Mirror Example

- Consider a concave mirror radius -10 cm then

$$
f=-\frac{r}{2}=-\frac{-10}{2}=5 \mathrm{~cm}
$$

- Now consider a 1 cm candle $\mathrm{s}=15 \mathrm{~cm}$ from the vertex
- Where is the image

$$
\begin{gathered}
\frac{1}{s}+\frac{1}{s^{\prime}}=-\frac{2}{r}=\frac{1}{f} \\
\frac{1}{s^{\prime}}=-\frac{2}{r}-\frac{1}{s}=\frac{1}{5}-\frac{1}{15}=0.13333 \quad s^{\prime}=\frac{1}{0.1333}=7.5 \mathrm{~cm}
\end{gathered}
$$

- Magnification $m=\frac{M^{\prime}}{M}=-\frac{s^{\prime}}{s}=-\frac{7.5}{15}=-0.5$
- Thus image is inverted and half size of object
- What if candle is at 10 cm (radius of curvature)

$$
\frac{1}{s^{\prime}}=-\frac{2}{r}-\frac{1}{s}=\frac{1}{5}-\frac{1}{10}=0.1 \quad s^{\prime}=\frac{1}{0.1}=10 \mathrm{~cm} \quad m=-\frac{s^{\prime}}{s}=-\frac{10}{10}=-1
$$

Image is at object position $(10 \mathrm{~cm})$ inverted and same size $(1 \mathrm{~cm})$

FIGURE 6E
Parallel-ray method for graphically locating the image formed by a concave mirror.

Objects less than Focal Length

- Now consider object at 2.5 cm (smaller than $\mathrm{f}=5 \mathrm{~cm}$)

$$
\frac{1}{s^{\prime}}=-\frac{1}{f}-\frac{1}{s}=\frac{1}{5}-\frac{1}{2.5}=-0.2 \quad s^{\prime}=\frac{1}{-0.2}=-5 \mathrm{~cm} \quad m=-\frac{s^{\prime}}{s}=-\frac{-5}{2.5}=2
$$

- Image appears to be behind the mirror by 5 cm
- Image is virtual - light is expanding from mirror
- Image is erect and twice object size
- Do not see image if place something at image position

Fig. 4-49

Graphic Method of Solving Optics

- Graphic method is useful in thinking about what happens
- Use some scale (graph paper good)
- Place mirror on axis line and mark radius C \& focal F points
- Draw line from object top Q to mirror parallel to axis (ray 4)
- Hits vertex line at T
- Then direct ray from T through focus point F (ray 5) and beyond
- Now direct ray from object top Q through radius C (ray 8)
- This intersects ray 5 at image Q' (point 9)
- This correctly shows both position and magnification of object
- This really shows how the light rays are travelling
- Eg Ray through the focal point F (ray 6) becomes parallel (ray 7)
- Intersects ray 5 again at image Q'

FIGURE 6E
Parallel-ray method for graphically locating the image formed by a concave mirror.

Mirror Coatings

- Classic mirrors use metallic coatings
- Most optics mirrors front surface mirror
- Regular mirrors back surface (coating on glass)
- Problem for optics (reflection both from glass \& metal surface)
- Aluminium most commons now: 90-92\% reflective
- Often coated for protection with transparent film (aluminium oxide)
- Silver mirrors higher reflection 95\%
- Must be coated or fail in 6 months
- Gold mirrors for IR systems
- For lasers Al mirrors problem is ~8\% absorption
- Film gets damaged by laser energy absorbed
- Typical limit $50 \mathrm{~W} / \mathrm{cm}^{2} \mathrm{CW}, 10 \mathrm{~mJ} / \mathrm{cm}^{2}$ for 10 nsec pulse
- Need to watch cleaning as they scratch easily

Mirror Substrates

Pyrex

- Typical substrate pyrex: BK7
- Low deformation with heating
- Good surface polish
- Typical size: 1 inch diameter, 0.5 inch thick
- Must be platinum free
- Price of substrate $\sim \$ 100$

