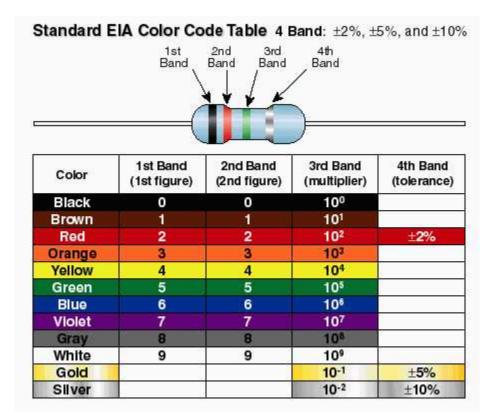

Measurement Errors and the Lab

- In every measurement must determine the accuracy or error range
- Typically give as $Y \pm \Delta y$
- Where Y is the measurement


 Δy is the error on the measurement

- Typically follows a Gaussian distribution so
- $\pm \Delta y$ 68% of time
- $\pm 2\Delta y$ 95% of time
- ±3∆y 99.7% of time
- Error is derived from the instruments or the measurement system
- In ENSC 220 lab 1:
- Error on resistors
- Measurement error from meters or instruments
- Use meter not power supply to measure V and I
- Must always check for the error for the instrument in its manual
- Try the web for the instrument specs in general

Resistors and Errors

- Resistors are marked for their error limits
- Precision determined by the 4th band
- Typically 5%, 10%, 20%
- 5% most common in lab
- Precision resistors 1% or 2%
- Resistors of all precision are all manufactured at same time
- Then just selected for precision
- Thus not really Gaussian distribution

Worst Case Errors

- In engineering use Worst Case Error analysis
- Thus errors always add to do most damage
- Consider resistors of R_1 =2.2K, and R_2 =1.0K with 5% precision
- Then expected error on each is

$$\Delta R_1 = 2200 \times 0.05 = 110 \Omega$$

 $R_1 = 2200 \pm 110 \Omega$
 $R_2 = 1000 \pm 50 \Omega$

• What if the resistors are in series?

$$R_{total} = R_1 + R_2 = 2200 + 1000 = 3200 \,\Omega$$
$$\Delta R_{total} = \Delta R_1 + \Delta R_2 = 110 + 50 = 160 \,\Omega$$

- Thus expect total resistance to be from 3040 to 3360Ω
- Could improve if you measure the values
- For division and multiplication add percentage errors

$$\frac{R_1}{R_2} = \frac{2200}{1000} = 2.2$$
$$\Delta \frac{R_1}{R_2} = \Delta \% R_1 + \Delta \% R_2 = 5\% + 5\% = 10\%$$

Digital MultiMeters and Accuracy

- Digital MultiMeter DMM accuracy is very dependent on the meter
- In lab we use a two meters: Fluke 45 and Fluke 8010A

Fluke 45 Autoranging meter

- Must look at the spec sheet for the accuracy in each range
- We have put the spec sheet in pdf form on the lab page
- Accuracy is in Appendix A

• Example of Accuracy from Appendix A

Range		Resolution		Accuracy		
	Slow	Medium	Fast	(6 Months)	(1 Year)	
300 mV	—	10 <i>μ</i> V	100 <i>μ</i> V	0.002 % + 2	0.025 % + 2	
3 V		100 <i>μ</i> V	1 mV	0.02 % + 2	0.025 % + 2	
30 V		1 mV	10 mV	0.02 % + 2	0.025 % + 2	
300 V		10 mV	100 mV	0.02 % + 2	0.025 % + 2	
1000 V		100 mV	1 V	0.02 % + 2	0.025 % + 2	
100 mV	1 <i>μ</i> V			0.02 % + 6	0.025 % + 6	
1000 mV	10 <i>μ</i> V			0.02 % + 6	0.025 % + 6	
10 V	100 μV		—	0.02 % + 6	0.025 % + 6	
100 V	1 mV	_		0.02 % + 6	0.025 % + 6	
1000 V	10 mV			0.02 % + 6	0.025 % + 6	

