KVL Example Resistor Voltage Divider

- Consider a series of resistors and a voltage source
- Then using KVL

$$
V-V_{1}-V_{2}=0
$$

- Since by Ohm's law

$$
V_{1}=I_{1} R_{1} \quad V_{2}=I_{1} R_{2}
$$

- Then

$$
V-I_{1} R_{1}-I_{1} R_{2}=V-I_{1}\left(R_{1}+R_{2}\right)=0
$$

- Thus

$$
I_{1}=\frac{V}{R_{1}+R_{2}}=\frac{5}{2000+3000}=1 \mathrm{~mA}
$$

- i.e. get the resistors in series formula

$$
R_{\text {total }}=R_{1}+R_{2}=5 \mathrm{~K} \Omega
$$

KVL Example Resistor Voltage Divider Continued

- What is the voltage across each resistor
- Now we can relate V_{1} and V_{2} to the applied V
- With the substitution

$$
I_{1}=\frac{V}{R_{1}+R_{2}}
$$

- Thus V_{1}

$$
V_{1}=I_{1} R_{1}=\frac{V R_{1}}{R_{1}+R_{2}}=\frac{5(2000)}{2000+3000}=2 \mathrm{~V}
$$

- Similarly for the V_{2}

$$
V_{1}=I_{1} R_{2}=\frac{V R_{2}}{R_{1}+R_{2}}=\frac{5(3000)}{2000+3000}=3 V
$$

General Resistor Voltage Divider

- Consider a long series of resistors and a voltage source - Then using KVL or series resistance to get

$$
V=I_{1} \sum_{j=1}^{N} R_{j} \ldots \text { or } \ldots I_{1}=\frac{V}{\sum_{j=1}^{N} R_{j}}
$$

- The general voltage V_{k} across resistor R_{k} is

$$
V_{k}=I_{1} R_{k}=\frac{V R_{k}}{\sum_{j=1}^{N} R_{j}}
$$

- Note important assumption: current is the same in all R_{j}

Usefulness of Resistor Voltage Divider

- A voltage divider can generate several voltages from a fixed source
- Common circuits (eg. IC’s) have one supply voltage
- Use voltage dividers to create other values at low cost/complexity
\bullet Eg. Need different supply voltages for many transistors
- Eg. Common computer outputs 5V (called TTL)
\bullet But modern chips (CMOS) are lower voltage (eg. 2.5 or 1.8 V)
- Quick interface - use a voltage divider on computer output
- Gives desired input to the chip

Variable Voltage and Resistor Voltage Divider

- If we have one fixed and one variable resistor (rheostat)
- Changing variable resistor controls output $\mathrm{V}_{\text {out }}$ across rheostat - Simple power supplies use this
- Warning: ideally no additional loads can be applied
- Loads are current drawing devices
- In practice the load resistance >> the divider output resistor
- Best if $\mathrm{R}_{\text {load }}>100 \mathrm{R}$

Current Divider: Example of KCL

- KCL equivalent of voltage divider is a current divider
- Consider a current source with resistors in parallel
- At node 1 the KCL laws state:

$$
I-I_{1}-I_{2}=0
$$

- Define V_{1} as the voltage between node $1 \&$ node 0
- Then

$$
I_{1}=\frac{V_{1}}{R_{1}} \quad I_{2}=\frac{V_{1}}{R_{2}}
$$

- Thus from KCL

$$
I=I_{1}+I_{2}=\frac{V_{1}}{R_{1}}+\frac{V_{1}}{R_{2}}=V_{1}\left[\frac{1}{R_{1}}+\frac{1}{R_{2}}\right]
$$

- This produces the parallel resistors formula

$$
I=V_{1}\left[\frac{1}{R_{1}}+\frac{1}{R_{2}}\right]=\frac{V_{1}}{R_{\text {total }}}
$$

Current Divider Continued

- To get the currents through R_{1} and R_{2}

$$
I_{1}=\frac{V_{1}}{R_{1}} \quad I_{2}=\frac{V_{1}}{R_{2}}
$$

- First get the voltage from the KCL equation

$$
V_{1}=I\left[\frac{1}{R_{1}}+\frac{1}{R_{2}}\right]^{-1}=I\left[\frac{1}{R_{\text {total }}}\right]^{-1}
$$