Glass-Ceramic materials

- eg Newport's Zerodur
- designed for low thermal expansion
- Used were there must be not thermal changes
- Price of Substrate ~\$130

Fused Silica (Quartz)

- High thermal stability
- Extremely good polishing characteristics
- 3 times price of Pyrex

Lenses \& Prism

- Consider light entering a prism
- At the plane surface perpendicular light is unrefracted
- Moving from the glass to the slope side
light is bent away from the normal of the slope
- Using Snell's law

$$
\begin{gathered}
n \sin (\varphi)=n^{\prime} \sin \left(\varphi^{\prime}\right) \\
1 \sin \left(\varphi^{\prime}\right)=1.75 \sin \left(30^{\circ}\right)=0.875 \\
\varphi^{\prime}=\arcsin (0.875)=61^{\circ}
\end{gathered}
$$

Figure 2.5 A translation into the ray language of Figure 2.3

Prisms \& Index of Refraction with Wavelength

- Different wavelengths have different index of refraction
- Index change is what makes prism colour spectrum
- Generally higher index at shorter wavelengths
- Most effect if use both sides to get max deviation \& long distance
- Angle change is \sim only ratio of index change $-1-2 \%$
- Eg BSC glass red 1.5, violet 1.51, assume light leaves at 30°

Red $\phi_{\mathrm{R}}=\arcsin [1.5 \sin (60)]=48.59^{\circ}$
Violet $\phi_{\mathrm{v}}=\arcsin [1.51 \sin (60)]=49.03^{\circ}$

- This 0.43° difference spreads spectrum 7.6 mm at 1 m distance

FIGURE 9Y
Graphs of the refractive indices of several kinds of optical glass. These are called dispersion curves

Lens

- Lens is like a series of prisms
- Straight through at the centre
- Sharper wedge angles further out
- More focusing further out
- Snell's law applied to get the lens operation

Figure 2.6 Rays corresponding to wavefronts incident upon a succession of small prisms

Why is Light Focus by a Lens

- Why does all the light focus by a lens
- Consider a curved glass surface with index n' on right side
- Radius of curvature r is centered at C
- Let parallel light ray P at height h from axis hit the curvature at T
- Normal at T is through C forming angle ϕ to parallel beam
- Beam is refracted by Snell's law to angle ϕ ' to the normal

$$
n \sin (\varphi)=n^{\prime} \sin \left(\varphi^{\prime}\right)
$$

Assuming small angles then $\sin (\phi) \sim \phi$ and

$$
\sin (\varphi)=\frac{n^{\prime}}{n} \sin \left(\varphi^{\prime}\right) \quad \text { or } \quad \varphi \cong \frac{n^{\prime}}{n} \varphi^{\prime}
$$

From geometry for small angles

$$
\sin (\phi)=\frac{h}{r} \quad \text { or } \quad \phi \cong \frac{h}{r}
$$

Angle θ^{\prime} the beam makes to the axis is by geometry

$$
\theta^{\prime}=\phi^{\prime}-\phi=\frac{n^{\prime}}{n} \phi-\phi=\frac{n^{\prime}-n}{n} \phi \cong \frac{h}{r}\left[\frac{n^{\prime}-n}{n}\right]
$$

Thus the focus point is located at

$$
f=\frac{h}{\sin \left(\theta^{\prime}\right)} \cong \frac{h}{\theta} \cong h \frac{r}{h}\left[\frac{n}{n^{\prime}-n}\right] \cong \frac{n r}{n^{\prime}-n}
$$

Thus all light is focused at same point independent of h position

FIGURE 8E
Geometry for ray tracing with parallel incident light.

Focal Points

- Two focal points depending on surface \& where light comes from
- Primary Focal Points are
- Convex
(a) where diverge beam forms parallel light
- Concave surface (b) where light appears to converge when it is converted into a parallel beam

- Secondary Focal Points

- Convex
(c) where parallel beam is focused
- Concave surface (d) where parallel light coming in appears to diverge from.

FIGURE 3B
The focal points F and F^{\prime} and focal lengths f and f^{\prime} associated with a single spherical refracting surface of radius r separating two media of index n and n^{\prime}.