How to Get Reading Accuracy in a DMM

- Meter has certain number of displayed digits
- Accuracy depends on the range of the units measured
- Also number of digits displayed for your reading
- Typically has two parts
- A percentage of the actual reading eg 1%
- Percentage is overall accuracy of the internal resistors etc
- A count for the last digit
- Measures accuracy of the Digital to Analog converter
- The count is how many tenths of final digit will cause it to flip
- Eg. if meter accuracy was 1% + 2 in spec sheet
- Meter reading was reading 100 V
- Then accuracy due to last digit
- Digit is 0 but will stay 0 for 0.2 below to 0.2 above
- Thus from % expect a range of 99 to 101 V
- From last digit it is 98.8 to 101.2
- Some DMM are 3 ¹/₂ digits
- There error is % of reading ± 0.5 of last digit value

• Good reference

http://www.electroline.com.au/elc/feature_article/item_082005a.asp

Fluke 8010A DMM

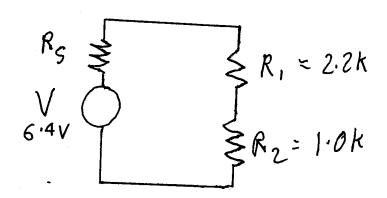
- Fluke 8010 is 3 1/2 digit meter autoranging
- Error specifications to it
- Error is % plus ½ of last digit
- ie. ± 0.5 of last digit value

S	UMMARY SPE		annore e noveze		
ACCURACY: ± (%)	start into the given and the second data and the	interesting of the second division of the second	and the second		
AC VOLTAGE AND					
RANGE	45 Hz - 10 kHz	a design of the second s	20 kHz · 50 kHz		
200V AND BELOW	(0.5 + 2)	(1.0 + 2)	(5.0 + 3)		
750V	(0.5 + 2), 45	Hz - 1 kHz ONLY			
200 mA AND BELOW	(1.0+2)	(20 • 2)			
2000 mA, 10A	(1.0 + 2), 45	1.0 + 2), 45 Hz - 2 kHz ONLY			
RESISTA	NCE	CONDUCTANCE			
200kD AND BELOW	(0.2 + 1)	2 mS, 20#S	(0.2+1)		
2000k Ω, 20 M Ω	(0.5 + 1)	200 nS	(1.0 + 10)		
FREQUENCY:	LTAGE: (LO T OPERATING COMMON JACK A FOR ALL Ω, k Ω AIRS OF RANGE B OR DIODE TEST (2 POWER REQL 90 TO 132 VAC (FOR BEST NOIS 50 Hz MODEL (LINE FUSE	ERM TO GND) 500V G NOTES IND IOA JACK FOR M II & CONDUCT/ IUTTONS FOR COND DOK AND 20M MAY JIREMENTS 200 TO 264 V	10A CURRENT MEAS. INCE MEAS. UCTANCE ALSO TURN ON DIODE VAC		
	IS MAXIMUM				
POWER: 4 WAT	FF MANUAL ADDI	ENDA FOR MODIFIED	SPECS		

Example of Errors in Experiments

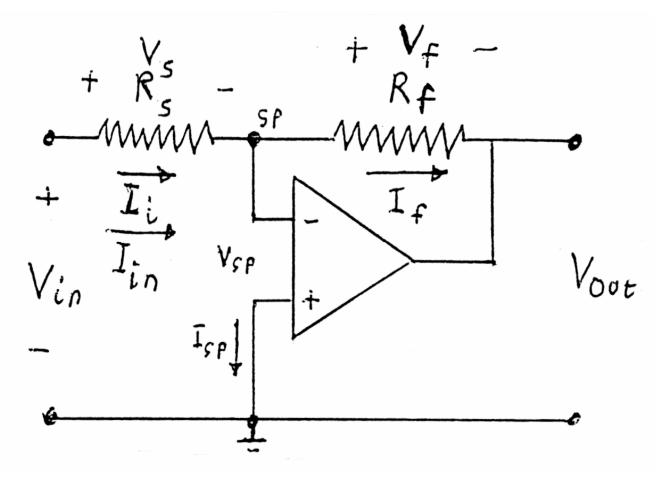
• Consider a circuit with 2 resistors in series

