I values

Feedback values in op-amp

- Low power resistors use a carbon film, plastic case
- High power are wire resistors
- Note hard to make high value resistors in microchips
- Often use external resistors
- Resistors are used created desired voltages or remove power

Resistors and Power ratings

- Resistors are rated in terms of maximum power capability
- 1/4 W (most common), 1/2 W, $1 \mathrm{~W}, 2 \mathrm{~W}, 5 \mathrm{~W}$ are usual
- The larger surface area, the higher the power
- More surface area, faster heat loss
- Low power resistors have plastic surface
- High power resistors are ceramic
- Typically use a resistor rated for 2 times max power expected
- Thus less than $1 / 8 \mathrm{~W}$ power use $1 / 4 \mathrm{~W}$ resistors
- Example: a 1 Kohm resistor carries 20 mA of current.
\bullet What is the size needed?
- As previously

$$
P=I^{2} R=0.4 \mathrm{~W}=400 \mathrm{~mW}
$$

- Since max for $1 / 2 \mathrm{~W}$ resistor is 250 mW
- Thus want to use a 1 Watt resistor
- $1 / 2 \mathrm{~W}$ would work, but with very small safety range