Types of Lenses

Convex

- (a) Biconvex or equiconvex
- (b) Planoconvex
- (c) positive meniscus

Concave

- (d) biconcave or equiconve
- (e) Planoconcave
- (f) negative meniscus
- Primary and secondary focal points very dependent on type
- Planoconvex/Panloconcave easiest to make
- Two surface lenses about twice the price

FIGURE 3A
Cross sections of common types of thin lenses.

Fresnel Lens

- Lens with thickness remove
- Cheaper, but can be lower quality
- Reason: diffraction effects at step boundries

Figure 2.8 Metamorphosis of a succession of prismlets into a Fresnel lens

Lens Conventions

- From Jenkins \& White: Fundamentals of Optics, pg 50
- Incident rays travel left to right
- Object distance s + if left to vertex, - if right to vertex
- Image distance s' + if right to vertex, - if left to vertex
- Focal length measured from focal point to vertex
f positive for converging, negative for diverging
- r positive for convex surfaces
r negative for concave
- Object and Image dimension
+ if up, - if down from axis

FIGURE 3D
All rays leaving the object point Q and passing through the refracting surface are brought to a focus at the image point Q^{\prime}.

Gaussian Formula for a Spherical Surface

- The radius of curvature r controls the focus
- Gaussian Lens formula

$$
\frac{n}{s}+\frac{n^{\prime}}{s^{\prime}}=\frac{n^{\prime}-n}{r}
$$

where n index on medium of light origin
n ' index on medium entered
$r=$ radius of curvature of surface

- Clearly for s' infinite (parallel light output) then $\mathrm{s}=\mathrm{f}$ (primary focal length)

$$
\begin{aligned}
\frac{n}{s}+\frac{n^{\prime}}{\infty} & =\frac{n}{f}=\frac{n^{\prime}-n}{r} \\
f & =\frac{n r}{n^{\prime}-n}
\end{aligned}
$$

FIGUKE 3K
Geometry for the derivation of the paraxial formula used in locating images.

Thin Lens

- Assume that thickness is very small compared to s , s distances
- This is often true for large focal length lenses
- Primary focus f on left convex lens, right concave
- Secondary focus f^{\prime} on right convex, left concave
- If same medium on both sides then thin lens approximation is

$$
f=f^{\prime}
$$

FIGURE 4A
Ray diagrams illustrating the primary and secondary focal points F and F^{\prime} and the corresponding focal lengths f and f^{\prime} of thin lenses.

Basic Thin Lens formula

- Basic Thin Lens formula

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}
$$

- Lens Maker's formula

$$
\frac{1}{f}=(n-1)\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)
$$

FIGURE 4D
The parallel-ray method for graphically locating the image formed by a thin lens.

FIGURE 4G
The parallel-ray method for graphically locating the virtual image formed by a negative lens.

Magnification and Thin Lenses

- f positive for convex, negative for concave
- Magnification of a lens is given by

$$
m=-\frac{s^{\prime}}{s}=\frac{f}{f-s}=\frac{f-s^{\prime}}{f}
$$

- Magnification is negative for convex, positive for concave

FIGURE 4D
The parallel-ray method for graphically locating the image formed by a thin lens.

FIGURE 4G
The parallel-ray method for graphically locating the virtual image formed by a negative lens.

Simple Lens Example

- Consider a glass ($\mathrm{n}=1.5$) plano-convex lens radius $\mathrm{r}_{1}=10 \mathrm{~cm}$ - By the Lens Maker's formula

$$
\begin{aligned}
\frac{1}{f}=(n-1)\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) & =(1.5-1)\left(\frac{1}{10}-\frac{1}{\infty}\right)=\frac{0.5}{10}=0.05 \\
f & =\frac{1}{0.05}=20 \mathrm{~cm}
\end{aligned}
$$

- Now consider a 1 cm candle at $\mathrm{s}=60 \mathrm{~cm}$ from the vertex
- Where is the image