• R_1 =2.2K, and R_2 =1.0K with 5% precision

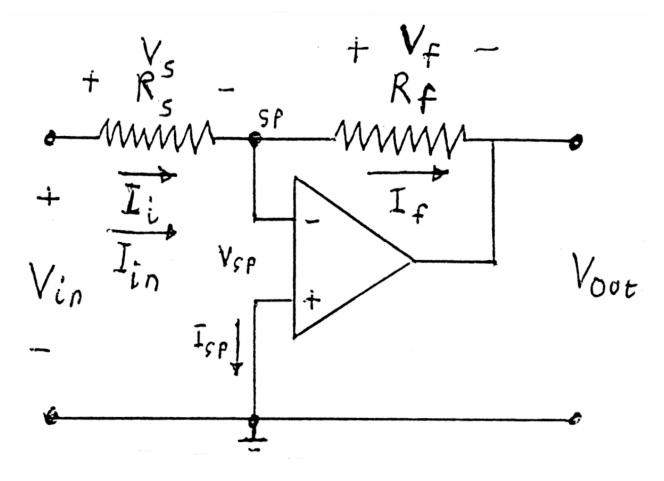

Apply a voltage source based on its meter of 3.2 V to it Expect a current of

$$I = \frac{V}{R_1 + R_2} = \frac{3.2}{2200 + 1000} = 1 \text{ mA}$$

Voltages you get not those you expect Assume the meters have 1% error & source ½ digit


	Vexpected	Vmeter	Vmax error	Vmin error
V	6.40	6.40	6.405	6.395
Rsource				
R ₁	4.40	4.47	4.49	4.12
R ₂	2.00	1.82	2.04	1.87
Vtotal	6.40	6.32	6.53	5.99
V_{R1}/V_{R2}	2.20	2.46	2.42	1.98

- Sources of error
- Resistance of source $\sim 75\Omega$
- Errors in resistors 5%
- Errors in meters 1%

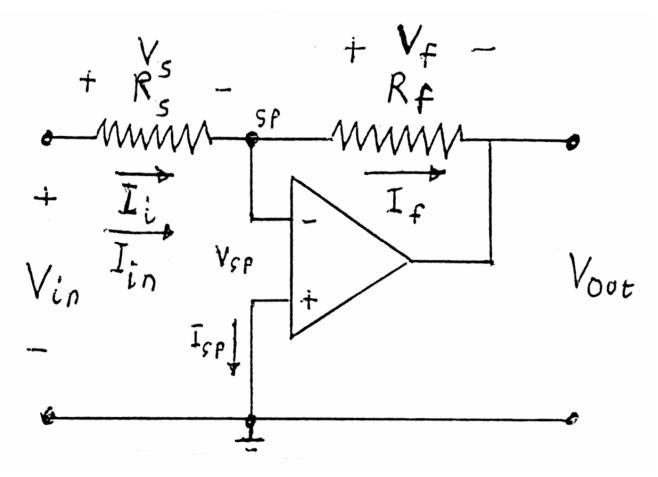

Inverting Op Amplifier

- Adding resistors to op amp can control the gain
- Gain controlled by "Feedback":
- Feeding input back into output
- This circuit gives negative gain:
- Called Inverting op amp
- SP = Summing Point, where output and input signals sum

Inverting Op Amplifier

- Place a feedback resistor R_f from op amp output to positive input
- The R_s between the summing point SP and input $V_s = V_{in}$
- Sometimes see SP called set point
- Allows current to flow from input and output to SP
- This circuit gives negative gain:
- Increases signal but makes it negative
- Called Inverting op amp

Inverting Op Amplifier


- Putting the input into v_n gives negative gain
- Output becomes the opposite polarity to input

