ENSC327

Communications Systems 12: FM Demodulation: Frequency Discriminator

Jie Liang School of Engineering Science Simon Fraser University

Three FM Demodulation Methods

- □ Frequency discriminator (slope detector)
 - Balanced freq. discriminator
- □ Phase-locked loop (PLL) demodulator
- Quadrature detector (not covered in this course, but is used in our lab equipment, see Lab 4)

Overview of FM Demodulation

FM signals:

$$s(t) = A_c \cos(2\pi f_c t + 2\pi k_f \int_0^t m(\tau) d\tau)$$

- \Box To recover the message m(t):
 - Need a circuit whose output is proportional to the difference of the instantaneous frequency from the carrier frequency:

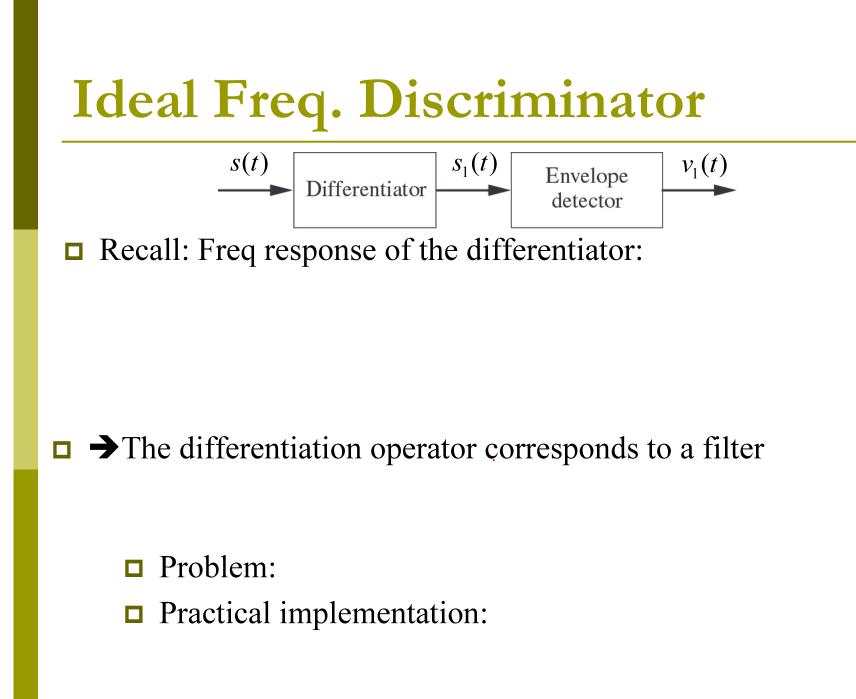
Two methods:

- Frequency discriminator (slope detector)
- Phase locked loop

Ideal Freq. Discriminator

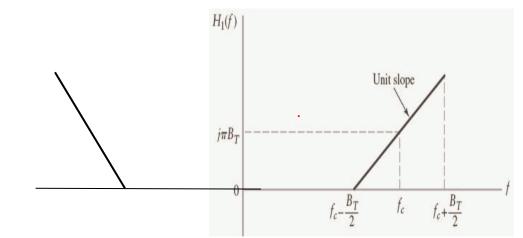
$$s(t) = A_c \cos(2\pi f_c t + 2\pi k_f \int_0^t m(\tau) d\tau)$$

 \Box If we take the derivative of s(t):



□ Freq response of the differentiator (for f > 0):

 \square H₁(f) for f < 0 is defined by using conj. symmetry.



□ To find the output of this filter for the input s(t):

$s(t) = A_c \cos(2\pi f_c t + 2\pi k_f \int_0^t m(\tau) d\tau)$ **Practical Freq. Discriminator**

 \square We first find the complex envelope of s(t):

□ We next find the complex envelope of the differentiator :

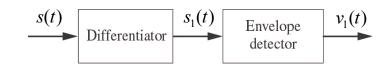
From
$$H_1(f) = \begin{cases} j 2\pi (f - (f_c - B_T / 2)), & f_c - B_T / 2 \le f \le f_c + B_T / 2, \\ 0, & \text{otherwise} \end{cases}$$

□ complex envelope:

Note: Eq. (4.49) should be doubled, as in Eq. (3.44). As a result, Eqs. (4.50) to (4.55) should be doubled too. The complex envelope of the output is: $\widetilde{s}(t) \rightarrow \widetilde{h}_1(t) \rightarrow 2\widetilde{s}_1(t)$

Taking inverse FT:

$$\widetilde{s}_1(t) = j\pi A_c B_T \left[1 + \frac{2k_f}{B_T} m(t) \right] e^{j2\pi k_f \int_0^t m(\tau)d\tau}$$

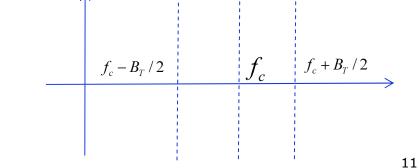


 \square From $\widetilde{s}_1(t)$ we can find $s_1(t)$:

• How to remove the bias in
$$v_1(t) = \pi A_c B_T \left[1 + \frac{2k_f}{B_T} m(t) \right]$$
?

- □ If we can get another signal: $v_2(t) = \pi A_c B_T \left[1 \frac{2k_f}{B_T} m(t) \right]$ Then the bias can be cancelled by:
- \Box This requires another filter for $v_2(t)$:

 $H_{2}(f) = j2\pi (f - (f_{c} + B_{T}/2)),$ for $f_{c} - B_{T}/2 \le f \le f_{c} + B_{T}/2,$



□ To verify: $H_2(f) = j2\pi (f - (f_c + B_T / 2)), \text{ for } f_c - B_T / 2 \le f \le f_c + B_T / 2,$

□ Taking inverse FT:

 \Box

$$\widetilde{s}_{2}(t) = j\pi A_{c}B_{T}\left[-1 + \frac{2k_{f}}{B_{T}}m(t)\right]e^{j2\pi k_{f}\int_{0}^{t}m(\tau)d\tau}$$

The previous derivation means that we need the following circuit, which is called balanced frequency discriminator:

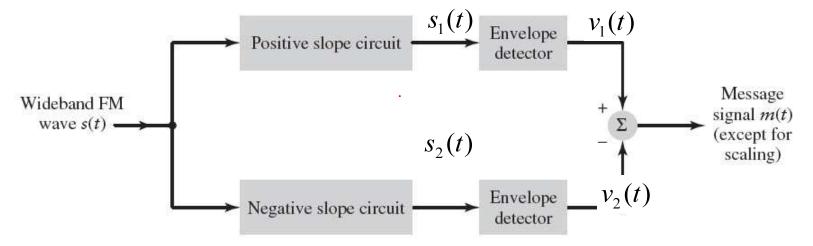


FIGURE 4.13 Block diagram of balanced frequency discriminator.