ENSC 220 - Assignment \#1 Solutions

P2.15 [a] $v_{o}=8 i_{a}+14 i_{a}+18 i_{a}=40(20)=800 \mathrm{~V}$

$$
\begin{aligned}
800 & =10 i_{o} \\
i_{o} & =800 / 10=80 \mathrm{~A}
\end{aligned}
$$

[b] $i_{g}=i_{\mathrm{a}}+i_{o}=20+80=100 \mathrm{~A}$
[c] $p_{g}($ delivered $)=(100)(800)=80,000 \mathrm{~W}=80 \mathrm{~kW}$

P 2.17 [a]

$$
\begin{aligned}
& v_{2}=2(20)=40 \mathrm{~V} \\
& v_{8 \Omega}=80-40=40 \mathrm{~V} \\
& i_{2}=40 \mathrm{~V} / 8 \Omega=5 \mathrm{~A} \\
& i_{3}=i_{0}-i_{2}=2-5=-3 \mathrm{~A} \\
& v_{4 \Omega}=(-3)(4)=-12 \mathrm{~V} \\
& v_{1}=4 i_{3}+v_{2}=-12+40=28 \mathrm{~V} \\
& i_{1}=28 \mathrm{~V} / 4 \Omega=7 \mathrm{~A}
\end{aligned}
$$

[b] $i_{4}=i_{1}+i_{3}=7-3=4 \mathrm{~A}$

$$
p_{13 \Omega}=4^{2}(13)=208 \mathrm{~W}
$$

$$
p_{8 \Omega}=(5)^{2}(8)=200 \mathrm{~W}
$$

$$
p_{4 \Omega}=7^{2}(4)=196 \mathrm{~W}
$$

$$
p_{4 \Omega}=(-3)^{2}(4)=36 \mathrm{~W}
$$

$$
p_{20 \Omega}=2^{2}(20)=80 \mathrm{~W}
$$

[c] $\sum P_{\text {dis }}=208+200+196+36+80=720 \mathrm{~W}$

$$
\begin{aligned}
& i_{g}=i_{4}+i_{2}=4+5=9 \mathrm{~A} \\
& P_{\mathrm{dev}}=(9)(80)=720 \mathrm{~W}
\end{aligned}
$$

P3.8 [a] $5 \| 20=100 / 25=4 \Omega$
$5\|20+9\| 18+10=20 \Omega$

$$
9\|18=162 / 27=6 \Omega \quad 20\| 30=600 / 50=12 \Omega
$$

$$
R_{\mathrm{ab}}=5+12+3=20 \Omega
$$

$$
\text { [b] } \begin{array}{ll}
5+15=20 \Omega & 30 \| 20=600 / 50=12 \Omega \\
& 20 \| 60=1200 / 80=15 \Omega \\
& 3 \| 6=18 / 9=2 \Omega \\
25+10=25 \Omega & 3\|6+30\| 20=2+12=14 \Omega \\
& 18.75+11.25=30 \Omega
\end{array}
$$

[c] $3+5=8 \Omega$
$8 \| 12=96 / 20=4.8 \Omega$

$$
60 \| 40=2400 / 100=24 \Omega
$$

$$
24+6=30 \Omega
$$

$$
4.8+5.2=10 \Omega
$$

$$
45+15=60 \Omega
$$

$$
30 \| 10=300 / 40=7.5 \Omega
$$

$$
R_{\mathrm{ab}}=1.5+7.5+1.0=10 \Omega
$$

P3.13 [a] We can calculate the no-load voltage using voltage division to determine the voltage drop across the 500Ω resistor:

$$
v_{o}=\frac{500}{(2000+500)}\left(\frac{50}{10} \mathrm{~V}\right)={ }^{10} \mathrm{~V}
$$

[b] We can calculate the power if we know the current in each of the resistors. Under no-load conditions, the resistors are in series, so we can use Ohm's law to calculate the current they share:

$$
i=\frac{\text { 復 }}{2000 \Omega+500 \Omega}=\frac{0.02}{20} \mathrm{~A}=20
$$

Now use the formula $p=R i^{2}$ to calculate the power dissipated by each resistor:

$$
\begin{aligned}
& P_{R_{1}}=(2000)\left(\begin{array}{ll}
0.02 \\
(0.8 \\
0.8
\end{array} \quad \begin{array}{l}
800 \\
\mathrm{~W}=
\end{array}\right. \\
& P_{R_{2}}=(500)\left(\frac{0.02}{(020)}\right)^{2}=0.2 \mathrm{~W}=\stackrel{200}{0} \mathrm{~mW}
\end{aligned}
$$

[c] Since R_{1} and R_{2} carry the same current and $R_{1}>R_{2}$ to satisfy the no-load voltage requirement, first pick R_{1} to meet the 1 W specification $i_{R_{1}}=\frac{\text { 曶 }-15}{R_{1}}, \quad$ Therefore, $\left(\frac{35}{R_{1}}\right)^{2} R_{1} \leq 1$
Thus, $R_{1} \geq \frac{35}{1} \quad$ or $\quad R_{1} \geq{ }^{1225} \Omega$
Now use the voltage specification:
$\frac{R_{2}}{\left.R_{2}+\begin{array}{c}50 \\ 1225 \\ 306.25\end{array}\right)=10}$
Thus, $R_{2}=\Omega$
$R_{1}={ }^{1225} \Omega$ and $R_{2}=306.25$ are the smallest values of resistors that satisfy the 1 W specification.