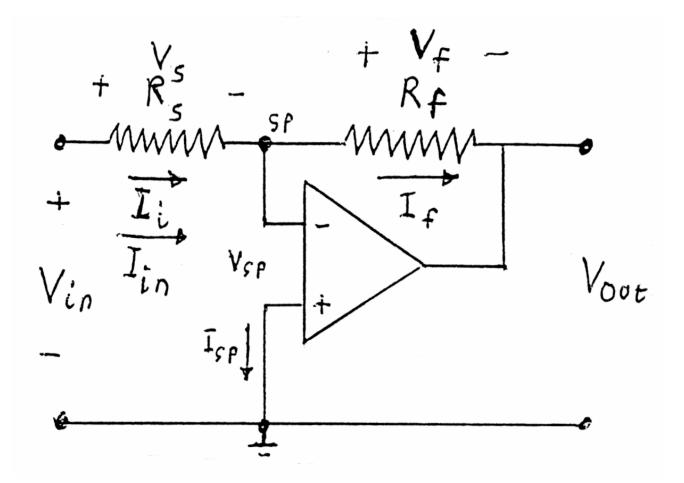
$$V_{sp} = 0 \qquad I_{sp} = 0$$

- Thus SP = a virtual ground
- In practice has small voltage offset

$$V_s = V_i = V_{in}$$
$$I_s = I_i = \frac{V_{in}}{R_s} = I_{in}$$

- Note I_f is not supplied by input current I_{sp}
- $\bullet \, I_{\rm f} \, is$ supplied by power supplies V_{cc} and $V_{ee} \, of$ amp
- If load (eg. a resistor) is added to Vout
- The power supplies create that current also up to amp's I limit

Inverting Op Amplifier Gain Equations


• Virtual ground requires V_f to reverse relative to $V_{in} = V_s$

$$I_s = I_f = \frac{V_s}{R_s} = \frac{V_{out}}{R_f}$$

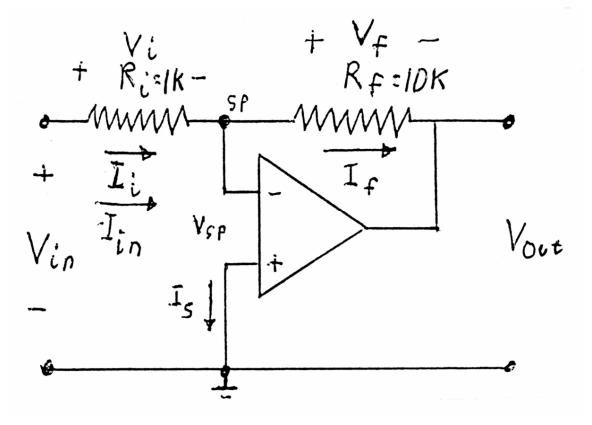
$$V_{out} = V_f = I_f R_f = -V_s \frac{R_f}{R_s}$$

• The amplification (or gain) is:

$$A_{v} = \frac{V_{o}}{V_{s}} = -\frac{R_{f}}{R_{s}}$$

Example Inverting Op Amplifier

• For an inverting op am with


$$R_s = 1 \ K\Omega \qquad \qquad R_f = 10 \ K\Omega$$
$$V_{CC} = +15 \ V \qquad \qquad V_{EE} = -15 \ V$$

- What is the output for a 0.5 V input?
- The voltage gain is:

$$A_{v} = \frac{V_{o}}{V_{s}} = -\frac{R_{f}}{R_{s}} = -\frac{10000}{1000} = -10$$

• Thus the output is:

$$V_o = A_v V_s = -10 \times 0.5 = -5 V$$

Non-inverting Op Amplifier

- Place a feedback resistor R_f from op amp output to neg input
- \bullet The R_i between summing point and ground
- Allows current to flow from output to input
- Voltage divider R_f/R_s sets voltage at input
- This circuit gives positive gain
- Called Non-inverting op amp
- Note: text uses V_g for V_{in}
- Also shows a R_g on input which is not needed

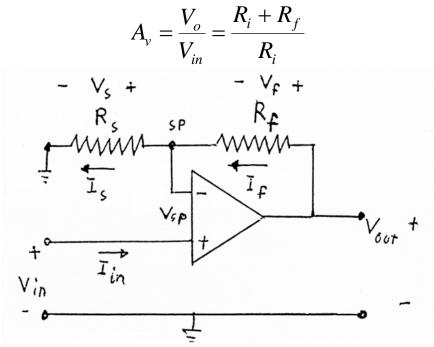
Non-inverting Op Amplifier Gain

- Key point: Infinite op amp input resistance means no input current
- \bullet Thus voltage across the op amp input V_{sp} must be zero