- Solving for I_{1}

$$
I_{1}=\frac{V_{1}}{R_{1}}=I \frac{\left[\frac{1}{R_{1}}\right]}{\left[\frac{1}{R_{1}}+\frac{1}{R_{2}}\right]}
$$

- Similarly solving for I_{2}

$$
I_{2}=\frac{V_{1}}{R_{2}}=I \frac{\left[\frac{1}{R_{2}}\right]}{\left[\frac{1}{R_{1}}+\frac{1}{R_{2}}\right]}
$$

Example of Current Divider

- Consider $4 \mathrm{~K} \Omega$ and $2 \mathrm{~K} \Omega$ in parallel with a 3 mA current source - The the current divider to obtain I_{1}

$$
I_{1}=\frac{V_{1}}{R_{1}}=I \frac{\left[\frac{1}{R_{1}}\right]}{\left[\frac{1}{R_{1}}+\frac{1}{R_{2}}\right]}=0.003 \frac{\left[\frac{1}{4000}\right]}{\left[\frac{1}{4000}+\frac{1}{2000}\right]}=1 \mathrm{~mA}
$$

- Similarly for I_{2}

$$
I_{2}=\frac{V_{1}}{R_{2}}=I \frac{\left[\frac{1}{R_{2}}\right]}{\left[\frac{1}{R_{1}}+\frac{1}{R_{2}}\right]}=0.003 \frac{\left[\frac{1}{2000}\right]}{\left[\frac{1}{4000}+\frac{1}{2000}\right]}=2 \mathrm{~mA}
$$

- Note the smaller resistor = larger current
- Checking: the voltage across the resistors

$$
\begin{gathered}
V_{1}=I_{1} R_{1}=0.001 \times 4000=4 \mathrm{~V} \\
V_{1}=I_{2} R_{2}=0.002 \times 2000=4 \mathrm{~V}
\end{gathered}
$$

General Current Divider

- Using KCL to get the currents into the node

$$
I=\sum_{j=1}^{n} I_{j}
$$

- Getting the voltage from the KCL equation

$$
V_{1}=I\left[\sum_{j=1}^{N} \frac{1}{R_{j}}\right]^{-1}=I\left[\frac{1}{R_{\text {total }}}\right]^{-1}
$$

- Solving for current I_{k} with using the R_{k}

$$
I_{k}=I \frac{\frac{1}{R_{k}}}{\left[\sum_{j=1}^{N} \frac{1}{R_{j}}\right]}
$$

Practical Current Divider

- Create current dividers for use with current sources
- Less common than Voltage dividers as a circuit application
- Again any load used must not be significant
- Load in this case in series with the output resistor
- Load must be very small compared to R_{2}
- Best if load is $\ll 0.01$ of R_{2}

General Current Divider using Conductance

- Often better with parallel circuits to use conductance
- Again the KCL says at the node

$$
I=\sum_{j=1}^{N} I_{j}
$$

- Total conductance is resistors in parallel is

$$
G_{\text {total }}=\sum_{j=1}^{N} G_{j}=\sum_{j=1}^{N} \frac{1}{R_{j}}
$$

- The general current divider equation for I_{k} through resistor R_{k}

$$
I_{k}=\frac{I G_{k}}{\sum_{j=1}^{N} G_{j}}
$$

- Conductance calculations useful for parallel resistors
- Conductance equation for I is equivalent of voltage divider eqn
- Note for resistors in series the conductance is

$$
\frac{1}{G_{\text {total }}}=\sum_{j=1}^{N} \frac{1}{G_{j}}
$$

Solving Circuits with Equivalent Resistors

- Series and parallel resistor equivalents can solve some circuits
- Method, make equivalent resistance to simplify
- Go between series and parallel as needed
- Produce one final equivalent resistance
- Use voltage and current divider equations
- Get I \& V for each element

