Human Eye (Hecht 5.7.1)

- Human eye is a simple single lens system
- Crystalline lens provide focus
- Cornea: outer surface protection
- Aqueous humor is water like liquid behind cornea
- Iris: control light
- Retina: where image is focused
- Note images are inverted
- Brain's programming inverts the image

FIGURE 10A
A cross-sectional diagram of a human eye, showing the principal optical components and the retina.

Human Eye Distance

- Crystalline lens to retina distance 24.4 mm
- Eye focuses object up to 25 cm from it
- Called the near point or $\mathrm{D}_{\mathrm{v}}=25 \mathrm{~cm}$
- Eye muscles to change focal length of lens over $2.22<f<2.44$ cm
- Near sighted: retina to lens distance too long, focused in front
- Infinity object focused in front of retina: out of focus at it
- When bring objects closer focus moves to retina
- Near sighted people can see objects with $\mathrm{D}_{\mathrm{v}}<25 \mathrm{~cm}$
- Far sighted: eye is too short, focuses behind retina, $D_{v}>25 \mathrm{~cm}$

FIGURE 10B
Schematic eye as developed by Gullstrand, showing the real and inverted image on the retina (dimensions are in millimeters).

Magnification of Lens

- Lateral change in distance equals
change in image size
- Measures change in apparent image size

$$
m=M=\frac{y^{\prime}}{y}=-\frac{s^{\prime}}{s}
$$

FIGURE 4D
The parallel-ray method for graphically locating the image formed by a thin lens.

Magnification with Index Change

- Many different ways of measuring magnification
- With curved index of refraction surface
measure apparent change in distance to image
- Called Lateral Magnification

$$
m=-\frac{s^{\prime}-r}{s+r}
$$

- m is + if image virtual, - if real

FIGURE 3F
Parallel-ray method for graphically locating the image formed by a single spherical surface.

Angular Magnification

- For the eye look at angular magnification

$$
m=M=\frac{\theta^{\prime}}{\theta}
$$

- Represents the change in apparent angular size

FIGURE 10H
The angle subtended by the object determines the size of the retinal image.

Simple Magnifying Glass

- Human eye focuses near point or $\mathrm{D}_{\mathrm{v}}=25 \mathrm{~cm}$
- Magnification of object:
ratio of angles at eye between unaided and lens
- Angle of Object with lens

$$
\tan (\theta)=\frac{y}{D_{v}}=\frac{y}{25} \approx \theta
$$

- For maximum magnification place object at lens f (in cm)

$$
\theta^{\prime}=\frac{y}{f}
$$

- Thus magnification is (where f in cm)

$$
m=\frac{\theta^{\prime}}{\theta}=\frac{25}{f}
$$

- e.g. What is the magnification of a lens $f=1$ inch $=2.5 \mathrm{~cm}$

$$
m=\frac{\theta^{\prime}}{\theta}=\frac{25}{f}=\frac{25}{2.5}=10
$$

(a)

(c)

FIGURE 10I
The angle subtended by (a) an object at the near point to the naked eye, (b) the virtual image of an object inside the focal point, (c) the virtual image of an object at the focal point.

Power of a Lens or Surface

- Power: measures the ability to create
converging/diverging light by a lens
- Measured in Diopters (D) or $1 / \mathrm{m}$
- For a simple curved surface

$$
P=\frac{n^{\prime}-n}{r}
$$

- For a thin lens

$$
P=\frac{1}{f}
$$

- Converging lens have +D , diverging -D
- $\operatorname{eg} \mathrm{f}=50 \mathrm{~cm}, \mathrm{D}=+2 \mathrm{D}$

$$
\mathrm{f}=-20 \mathrm{~cm}, \mathrm{D}=-5 \mathrm{D}
$$

- Recall that for multiple lens touching

$$
\frac{1}{f_{e}}=\frac{1}{f_{1}}+\frac{1}{f_{2}}+\frac{1}{f_{3}} \cdots
$$

- Hence power in Diopters is additive

$$
D=D_{1}+D_{2} \cdots
$$

Human Eye: A two Lens System

- Eye is often treated as single simple lens
- Actually is a two lens system
- Cornea with $\mathrm{n}=1.376$ makes main correction
- Aqueous humor is nearly water index
- Lens $n=1.406$ relative to aqueous humor $\Delta \mathrm{n}$ causes change
- Eye mussels shape the lens and adjusts focus
- Cornea gives 44.8 D of correction
- Lens gives ~18.9 D of correction
- Cannot see in water because water index 1.33 near cornea
- Thus cornea correction is not there.

