Aspheric Surfaces

- Simple optics uses spherical surfaces
- Spherical surface is defined by the radius of curvature only
- But to correct many aberrations need aspheric surface
- Aspheric from Greek: a means not: thus not spherical
- Must have curvature different with radius r from optic axis
- Define a "sag" from the spherical curve
- Most common formula: rotated symmetric surface with a sag
- Define curve position along the z optic axis as

$$
z=\frac{c r^{2}}{1+\sqrt{1-(1+k) c^{2} r^{2}}}+\sum_{i=1}^{n} a_{i} r^{2 i}
$$

Where c = base curvature at vertex
$\mathrm{k}=$ conic constant
$r=$ radius from optic axis
$\mathrm{a}_{\mathrm{i}} \mathrm{r}^{2}=$ higher order aspheric terms

Conic Surfaces

- Conic surfaces are those made by a plane intersecting a cone
- Parabola, Hyperbola, Ellipse are common conics
- Rotate all these surfaces to get Paraboliods, Ellispoid etc
- In aspheric these drop higher order aspheric sag terms thus

$$
z=\frac{c r^{2}}{1+\sqrt{1-(1+k) c^{2} r^{2}}}
$$

Conic Constant	Surface Type
$\mathrm{k}=0$	spherical
$\mathrm{k}=-1$	Paraboloid
$\mathrm{k}<-1$	Hyperboloid
$-1<\mathrm{k}<0$	Ellipsoid
$\mathrm{k}>0$	Oblate eliposid

Effect of Conic Constant k

- Conic surface free of spherical aberrations under certain conditions
- Each type has a set of conjugate (related) points where this true
- Spherical: no aberration if object at center of curvature
- Parabolic mirror: for object at infinity
- Ellipsoid: for pair of real image conjugates on same side of surface
- Hyperboloid: conjugates on 2 different sides of surface
- Note how surface changes with conic constant k when base curvature c is kept constant.

Mirror and Parabolas

- For mirrors mostly want object near infinity
- Or to project light to infinity
- Parabolic surface creates this correction
- With aspheric formula $\mathrm{k}=-1$ and

$$
z=c r^{2}
$$

- Classic parabola formula is

$$
r^{2}=2 p z
$$

- Focus of parabola is at

$$
f=\frac{p}{2}=\frac{1}{4 c}
$$

- Related to spherical focus which is at $\mathrm{f}=\mathrm{r} / 2$
- Change from sphere is small so can correct with correcting lens - Seen in Schmit Telescope

FIGURE 6K
Spherical aberration of a concave spherical mirror.

Paraboloidal mirror

(a) spherical mirror

(b) classical solution

(c) weak spherica power added t the corrector

Correcting Astigmatism

- To correct astigmatism need higher order terms
- Astigmatism is deferent focus point further from axis
- Require changing shape to extend focus with r
- Stick as close to conics as possible in general
(a)

(b)

(c)

Figure 7.8
Aspheric Sags from Vertex Sphere (Top) and Best-Fit Sphere (Bottom)

normalized distance from optical axis

Aspheric Lens and Design

- Must use CAD tools for Aspheric lens design
- Generally do not use several aspheric lenses together
- Higher order terms my combine
- Generally design an special aspheric for the system
- Hard and expensive to manufacture if more than simple conic