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}
$$

$$
\frac{1}{s^{\prime}}=\frac{1}{f}-\frac{1}{s}=\frac{1}{20}-\frac{1}{60}=0.03333 \quad s^{\prime}=\frac{1}{0.0333}=30 \mathrm{~cm}
$$

- Magnification $m=\frac{M^{\prime}}{M}=-\frac{s^{\prime}}{s}=-\frac{30}{60}=-0.5$
- Image at 30 cm other side of lens inverted and half object size
- What if candle is at 40 cm (twice f)

$$
\frac{1}{s^{\prime}}=\frac{1}{f}-\frac{1}{s}=\frac{1}{20}-\frac{1}{40}=0.05 \quad s^{\prime}=\frac{1}{0.05}=40 \mathrm{~cm} \quad m=-\frac{s^{\prime}}{s}=-\frac{40}{40}=-1
$$

- Image is at 40 cm other side of lens inverted and same size (1 cm)

FIGURE 4D
The parallel-ray method for graphically locating the image formed by a thin lens.

Lens with Object Closer than Focus f

- Now place candle at 10 cm (s $<\mathrm{f}$ condition)

$$
\begin{aligned}
& \frac{1}{s^{\prime}}=\frac{1}{f}-\frac{1}{s}=\frac{1}{20}-\frac{1}{10}=-0.05 \quad s^{\prime}=\frac{1}{0.05}=-20 \mathrm{~cm} \\
& m=-\frac{s^{\prime}}{s}=-\frac{-20}{10}=2
\end{aligned}
$$

- Now image is on same side of lens at 20 cm (focal point)
- Image is virtual, erect and 2 x object size
- Virtual image means light appears to come from it

Graphic Method of Solving Lens Optics

- Graphic method is why this is called Geometric Optics
- Use some scale (graph paper good)
- Place lens on axis line and mark radius C \& focal F points
- Draw line from object top Q to mirror parallel to axis (ray 4)
- Hits vertex line at T
- Then direct ray from T through focus point F and beyond
- Because parallel light from object is focused at f
- Now direct ray from object top Q through lens center (ray 5)
- This intersects ray 4 at image Q' (point 7)
- This correctly shows both position and magnification of object
- This really shows how the light rays are travelling
- Eg Ray through the focal point F (ray 6) becomes parallel
- Intersects ray 5 again at image Q'

FIGURE 4D
The parallel-ray method for graphically locating the image formed by a thin lens.

Thin Lens Principal Points

- Object and image distances are measured from the Principal Points
- Principal point H" Location depends on the lens shape
- H" also depends on a thin lens orientation
- Note if you reverse a lens it often does not focus at the same point
- Need to look at lens specifications for principal points
- Thick lenses have separate Principal points

Thick Lens Formula

- As lens gets thicker optical surfaces may be not meet

- Lens thickness t_{c} (between vertex at the optical axis i.e. centre)
- Now lens formula much more complicated
- Distances measured relative to the principal points H" for light coming from the front
H for light coming from the back of lens

$$
\frac{1}{f}=(n-1)\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)+\frac{(n-1)^{2}}{n}\left[\frac{t_{c}}{r_{1} r_{2}}\right]
$$

- Note simple lens formula assumes $\mathrm{t}_{\mathrm{c}}=0$ which is never true
- But if f is large then r 's large and t_{c} is small so good approximation
- Note plano-convex $\mathrm{r}_{2}=\infty$ and $\mathrm{f}_{\text {thin }}=\mathrm{f}_{\text {thick }}$ but principal point changes