Eyeglasses (Hecht 5.7.2)

- Use Diopters in glasses
- Farsighted, Hypermetopia: focus light behind retina Use convex lens, +D to correct
- Nearsighted, Myopia: focus in front of retina use concave lens, -D to correct
- Normal human eye power is $\sim 58.6 \mathrm{D}$
- Nearsighted glasses create a reverse Galilean telescope
- Makes objects look smaller.

Farsighted eye corrected

Nearsighted eye corrected

FIGURE 10L
Typical eye defects can be corrected by spectacle lenses.

Anamorphic Lenses

- Lenses \& Mirrors do not need to be cylindrically symmetric
- Anamorphic Lenses have different characteristics in each axis
- Sphero-cylinderical most common
- One axis (eg vertical): cylindrical curve just like regular lens
- Other axis (e.g. horizontal): has no curve
- Result light is focused in horizontal axis but not vertical
- Often used to create a line of light

Astigmatism

Astigmatism means light is focused in on axis not other Cylinderical lens cause as Astigmatism: focus in one plan In eyes astigmatism caused by shape of eye (\& lens)
Image is compressed in one axis and out of focus
Typically measure D in both axis
Rotation of astigmatism axis is measured Then make lens slightly cylindrical
i.e. perpendicular to axis may have higher D in one than other eg. eyeglass astigmatism prescription gives +D and axis angle + D is difference between the two axis.

CROSS SECTION OF ASTIGMATIC EYE

uncorrected

Horizontal line out of focus

Ray Tacing (Hecht 6.2)

- For more complicated systems use CAD tools
- Both are based on Ray Tracing concepts
- Solve the optical system by tracing many optical rays
- Use exact surface positions \& surface
- Do not make parallex assumption - use Snell's law
- Eg.of programs Z max, Code 5

Matrix Methods in Optics(Hecht 6.2.1)

- Alternative Matrix methods
- Both matrix \& CAD are based on Ray Tracing concepts
- Solve the optical system by tracing many optical rays
- In free space a ray has position and angle of direction
y_{1} is radial distance from optical axis
V_{1} is the angle (in radians) of the ray
- Now assume you want to a Translation:
find the position at a distance t further on
- Then the basic Ray equations are in free space making the parallex assumption

$$
\begin{gathered}
y_{2}=y_{1}+V_{1} t \\
V_{2}=V_{1}
\end{gathered}
$$

Matrix Method: Translation Matrix

- Can define a matrix method to obtain the result for any optical process
- Consider a simple translation distance t
- Then the Translation Matrix (or T matrix)

$$
\left[\begin{array}{l}
y_{2} \\
V_{2}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
V_{1}
\end{array}\right]=\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
V_{1}
\end{array}\right]
$$

- The reverse direction uses the inverse matrix

$$
\left[\begin{array}{l}
y_{1} \\
V_{1}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{-1}\left[\begin{array}{l}
y_{2} \\
V_{2}
\end{array}\right]=\left[\begin{array}{cc}
D & -B \\
-C & A
\end{array}\right]\left[\begin{array}{l}
y_{2} \\
V_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & -t \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
V_{1}
\end{array}\right]
$$

General Matrix for Optical Devices

- Optical surfaces however will change angle or location
- Example a lens will keep same location but different angle
- Reference for more lens matrices \& operations A. Gerrard \& J.M. Burch,
"Introduction to Matrix Methods in Optics", Dover 1994
- Matrix methods equal Ray Trace Programs for simple calculations