Example Solving Circuits with Equivalent Resistors

- Consider circuit with $\mathrm{R}_{2}, \mathrm{R}_{3}$ in parallel R_{1}
- All in series with R_{4}
- For the $\mathrm{R}_{2}, \mathrm{R}_{3}$ side

$$
R_{2+3}=R_{2}+R_{3}=1000+3000=4000
$$

- Now get the parallel equivalent

$$
\begin{gathered}
\frac{1}{R_{1 \mid 2+3}}=\frac{1}{R_{1}}+\frac{1}{R_{2+3}}=\frac{1}{2000}+\frac{1}{4000}=\frac{3}{4000} \\
R_{1 \mid 2+3}=\frac{4000}{3}=1333.3 \Omega
\end{gathered}
$$

- Adding the series resistance

$$
R_{\text {total }}=R_{4}+R_{1 \mid 2+3}=1000+1333.3=2333.3 \Omega
$$

- Thus current from the source is

$$
I_{\text {total }}=\frac{V}{R_{\text {total }}}=\frac{14}{2333.3}=6 \mathrm{~mA}
$$

Example Circuits with Equivalent Resistors Continued

- Voltage across R_{4} and parallel section is

$$
\begin{gathered}
V_{R 4}=I_{4} R_{4}=1000 \times 0.006=6 \mathrm{~V} \\
V_{1}=V-I_{4} R_{4}=14-1000 \times 0.006=8 \mathrm{~V}
\end{gathered}
$$

- And the current in the parallel resistors

$$
\begin{aligned}
I_{1} & =\frac{V_{1}}{R_{1}}=\frac{8}{2000}=4 \mathrm{~mA} \\
I_{2} & =\frac{V_{1}}{R_{2+3}}=\frac{8}{4000}=2 \mathrm{~mA}
\end{aligned}
$$

- Solving for the voltages

$$
\begin{aligned}
& V_{R 2}=I_{2} R_{2}=0.002 \times 1000=2 \mathrm{~V} \\
& V_{R 3}=I_{2} R_{3}=0.002 \times 3000=6 \mathrm{~V}
\end{aligned}
$$

Advantages \& Disadvantages: Equivalent Resistors Method

Advantages

- Simply guided by pattern of circuit
- Easy to understand

Disadvantages

- Can be quite time consuming
- Some circuits cannot be solved this way

Measuring Small Values: the Wheatstone Bridge

- Resistor dividers are set by ratios of resistance
- Thus can compare unknown R to a known set of R
- Called a Wheatstone Bridge
- Left side known resistance R_{1} and variable resistor R_{3}
- Right side known R_{2} and unknown R_{s}
- Place a very sensitive meter between the middle nodes
- Best is a galvonometer
- Voltages balance and no current i_{g} flows if

$$
\frac{R_{3}}{R_{1}}=\frac{R_{s}}{R_{2}}
$$

- If we know the $R_{1} R_{2} R_{3}$ very accurately can measure R_{s} accurately

$$
R_{s}=\frac{R_{3}}{R_{1}} R_{2}
$$

- Must use very accurate variable resistance

Figure 3.24 A balanced Wheatstone bridge

$$
\left(i_{g}=0\right) .
$$

Circuit Analysis with Kirchhoff's Laws Circuits (EC 4)

- Task of Circuit analysis:
- Find the current through and the voltage across every element

Four methods used:

- Resistor substitution
- Mesh analysis (KVL)
- Node analysis (KCL)
- Superposition (simple circuits)
- Computer methods use aspects of these

Circuit Definitions

- Node: point where several current paths meet:

- Branch: a current path connecting only two nodes
- Branch contains 1 or more devices eg. resistors
- Note: a node may have many branch connections

- If 2 nodes are connected by a wire
- Then combine them into a single node

Linear \& Nonlinear Circuit Elements

Linear devices

- Response is linear for the applied Voltage or Current
- eg Double voltage get twice the current
- eg devices: resistors, capacitors, inductors (coils)

Non-Linear devices

- Response is non-linear for applied Voltage or Current - Eg. may have different response for different polarity of V
- Eg devices Semiconductor Diodes, iron core inductors

Kirchhoff's Laws and Complex Circuits

- Kirchoff's laws provide all the equations for a circuit
- But if know the currents then can calculate the voltages
- If know the voltages then can calculate the currents
- Thus only need to solve for one or the other.
- Use the other laws to obtain the missing quantity