Note location of object and image relative to front and rear focal points.
$\phi=$ Lens diameter
$r_{1}=$ Radius of curvature of 1st surface (positive if center of curvature is to right)
$r_{2}=$ Radıus of curvature of 2 nd surface (negative if center of curvature is to left)
$r_{2}=-r_{1}$ for symmetric lens
$\mathrm{m}=\mathrm{s}^{\prime \prime} / \mathrm{s}=$ magnification $=$ conjugate ratio, said to be infinite if either $s^{\prime \prime}$ or s is infinite
$\theta=\operatorname{Arctan}(\phi / 2 \mathrm{~s})$
$\mathbf{s}=$ Object distance, positive for object (whether real or
virtual) to the left of principal point H
$\mathbf{s}^{\prime \prime}=$ Image distance (s and $\mathbf{s}^{\prime \prime}$ are collectively called conjugate distances, with object and image in conjugate planes), positive for image (whether real or virtual) to the right of the principal point $\mathrm{H}^{\prime \prime}$
$\mathrm{t}_{\mathrm{c}}=$ Center thickness
t. = Edge thickness
$f=$ Effective focal length (EFL), may be positive (as shown or negative. f represents both FH and $\mathrm{H}^{\prime \prime} \mathrm{F}$ ". assuming lens to be surrounded by medium of index 1.0

Very Thick Lenses

- Now primary and secondary principal points very different
- $\mathrm{A}_{1}=$ front vertex (optical axis intercept of front surface)
- H = primary (front) principal point
- $\mathrm{A}_{2}=$ back vertex (optical axis intercept of back surface)
- H" = secondary (back) principal point
- $\mathrm{t}_{\mathrm{c}}=$ centre thickness: separation between vertex at optic axis
- Relative to the front surface the primary principal point is

$$
A_{1}-H=f t_{c}\left(\frac{n-1}{r_{2}}\right)
$$

- Relative to the back surface the secondary principal point is

$$
A_{2}-H^{\prime \prime}=f t_{c}\left(\frac{n-1}{r_{1}}\right)
$$

- $\mathrm{f}_{\text {efl }}$ effective focal length (EFL): usually different for front and back

FRONT AND BACK FOCAL LENGTHS of a lens having spherical surfaces and surrounded by air. Under these conditions, distances labeled f are equal whether or not the lens is symmetric, but distances f_{f} and f_{b} are equal only if the lens is symmetric. In the paraxial limit (see text), the curvature of the principal surfaces may be neglected.

Numerical Aperture (NA)

- NA is the sine of the angle the largest ray a parallel beam makes when focused

$$
N A=\sin (\theta)=\frac{\phi}{2 f}
$$

where θ = angle of the focused beam
$\phi=$ diameter of the lens

- NA <1 are common
- High NA lenses are faster lenses
- NA is related to the F\#

$$
F \#=\frac{1}{2 N A}
$$

Combining Lenses

- Can combine lenses to give Combination Effective Focal Length f_{e}
- If many thin lenses in contact then

$$
\frac{1}{f_{e}}=\frac{1}{f_{1}}+\frac{1}{f_{2}}+\frac{1}{f_{3}} \cdots
$$

- Two lenses f_{1} and f_{2} separated by distance d
- To completely replace two lens for all calculations
- New image distance for object at infinity (eg laser beam)

$$
\frac{1}{f_{e}}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{d}{f_{1} f_{2}} \quad \text { or } \quad f_{e}=\frac{f_{1} f_{2}}{f_{1}+f_{2}-d}
$$

- Distance from first lens primary principal point
to combined lens primary principal point

$$
D=-\frac{d f_{e}}{f_{2}}
$$

- Distance from second lens secondary principal point
to combined lens secondary principal point

$$
D^{\prime}=-\frac{d f_{e}}{f_{1}}
$$

- Combined "thick lens" extends from D to D'

Combining Two Lens Elements

- Combined object distance s_{e}

$$
s_{e}=s_{1}-D
$$

- Combined image distance s_{e}

$$
s_{e}^{\prime}=s_{2}^{\prime}-D^{\prime}
$$

- NOTE: Combined object/image distance may change sign
- The thick lens follows the standard formula

$$
\frac{1}{s_{e}}+\frac{1}{s_{e}^{\prime}}==\frac{1}{f_{e}}
$$

- Combined magnification

$$
m_{e}=-\frac{s_{e}^{\prime}}{s_{e}}
$$

- Secondary focus distance relative to $2^{\text {nd }}$ lens vertex is:

$$
f=f_{e}+D
$$

- Note some devices (e.g. telescopes) cannot use these formulas

PAIR OF POSITIVE LENSES separated by distance d greater than $f_{1}+f_{2}$.