Table 1

Number	Description	Optical Diagram	Ray-transfer matrix
1	Translation (\mathscr{T}-matrix)		$\left[\begin{array}{cc}1 & t / n \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & T \\ 0 & 1\end{array}\right]$
2	Refraction at single surface (\because-matrix)		$\left[\begin{array}{cc}1 & 0 \\ \frac{-\left(n_{2}-n_{1}\right)}{r} & 1\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -P & 1\end{array}\right]$
	Reflection at single surface (for convention see section II.11)		$\left[\begin{array}{cc}1 & 0 \\ \frac{2 n}{r} & 1\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -P & 1\end{array}\right]$
4	Thin lens in air (focal length f, power P)		$\left[\begin{array}{cc}1 & 0 \\ -(n-1)\left(\frac{1}{p_{1}}-\frac{1}{r_{2}}\right) & 1\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -1 / f & 1\end{array}\right]$

General Optical Matrix Operations

- Place Matrix on the left for operation on the right
- Can solve or calculate a single matrix for the system

$$
\begin{gathered}
{\left[\begin{array}{l}
y_{2} \\
V_{2}
\end{array}\right]=\left[M_{\text {image }}\right]\left[M_{\text {lens }}\right]\left[M_{\text {object }}\left[\begin{array}{l}
y_{1} \\
V_{1}
\end{array}\right]\right.} \\
{\left[\begin{array}{l}
y_{2} \\
V_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & s^{\prime} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right]\left[\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
V_{1}
\end{array}\right]}
\end{gathered}
$$

FIGURE 4D
The parallel-ray method for graphically locating the image formed by a thin lens.

Solving for image with Optical Matrix Operations

- For any lens system can create an equivalent matrix
- Combine the lens (mirror) and spacing between them
- Create a single matrix

$$
\left[M_{n}\right] \cdots\left[M_{2}\right]\left[M_{1}\right]=\left[M_{\text {system }}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

- Now add the object and image distance translation matrices

$$
\begin{gathered}
{\left[\begin{array}{ll}
A_{s} & B_{s} \\
C_{s} & D_{s}
\end{array}\right]=\left[M_{\text {image }}\right]\left[M_{\text {lens }}\right]\left[M_{\text {object }}\right]} \\
{\left[\begin{array}{ll}
A_{s} & B_{s} \\
C_{s} & D_{s}
\end{array}\right]=\left[\begin{array}{ll}
1 & s^{\prime} \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right]} \\
{\left[\begin{array}{ll}
A_{s} & B_{s} \\
C_{s} & D_{s}
\end{array}\right]=\left[\begin{array}{cc}
A+s^{\prime} C & A s+B+s^{\prime}(C s+D) \\
C & C s+D
\end{array}\right]}
\end{gathered}
$$

- Image distance s ' is found by solving for $\mathrm{B}_{\mathrm{s}}=0$
- Image magnification is

$$
m_{s}=\frac{1}{D_{s}}
$$

FIGURE 4D
The parallel-ray method for graphically locating the image formed by a thin lens.

Example Solving for the Optical Matrix

- Two lens system: solve for image position and size
- Biconvex lens $\mathrm{f}_{1}=8 \mathrm{~cm}$ located 24 cm from 3 cm tall object
- Second lens biconcave $f_{2}=-12 \mathrm{~cm}$ located $\mathrm{d}=6 \mathrm{~cm}$ from first lens
- Then the matrix solution is

$$
\begin{gathered}
{\left[\begin{array}{ll}
A_{s} & B_{s} \\
C_{s} & D_{s}
\end{array}\right]=\left[\begin{array}{ll}
1 & X \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
\frac{1}{12} & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 6 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-\frac{1}{8} & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 24 \\
0 & 1
\end{array}\right]} \\
{\left[\begin{array}{ll}
A_{s} & B_{s} \\
C_{s} & D_{s}
\end{array}\right]=\left[\begin{array}{ll}
1 & X \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 6 \\
\frac{1}{12} & \frac{3}{2}
\end{array}\right]\left[\begin{array}{cc}
1 & 24 \\
-\frac{1}{8} & -2
\end{array}\right]} \\
{\left[\begin{array}{cc}
A_{s} & B_{s} \\
C_{s} & D_{s}
\end{array}\right]=\left[\begin{array}{cc}
1 & X \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
A_{s 1} & B_{s 1} \\
C_{s 1} & D_{s 1}
\end{array}\right]=\left[\begin{array}{cc}
1 & X \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
0.25 & 12 \\
-0.1042 & -1
\end{array}\right]}
\end{gathered}
$$