$$I_{in} = 0$$
 thus $V_{sp} = 0$

• Hence voltage at summing point sp must equal input voltage

$$V_s = V_{in}$$


• Since no input current to the op amp neg input

$$I_s = \frac{V_{in}}{R_s} \qquad I_s = I_f$$

• Thus voltage across the feedback resistor becomes

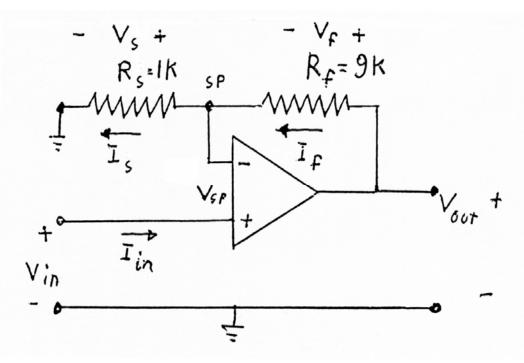
$$V_f = I_f R_f = I_s R_f = V_{in} \frac{R_f}{R_s}$$
$$V_o = V_s + V_f = V_{in} \frac{R_i + R_f}{R_i}$$

• The voltage amplification (or gain) is:

Example Non-inverting Op Amplifier

• For an non-inverting op amp with

$$R_s = 1 K\Omega$$
 and $R_f = 9 K\Omega$
 $V_{CC} = +15 V$ $V_{EE} = -15$


- What is the output for a 0.5 V input?
- The voltage gain is:

$$A_{v} = \frac{V_{o}}{V_{in}} = \frac{R_{i} + R_{f}}{R_{i}} = \frac{1000 + 9000}{1000} = 10$$

• Thus the output is:

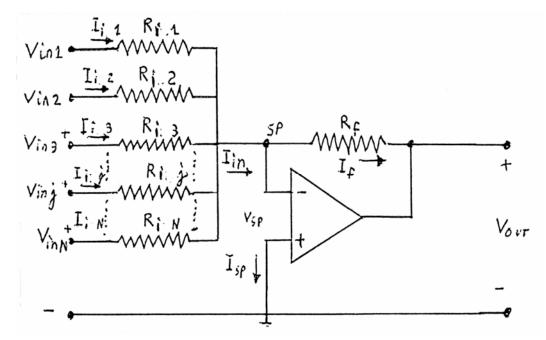
$$V_o = V_{in} \frac{R_i + R_f}{R_i} = V_{in} A_v = 0.5 \times 10 = 5 V$$

- NOTE: must keep output <power supply voltages input limited
- In real circuits use resistors in Kilo-ohm range
- Thus reduce effects of smaller resistance eg. contacts

Summing Inverting Op Amplifier (EC 6.4)

- Using inverting op amps to combine many signals
- Have each input resistance connected to SP
- But only one feedback resistor
- Each signal can have different amplification
- Again the SP is a virtual ground

$$V_{sp} = 0 \qquad I_{sp} = 0$$


• Current from each input V_{sj} is

$$I_{sj} = \frac{V_{sj}}{R_{sj}}$$

• By KCL the total input current is

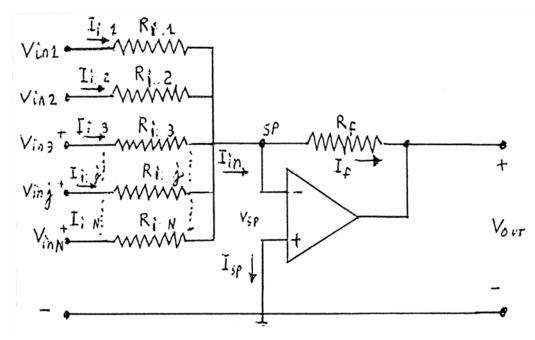
$$I_{s-total} = \sum_{j=1}^{N} I_{sj} = \sum_{j=1}^{N} \frac{V_{sj}}{R_{sj}}$$

- True because summing point a virtual ground
- Note each input is not affected by the other inputs

Summing Inverting Op Amp Gain

• Then by KCL the feedback current = input current

$$I_{f} = -\frac{V_{f}}{R_{f}} = I_{s-total} = \sum_{j=1}^{N} I_{sj} = \sum_{j=1}^{N} \frac{V_{sj}}{R_{j}}$$

