
Coherence & Light 
• Two waves coherent if fixed phase relationship  
      between them for some period of time 
 

 
 



Coherence 
• Coherence appear in two ways 
Spatial Coherence 
• Waves in phase in time,  
      but at different points in space 
• Required for interference and diffraction 
• Before lasers need to place slits far from source 
      or pass light through slit so only part of source seen 
Temporal Coherence 
• Correlation of phase at the same point  
      but at different times 
• Regular sources rapidly change phase relationships 
• Single atom on 10-8 sec coherent 
      lifetime of atom in an excited state 
• Much shorter for groups of atoms 
• For lasers in single mode much longer time 
 

 
 



Coherence Length and Time 
• Time of coherence given by τcoh 
• Coherence time about time taken for photon to pass  
      a given distance (Coherence length) in space 
• Coherence length is 
 

cohcoh cL τ=  
 

• Best seen in Michelson-Morley experiment 
• Beam is split into two beam paths, reflected and combine 
• If get interference pattern then within Coherence lengths 
• Before lasers paths needed to be nearly equal 
• With lasers only require 
 

( ) coh21 LLL2 <−  
 

• Coherence last 50 - 100 m with lasers 
 

 
 



Coherence Length and Lasers 
• As the coherence length is  
 

cohcoh cL τ=  
 

• If want interference distances < coherence length 
• Lasers have high coherence 
• It can be shown Coherence time related to  
      laser frequency width Δν (linewidth) 
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Example of Coherence Length 
Sodium vapour lamp yellow "D" line  
• λ = 589 nm and linewidth 5.1x1011 Hz 
• Thus coherence time and length is 
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• Coherence small hence hard to create holograms 
 
• HeNe laser in multimode operation 
• λ =  632.8 nm and linewidth 1500 MHz 
• Thus coherence time and length is 
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• If single mode HeNe operation linewidth goes to 1 Mz  
      and cohrence time is 1 microsec, cohrence length 300 m 
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Common Patient Imaging Modalities
Imaging 
Method Resolution

Penetration
Depth

Source of 
contrast Cost

Computed 
Tomography
(X-rays)

2 – 3 mm Entire body Attenuation $$$

Magnetic
Resonance
Imaging

2 – 3 mm Entire body [ H+ ] $$$$

Ultrasound 500 μm 10 – 20 cm Acoustic 
scattering

$$

Visual Examination 100 μm Surface Natural 
Colouring $

Coherence Domain 
Optical Imaging 1 – 10 μm 2 – 3 mm

Optical 
scattering & 
absorption

$$

Histology 1 μm 5 – 10 μm
sections

Histological 
stains $$

Modified from J.A. Izatt, OCT Short Course



Optical Coherence Tomography 
• In tissue shortest path photons are least scattered
• Consider starting with a coherent source (laser)
• 2 paths: one to tissue, other to reference
• Use Michelson interferometer methods
• By adjusting reference delay scan return in phase
• Hence can separate scattered from unscattered
• Called Time Domain OCT



Optical Coherence Tomography
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Ophthalmic Optical Coherence Tomography

CorneaCornea

AqueousAqueous

LensLens

IrisIris

ScleraSclera

Log Reflection Log Reflection 4 mm4 mm

Anterior Segment
Izatt, et. al., Arch. Ophthalmol. 112:1584-1589, 1994.

Log ReflectionLog Reflection

Optic 
Disk
Optic 
DiskFoveaFovea

RNFLRNFL

ChoroidChoroid

VitreousVitreous

ScleraSclera

250 
µm
250 
µm

250 µm

Retina
Hee, et. al., Arch. Ophthalmol. 113:325-332, 1995.



Esophagus

IN VIVO HUMAN ENDOSCOPIC OCT

Stomach

Small 
Intestine

Colon

Rectum

J.A. Izatt, OCT Short Course



B – Barrett’s Esophagus
A – Adenocarcinoma

CANCER IMAGING WITH ENDOSCOPIC OCT
Invasive Adenocarcinoma in Barrett’s Esophagus

1 mm

B
A

J.A. Izatt, OCT Short Course



Cardiac Morphology And Cardiac Morphology And 
Development In Chick EmbryosDevelopment In Chick Embryos

Yelbuz, et.al., Circulation 106: 2771, 2002

Heart tube folding
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Balance Sheet for OCT

• Non-Contact Measurement
• High resolution: 10 - 20 µm in 3 

dimensions
• Compact, Inexpensive Diode-

Fiber System
• Compatible with Existing 

Medical Instrumentation 

• Speed limited by maximum 
optical exposure

– Particularly important in ophthalmic 
imaging 

» MPE < 770 μW @ 830 nm 
» MPE < 15.4 mW @ 1310 nm 

• High speed systems require 
complicated rapid scanning 
optical delay line (RSOD)

• Axial resolution trade-off with 
sensitivity

• Maximum tissue depth of ~2mm



Fourier Domain OCT
• Time domain OCT: reference moves
• Fourier Domain: reference fixed
• Now look at frequency (wavelength) changes
Spectral Domain
• Diffraction grating spreads spectrum
• Different λ different phase
• Use array type detector
Swept Source 
• Sweep Laser source (narrow line)
• Encode spectrum in time



Fourier Domain OCT

• Fixed reference arm
• Interferogram acquired as 

function of wavenumber

Sample

Low coherence
source 2x2 Fiber

coupler
Diffraction
grating

Array 
detector

λ1
λn

Sample

Wavelength
swept laser 2x2 Fiber

coupler

Photodiode
detector
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High Resolution Retinal FDOCT
Inner retinal 
layers FoveaBlood vessels

RNFL

RPE
Optic Nerve Head

Acquisition Parameters: 
• 1000 A-scans/B-scan
• 50μs A-scan int. time

(20 kHz)
• 17 frames/sec display
• 11mm lateral scan
•λo=841 nm, Δλ=49nm

B.A. Bower, SPIE Photonics West, 2006

Compare to 
commercial 
TD OCT results



High Speed Volumetric Retinal 
FDOCT

Retinal image from 
fundus camera 

- white light
- CCD camera

Scan Location

Summed voxel projection from raster 
canned OCT Data: “OCT Fundus” Image

B.A. Bower, SPIE Photonics West, 2006



Small Animal Imaging

Bioptigen, Inc. 
OCT Microscope

• λo=1300 nm, 
• Δλ=70nm 
• LPS: 6-24 kHz
• FPS: 6-24 Hz
• Volume: 4-25 s
• Flow measurement 

using Doppler 
processing

• Video light microscopy, SEM, 
confocal microscopy often 
inadequate for quantitative 
measurements.

• OCT is uniquely suited to image 
popular small model organisms 
such as fruit fly, chick embryo, 
zebrafish, and xenopus
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Limited Sample Depth FD OCT: 
Imaging the Human Eye

• Posterior Segment
– Retina, macula, optic nerve head
– Structures < 1 mm thick

• Anterior chamber
– Cornea, iris, crystalline lens
– > 6 mm sample depth required 

www.webvision.med.utah.edu/ imageswv/sagitta2.jpeg 

2mm

Reference mirror 
virtual position

4mm

Reference mirror 
virtual position



High Speed Complex Conjugate Resolved 
Ocular Anterior Segment Images

• Average all three 
detector signals

– Image corrupted by 
complex conjugate 
artifact

• Quadrature
projection 
processing

– Complex conjugate 
resolved images Iris Angle

Limbus

Sclera

Cornea

DC artifact

Epithelium

Ciliary body
Crystalline lens