- Solving for the image position using the s1 matrix \& X matrix:

$$
B_{s}=B_{s 1}+X D_{s 1}=0 \quad \text { or } \quad X=\frac{-B_{s 1}}{D_{s 1}}=\frac{-12}{-1}=12 \mathrm{~cm}
$$

- Then the magnification is

$$
m=\frac{1}{D_{s}}=\frac{1}{D_{s 1}}=\frac{1}{-1}=-1
$$

- Thus the object is at 12 cm from $2^{\text {nd }}$ lens, -3 cm high

Matrix Method and Spread Sheets

- Easy to use matrix method in Excel or matlab or maple
- Use mmult array function in excel
- Select array output cells (eg. matrix) and enter =mmult(
- Select space 1 cells then comma
- Select lens 1 cells (eg =mmult(G5:H6,I5:J6))
- Then do control+shift+enter (very important)
- Here is example from previous page

E460 example lesson $6 \quad$ Distances in cm

Lens Matrix	$\begin{aligned} & \text { Lens } 2 \\ & \text { f2 } \end{aligned}$		${ }_{-12}$ Matrx 1		Space 1 d		$\begin{aligned} & \text { Lens } 1 \\ & 6 \mathrm{f} 1 \end{aligned}$		8
0.25	6	1	0	0.25	6	1	6	1	0
-0.104167	1.5	0.083333	1	-0.125	1	0	1	-0.125	1

second focal length	$-1 / C$	9.6
second focal point	$-A / C$	2.4

Image			System Matrix S1		Lens Matrix	Object d		24
	1 X		0.25	12	0.25	6	1	24
	0	1	-0.104167	-1	-0.104167	1.5	0	1

Object size	y	3
image distance	$=-B s 1 / D s 1$	12
Magnification	$=1 / D s 1$	-1
Object size	$=y / D s 1$	-3

Optical Matrix Equivalent Lens

- For any lens system can create an equivalent matrix \& lens
- Combine all the matrices for the lens and spaces
- The for the combined matrix where $\mathrm{RP}_{1}=$ first lens left vertex
$\mathrm{RP}_{2}=$ last lens right most vertex
$\mathrm{n}_{1}=$ index of refraction before $1^{\text {st }}$ lens
$n_{2}=$ index of refraction after last lens

System parameter described	Measu From	red	Function of matrix elements	Special case $n_{1}=n_{2}=1$
First focal point	RP_{1}		$n_{1} D / C$	D / C
First focal length	F_{1}		- n_{1} / C	- 1/C
First principal point	RP_{1}		$n_{1}(D-1) / C$	$(D-1) / C$
First nodal point	RP_{1}		$\left(D n_{1}-n_{2}\right) / C$	$(D-1) / C$
Second focal point	RP_{2}		- $n_{2} A / C$	- A / C
Second focal length	H_{2}	F_{2}	- n_{2} / C	- 1/C
Second principal point	RP_{2}		$n_{2}(1-A) / C$	$(1-A) / C$
Second nodal point	RP_{2}	L_{2}	$\left(n_{1}-A n_{2}\right) / C$	$(1-A) / C$

Figure II.17c

Example Combined Optical Matrix

- Using Two lens system from before
- Biconvex lens $f_{1}=8 \mathrm{~cm}$
- Second lens biconcave $f_{2}=-12 \mathrm{~cm}$ located 6 cm from f_{1}
- Then the system matrix is

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
\frac{1}{12} & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 6 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-\frac{1}{8} & 1
\end{array}\right]=\left[\begin{array}{cc}
0.25 & 6 \\
-0.1042 & 1.5
\end{array}\right]
$$

- Second focal length (relative to H_{2}) is

$$
f_{s 2}=-\frac{1}{C}=-\frac{1}{-0.1042}=9.766 \mathrm{~cm}
$$

- Second focal point, relative to RP_{2} (second vertex)

$$
f_{r P 2}=-\frac{A}{C}=-\frac{0.25}{-0.1042}=2.400 \mathrm{~cm}
$$

- Second principal point, relative to RP_{2} (second vertex)

$$
H_{s 2}=\frac{1-A}{C}=\frac{1-0.25}{-0.1024}=-7.198 \mathrm{~cm}
$$

Figure II. 14