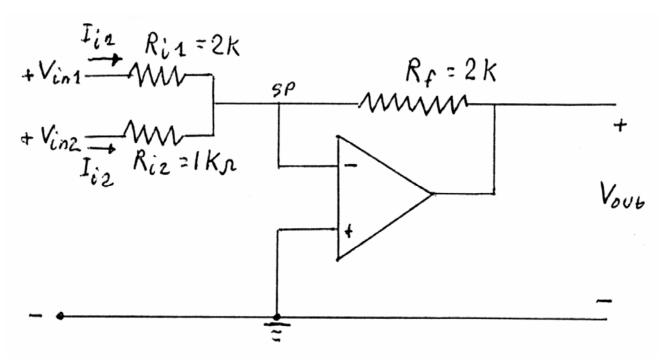

• Then in terms of output voltage

$$V_o = V_f = \sum_{j=1}^{N} - V_{sj} \frac{R_f}{R_j} = \sum_{j=1}^{N} - V_{sj} A_{vj}$$

- \bullet Note: V_{o} must not exceed V_{EE} or V_{CC}
- The amplification (or gain) per channel is:

$$A_{\nu j} = -\frac{R_f}{R_{sj}}$$

• Simple control systems use this summing input



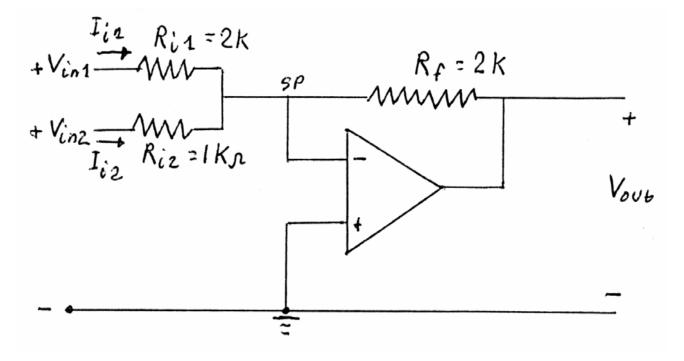
Example of Summing Op Amp

• Create an op amp circuit that will generate the sum equation

$$V_o = -V_1 - 2V_2$$

- To begin set R_f to the largest multiplication factor
- Ie.: times some common R for the design
- Here: largest gain A_{max} is for V_2 which is 2
- Now choose the minimum resistance: ie common $R = 1 \text{ K}\Omega$

$$R_f = A_{\max}R_{\min} = 2 \times 1000 = 2K\Omega$$

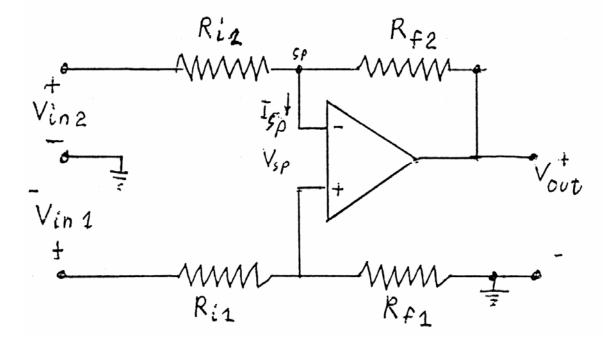

Example of Summing Op Amp Cont'd

- For the input resistances
- Set the R_{sj} equal to common R_f times the multiplier for that input

$$R_j = \frac{R_f}{A_i}$$

• Thus for the example

$$R_{i1} = \frac{R_f}{A_1} = \frac{2000}{1} = 2 \ K\Omega$$
$$R_{i2} = \frac{R_f}{A_2} = \frac{2000}{2} = 1 \ K\Omega$$