P 3.21 Begin by using the relationships among the branch currents to express all branch currents in terms of i_{4} :

$$
\begin{aligned}
& i_{1}=2 i_{2}=2\left(10 i_{3}\right)=20 i_{4} \\
& i_{2}=10 i_{3}=10 i_{4} \\
& i_{3}=i_{4}
\end{aligned}
$$

Now use KCL at the top node to relate the branch currents to the current supplied by the source.
$i_{1}+i_{2}+i_{3}+i_{4}=8 \mathrm{~mA}$
Express the branch currents in terms of i_{4} and solve for i_{4} :
$8 \mathrm{~mA}=20 i_{4}+10 i_{4}+i_{4}+i_{4}=32 i_{4} \quad$ so $\quad i_{4}=\frac{0.008}{32}=0.00025=0.25 \mathrm{~mA}$
Since the resistors are in parallel, the same voltage, 4 V appears across each of them.
We know the current and the voltage for R_{4} so we can use Ohm's law to calculate R_{4} :
$R_{4}=\frac{v_{g}}{i_{4}}=\frac{4 \mathrm{~V}}{0.25 \mathrm{~mA}}=16 \mathrm{k} \Omega$
Calculate i_{3} from i_{4} and use Ohm's law as above to find R_{3} :
$i_{3}=i_{4}=0.25 \mathrm{~mA} \quad \therefore R_{3}=\frac{v_{g}}{i_{3}}=\frac{4 \mathrm{~V}}{0.25 \mathrm{~mA}}=16 \mathrm{k} \Omega$
Calculate i_{2} from i_{4} and use Ohm's law as above to find R_{2} :

$$
i_{2}=10 i_{4}=10(0.25 \mathrm{~mA})=2.5 \mathrm{~mA} \quad \therefore \quad R_{2}=\frac{v_{g}}{i_{2}}=\frac{4 \mathrm{~V}}{2.5 \mathrm{~mA}}=1.6 \mathrm{k} \Omega
$$

Calculate i_{1} from i_{4} and use Ohm's law as above to find R_{1} :
$i_{1}=20 i_{4}=20(0.25 \mathrm{~mA})=5 \mathrm{~mA} \quad \therefore \quad R_{1}=\frac{v_{g}}{i_{1}}=\frac{4 \mathrm{~V}}{5 \mathrm{~mA}}=800 \Omega$
The resulting circuit is shown below:

P3.29 [a] $v_{9 \Omega}=(1)(9)=9 \mathrm{~V}$

$$
\begin{aligned}
& i_{2 \Omega}=9 /(2+1)=3 \mathrm{~A} \\
& i_{4 \Omega}=1+3=4 \mathrm{~A} \\
& v_{25 \Omega}=(4)(4)+9=25 \mathrm{~V} \\
& i_{25 \Omega}=25 / 25=1 \mathrm{~A} \\
& i_{3 \Omega}=i_{25 \Omega}+i_{9 \Omega}+i_{2 \Omega}=1+1+3=5 \mathrm{~A} \\
& v_{40 \Omega}=v_{25 \Omega}+v_{3 \Omega}=25+(5)(3)=40 \mathrm{~V} \\
& i_{40 \Omega}=40 / 40=1 \mathrm{~A} \\
& i_{5 \| 20 \Omega}=i_{40 \Omega}+i_{25 \Omega}+i_{4 \Omega}=1+1+4=6 \mathrm{~A} \\
& v_{5 \| 20 \Omega}=(4)(6)=24 \mathrm{~V} \\
& v_{32 \Omega}=v_{40 \Omega}+v_{5 \| 20 \Omega}=40+24=64 \mathrm{~V} \\
& i_{32 \Omega}=64 / 32=2 \mathrm{~A} ; \\
& i_{10 \Omega}=i_{32 \Omega}+i_{5 \| 20 \Omega}=2+6=8 \mathrm{~A} \\
& v_{g}=10(8)+v_{32 \Omega}=80+64=144 \mathrm{~V}
\end{aligned}
$$

[b] $P_{20 \Omega}=\frac{\left(v_{5 \| 20 \Omega}\right)^{2}}{20}=\frac{24^{2}}{20}=28.8 \mathrm{~W}$