Differential (Difference) Op Amplifier

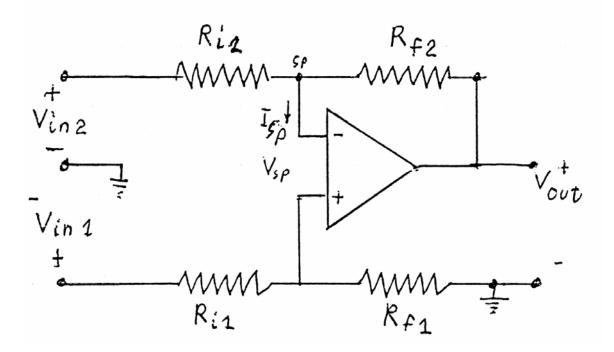
- Want to determine the difference between two voltages
- Often used as comparators (ie. is the output near zero)
- Note Ground is no longer part of the op amp input
- \bullet Put input resistors R_{i1} and R_{i2} on both inputs
- Arrangement like combining inverting & non-inverting op amp

$$R_{i1} = R_{i2} \qquad \qquad R_{f1} = R_{f2}$$
$$V_{sp} = 0 \qquad \qquad I_s = 0$$

- Consider input 2 side
- To measure V_{in2} only: ground V_{in1}
- This reduces to an inverting amplifier

$$V_{out2} = -V_{in2} \frac{R_{f2}}{R_{i2}}$$

Differential Op Amplifier Cont'd


- Consider input 1 side only
- For V_{in1} only; ground V_{in2}
- This reduces to non-inverting like amplifier but with changed input
- The effective non-inverting V_{in} is:

$$V_{in} = V_{in1} \frac{R_{f1}}{R_{i1} + R_{f2}}$$

• Thus

$$V_{out1} = V_{in} \left[\frac{R_{i2} + R_{f1}}{R_{i2}} \right] = V_{in1} \left[\frac{R_{f1}}{R_{i1} + R_{f2}} \right] \left[\frac{R_{i2} + R_{f1}}{R_{i2}} \right]$$
$$V_{out1} = V_{in1} \frac{R_{f1}}{R_{i1}}$$

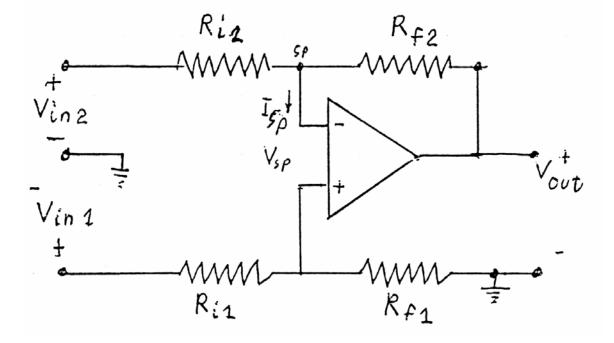
- This reduces to a non-inverting amplifier
- But with input voltage divider on input

Differential Op Amplifier Cont'd

- The op amps are linear as long as output/input outside of saturation
- Now using superposition the total output is:

$$V_{out} = V_{out1} + V_{out2}$$
$$= V_{in1} \frac{R_{f1}}{R_{i1}} - V_{in2} \frac{R_{f2}}{R_{i2}}$$

• Since


$$R_{i1} = R_{i2} \qquad \qquad R_{f1} = R_{f2}$$

• Thus

$$V_{out} = \left(V_{in1} - V_{in2}\right) \left[\frac{R_{f1}}{R_{i1}}\right]$$

• Thus the amplification (gain) is:

$$A_{v} = \frac{V_{out}}{V_{in1} - V_{in2}} = \frac{R_{f1}}{R_{i1}}$$

Non ideal Op Amplifier

- The real op amps, like the 741, have
- \bullet Finite input resistance $R_i \sim 2 \; M \Omega$
- Finite amplification A ~ 200,000
- Real out resistance $R_o \sim 75 \ \Omega$
- Commonly will have an offset current as well

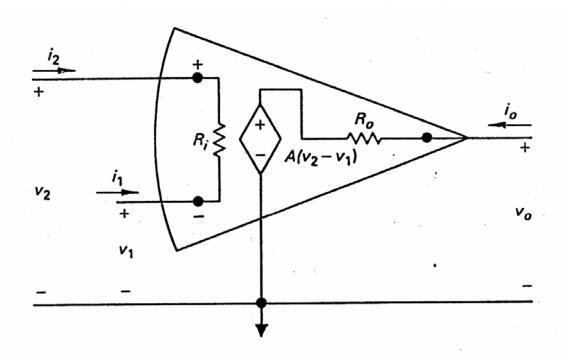


FIGURE 6.15 An equivalent circuit for an operational amplifier.